共查询到20条相似文献,搜索用时 0 毫秒
1.
Stefan Adam Michael Pawert Reinhold Lehmann Barbara Roth Ewald Müller Rita Triebskorn 《Journal of Aquatic Ecosystem Stress and Recovery (Formerly Journal of Aquatic Ecosystem Health)》2001,8(3-4):179-194
As a supporting component of the VALIMARproject, physicochemical investigations wereconducted monthly from 1995 to 1999 at theKrähenbach/Aich stream system (two samplingsites) and at the Körsch stream (sixsampling sites). Several physicochemicalparameters were analysed continuously bydataloggers during the entire sampling period.Moreover, a selection of the most importantmorphological parameters of the stream wererecorded in 1998.The results of these physicochemicalinvestigations demonstrated that theKrähenbach/Aich system could becharacterized as a natural rhithral submontanecarbonate stream system that is welloxygenated. Low temporal variations in pH,conductivity and chloride occurred at allsampling sites in the Krähenbach whichcoincided with the geological conditions atthis test stream. Because of relatively lowconcentrations of organic and inorganiccompounds during the entire study period thesites AB and AC in the Krähenbach/Aichsystem were classified as slightly polluted.The morphological assessment of the streamindicated a moderately affected status atboth of these streams.Physicochemical and morphologicalinvestigations along the Körsch streamsystem (KA to KE including the tributary streamSulzbach) indicated a highly affected rhithralsubmontane carbonate system characterized byhigh water velocity, flow rate and dissolvedoxygen. The Körsch, however, differssignificantly with respect to watertemperature, conductivity, pH, BOD5,nutrients, and chloride concentrations from theKrähenbach. As a result of differentanthropogenic inputs (e.g. several sewageplants, agriculture activities and waste waterdumping) the Körsch sites KA to KD wereclassified as critically to heavilypolluted. The morphological assessmentindicated a clearly affected to damagedstatus. The upstream site KE could becharacterized as slightly polluted and itsmorphological structure as moderatelyaffected. 相似文献
2.
Nitrate concentration and microbial nitrogen transformations in ground-water-affected sediments of Great South Bay, NY were
examined over several annual cycles. Nitrate concentrations are typically higher at 40 cm depth than at the surface, while
salinity generally decreases with depth. Denitrification occurs through the sediment core and is organic substrate limited
at depth while being nitrate limited near the sediment-water interface. Denitrification accounts for about 50% of the biological
NO3
- decrease between 40 and 15 cm depth interval.
Higher than average annual rainfall during 1983 and 1984 was reflected in an elevated water table as well as lower Bay salinities.
Conversely, extremely low rainfall occurred in 1985 and 1986, and the water table reached an extreme low in Sep. 1986. Interestingly,
the amounts of nitrate in the sediment column of our primary station varied directly with water table height and, presumably,
the discharge rate of nitrate enriched groundwater. We suggest that this may be a result of the more efficient removal of
advected nitrate by denitrification during low flow conditions. 相似文献
3.
CLAY P. ARANGO JENNIFER L. TANK JAMIE L. SCHALLER TODD V. ROYER MELODY J. BERNOT MARK B. DAVID 《Freshwater Biology》2007,52(7):1210-1222
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high. 相似文献
4.
Field enrichments with nitrate in two spring-fed drainage lines within the riparian zone of a small woodland stream near Toronto, Ontario showed an absence of nitrate depletion. Laboratory experiments with riparian substrates overlain with nitrate enriched solutions revealed a loss of only 5–8% of the nitrate during 48 h incubation at 12°C. However, 22–24% of the initial nitrate was depleted between 24 and 48 h when a second set of substrate cores was incubated at 20°C. Short-term (3 h) incubations of fresh substrates amended with acetylene were used to estimate in situ denitrification potentials which varied from 0.05–3.19 g N g–1 d–1 for organic and sandy sediments. Denitrification potentials were highly correlated with initial nitrate content of substrate samples implying that low nitrate levels in ground water and riparian substrates may be an important factor in controlling denitrification rates. The efficiency of nitrate removal in spring-fed drainage lines is also limited by short water residence times of < 1 h within the riparian zone. These data suggest that routes of ground water movement and substrate characteristics are important in determining nitrate depletion within stream riparian areas. 相似文献
5.
JONATHAN M. O’BRIEN STEPHEN K. HAMILTON LAURA PODZIKOWSKI NATHANIEL OSTROM 《Freshwater Biology》2012,57(6):1113-1125
1. Nitrogen (N) processing in streams has been investigated using whole‐stream 15N addition experiments that, in general, have found that a large proportion of added nitrate removed from the water column appears to be assimilated by the stream benthos. The long‐term fate of this retained N is unknown, and of particular interest is the possibility that it becomes denitrified through coupled mineralisation–nitrification–denitrification processes (indirect denitrification). 2. We used in situ chambers to produce highly 15N‐enriched benthic biofilms and removed the chambers to allow biofilms to interact with ambient stream conditions. Nitrogen assimilation and direct denitrification were estimated from the first chamber deployment. Chambers were periodically reinstalled over 4 weeks to measure tracer 15N in ammonium (), nitrate () and dinitrogen (N2), from which we estimated subsequent rates of biotic N transformations, including N mineralisation (ammonification), nitrification and indirect denitrification. We also estimated rates of depuration of 15N tracer from benthic biomass compartments. 3. Nitrate uptake was roughly equivalent in the sand and cobble habitats that dominated the stream. Direct denitrification (denitrification of from the water column) was an order of magnitude higher in cobble habitats than in sand habitats, accounting for c. 26 and 2% of total nitrate uptake in cobble and sand, respectively. 4. Mean residence times of actively cycling organic N in stream benthos (algae and microbes) were 16 days in cobble habitats and 9 days in sand habitats. The difference between habitat types was driven by the influence of N residence time in epilithic biofilms (18 days) on cobbles. 5. Release of enriched 15 was the primary flux of remineralised N, while release of enriched 15 was an order of magnitude less. We detected slight 15N enrichment in dissolved nitrogen gas (N2) in post‐enrichment sampling, indicating that indirect denitrification was taking place. However, indirect denitrification accounted for <0.1% of the assimilated N. 6. These experiments agree with results of whole‐stream 15N additions, in that most added N was assimilated rather than directly denitrified. Assimilation was primarily a short‐term N retention mechanism in this stream, and indirect denitrification of assimilated N accounted for only a minor proportion of the observed 15N loss over time. 7. Remaining possible fates include export of N as particulate organic matter, which may lead to additional storage of assimilated N in downstream habitats, and consumption by grazers. 相似文献
6.
The role of woody debris in nutrient cycling was investigated in two catastrophically disturbed streams in the Pacific Northwest that had been subjected to large inputs of wood. One study site in each catchment had all woody debris removed (take section), while the debris in the other study site was left intact (leave section). Nitrate, phosphate and chloride (a conservative tracer) were released in each section and nutrient retention was monitored at downstream stations. Phosphate was removed from solution more than nitrate, probably due to the high N : P ratio in the stream water. However, there were no major differences in nutrient retention between the take and leave sections. In contrast, experiments in recirculating chambers showed that woody debris and cobbles exhibited higher nitrate and phosphate uptake per unit surface area than sand/gravel or fine particulate organic matter. The high uptake rates of woody debris and cobbles may be related to their suitability for colonization by heterotrophic microorganisms and algae. Wood may not influence nutrient retention significantly at the reach level because of its low surface area relative to other substrates. However, wood may be very important at small spatial scales because of its high uptake activity. 相似文献
7.
污染物在农田溪流生态系统中的动态变化 总被引:12,自引:0,他引:12
氮是地表水体发生富营养化的主要因子,河流系统是氮输出的主要运移通道,养分在河流生态系统中的持留和趋向控制着污染物的输出。以巢湖流域一个受人为活动严重影响的农田源头溪流——六岔河为研究对象(包括4个渠道型、1个水塘型和3个河口型断面,对应长度分别为1.3km、0.15km和0.36km),设置9个监测点研究总氮(TN)、硝酸盐(NO3-N)、氨态氮(NH4^ -N)和总悬浮物(TSS)在溪流生态系统中的持留,评价人为严重干扰下的农田溪流生态系统在非点源污染物运移中的生态功能。结果表明:TN、NO3-N、NH4^ -N和TSS在溪流中的持留、释放受溪流的河流形态影响,水塘型和河口型断面是污染物持留的主要区域;TN、NO3-N、NH4^ -N和TSS在水塘型和河口型断面内的持留量分别占溪流持留量(基流、径流持留量的和)的61%、47%、75%和56%。降雨-径流过程中发生的持留是污染物持留的主要部分,TN、NO3-N、NH4^ -N和TSS的持留量分别占溪流持留量的93%、97%、89%和96%;渠道型断面是溪流最主要的内在污染源,污染物释放量占溪流释放量的90%以上;受水塘型断面出口处的水坝影响,位于水塘前的渠道型断面在基流和降雨-径流过程中均有效地持留污染物,而其余渠道型断面在不同水文条件下呈现出不同的持留特性。非点源污染物在溪流中的持留和释放的空间动态变化是溪流生态系统对自然和人为干扰的一种综合响应,有必要恢复溪流生态系统功能,控制农业非点源污染。 相似文献
8.
Laverman AM Van Cappellen P van Rotterdam-Los D Pallud C Abell J 《FEMS microbiology ecology》2006,58(2):179-192
Nitrate reduction plays a key role in the biogeochemical dynamics and microbial ecology of coastal sediments. Potential rates of nitrate reduction were measured on undisturbed sediment slices from two eutrophic coastal environments using flow-through reactors (FTR). Maximum potential nitrate reduction rates ranged over an order of magnitude, with values of up to 933 nmol cm(-3) h(-1), whereas affinity constants for NO(3) (-) fell mostly between 200 and 600 microM. Homogenized sediment slurries systematically yielded higher rates of nitrate reduction than the FTR experiments. Dentrification was the major nitrate removal pathway in the sediments, although excess ammonium production indicated a contribution of dissimilatory nitrate reduction to ammonium under nitrate-limiting conditions. 相似文献
9.
Alan R. Hill 《Hydrobiologia》1990,206(1):39-52
Interactions between ground water flow paths and water chemistry were studied in the riparian zone of a small headwater catchment near Toronto, Ontario. Significant variations in oxygen — 18 and chloride indicated the presence of distinct sources of water in the ground water flow system entering the near-stream zone. Shallow ground water at the upland perimeter of the riparian zone had nitrate-N, chloride and dissolved oxygen concentrations which ranged between 100–180 µg L–1, 1.2–1.8 mg L–1 and 4.6–9.1 mg L–1 respectively. Concentrations of nitrate — N in deep ground water flowing upward beneath the riparian wetland were < 10 µg L–1, whereas chloride and dissolved oxygen ranged between 0.6–0.9 mg L–1 and 0.4–2.2 mg L–1 respectively. Ammonium — N concentrations (20–60 µg L–1) were similar in shallow and deep ground water. Ground water was transported through the wetland to the stream by three hydrologic pathways. 1) Shallow ground water emerged as springs near the base of the hillslope producing surface rivulets which crossed the riparian zone to the stream. 2) Deep ground water flowed upward through organic soils and entered the rivulets within the wetland. 3) Deep ground water reached the stream as bed and bank seepage. Springs were higher in nitrate and chloride than rivulets entering the stream, whereas bank seeps had lower concentrations of nitrate and chloride and considerably higher ammonium concentrations than the rivulets. These contrasts in nitrate and chloride concentrations were related to initial differences in the ion chemistry of shallow and deep ground water rather than to element transformations within the riparian wetland. Differences in ammonium concentration between seeps and rivulets were caused by immobilization of ammonium in the substrates of aerobic rivulets, whereas little ammonium depletion probably occurred in deep ground water flowing upward through reduced subsurface organic soils around the stream perimeter. 相似文献
10.
Long-term data on nitrogen chemistry of streams draining Konza Prairie Biological Station (Konza), Kansas were analyzed to assess spatial and temporal patterns and examine the influence of agricultural activity on these patterns. Upland watersheds of Konza are predominantly tallgrass prairies, but agricultural fields and riparian forests border the lower reaches of the streams. We have up to 11 years of data in the relatively pristine upland reaches and 4 years of data on wells and downstream reaches influenced by fertilized croplands. Seasonal and spatial patterns in total nitrogen (TN) concentrations were driven largely by changes in the nitrate (NO3
–) concentrations. A gradient of increasing NO3
– concentrations occurred from pristine upland stream reaches to the more agriculturally-influenced lowland reaches. Nitrate concentrations varied seasonally and were negatively correlated with discharge in areas influenced by row-crop agriculture (p = 0.007). The NO3
– concentrations of stream water in lowland reaches were lowest during times of high precipitation, when the relative influence of groundwater drainage is minimal and water in the channel is primarily derived from upland prairie reaches. The groundwater from cropland increased stream NO3
– concentrations about four-fold during low-discharge periods, even though significant riparian forest corridors existed along most of the lower stream channel. The minimum NO3
– concentrations in the agriculturally influenced reaches were greater than at any time in prairie reaches. Analysis of data before and after introduction of bison to four prairie watersheds revealed a 35% increase of TN concentrations (p < 0.05) in the stream water channels after the introduction of bison. These data suggest that natural processes such as bison grazing, variable discharge, and localized input of groundwater lead to variation in NO3
– concentrations less than 100-fold in prairie streams. Row-crop agriculture can increase NO3
– concentrations well over 100-fold relative to pristine systems, and the influence of this land use process over space and time overrides natural processes. 相似文献
11.
施氮量对小麦/玉米带田土壤水分及硝态氮的影响 总被引:4,自引:0,他引:4
通过田间试验研究了河西绿洲灌区典型的小麦/玉米间作群体不同施氮量(0、210、420和630 kg/hm2)对小麦、玉米带田土壤水分和硝态氮(NO3(-)-N)的动态的影响.结果表明:小麦/玉米总籽粒产量随着施氮量的增加而增加,但当施氮量超过420kg/hm2时,总籽粒产量不再随施氮量增加而增加,最高总籽粒产量可达13661-14668 kg/hm2.水分利用效率在施氮420 kg/hm2时最高可达21.25 kg·hm-2·mm-1.小麦收获后,0-120 cm土层内土壤含水量随施氮量增加而减少,NO3(-)-N的累积量随施氮量增加而增加,并且表层土壤(0-60 cm) NO3(-)-N含量明显高于深层土壤(60-200 cm).在小麦/玉米整个生育期,土壤硝态氮的变化呈双峰曲线.施氮0和210 kg/hm2的土壤硝态氮第一峰值和第二峰值均分别出现在小麦三叶期和玉米大喇叭口期;施氮420和630 kg/hm2的土壤硝态氮第一峰值出现在小麦挑旗期,第二峰值分别出现在玉米大喇叭口期和玉米灌浆期.因此,在该地区小麦/玉米间作栽培模式下,施氮水平控制在420 kg/hm2时,使混合产量达到最高,同时可减轻土壤硝态氮的累积和运移,从而达到高效、安全的目的. 相似文献
12.
Inter-annual,Annual, and Seasonal Variation of P and N Retention in a Perennial and an Intermittent Stream 总被引:2,自引:0,他引:2
Daniel von Schiller Eugènia Martí Joan Lluis Riera Miquel Ribot Alba Argerich Paula Fonollà Francesc Sabater 《Ecosystems》2008,11(5):670-687
Headwater streams represent the key sites of nutrient retention, but little is known about temporal variation in this important
process. We used monthly measurements over 2 years to examine variation in retention of soluble reactive phosphorus (SRP)
and ammonium (NH4+) in two Mediterranean headwater streams with contrasting hydrological regimes (that is, perennial versus intermittent). Differences
in retention between streams were more evident for NH4+, likely due to strong differences in the potential for nitrogen limitation. In both streams, nutrient-retention efficiency
was negatively influenced by abrupt discharge changes, whereas gradual seasonal changes in SRP demand were partially controlled
by riparian vegetation dynamics through changes in organic matter and light availability. Nutrient concentrations were below
saturation in the two streams; however, SRP demand increased relative to NH4+ demand in the intermittent stream as the potential for phosphorus limitation increased (that is, higher dissolved inorganic
nitrogen:SRP ratio). Unexpectedly, variability in nutrient retention was not greater in the intermittent stream, suggesting
high resilience of biological communities responsible for nutrient uptake. Within-stream variability of all retention metrics,
however, increased with increasing time scale. A review of studies addressing temporal variation of nutrient retention at
different time scales supports this finding, indicating increasing variability of nutrient retention with concomitant increases
in the variability of environmental factors from the diurnal to the inter-annual scale. Overall, this study emphasizes the
significance of local climate conditions in regulating nutrient retention and points to potential effects of changes in land
use and climate regimes on the functioning of stream ecosystems. 相似文献
13.
The biodiversity and richness of keratinophilic fungal communities including dermatophytes were assessed in three stream sites and three swimming pools in the Nablus district in Palestine, using hair baiting (HBT) and surface dilution plate (SDP) techniques, over 8- and 6-month periods, respectively. The effect of waste water effluent and selected ecological factors on these fungi in relation to species diversity and population densities were also considered. Fifty keratinophilic fungal species were recovered from the aquatic habitats studied, of which 42 were recovered from stream sites and 22 from swimming pools. Of these fungi 6 were either dermatophytes (Microsporum gypseum, and Trichophyton mentagrophytes) or dermatophyte related species (Chrysosporium merdarium, Ch. tropicum, Ch. keratinophilum and T. terrestre). The most frequently isolated species in the three pools were Acremonium strictum and Cladosporium cladosporioides, using Sabouraud dextrose agar medium (SDA). The most abundant species were Acr. strictum, and Aspergillus flavus. However, only 4 species were isolated using the SDA medium amended with 5-flurocytosine (5-FC). The most frequent and abundant species in the three stream sites using SDA medium were Geotricum candidum, and Penicillium chrysogenum. The most frequent species in the three sites using the 5-FC medium, was Paecilomyces lilacinus. Using HBT, the most abundant and frequent species in the three stream sites were G. candidum, and Pa. lilacinus, on SDA medium, and Pa. lilacinus, and Gliocladium nigrovirens on the 5-FC medium. The 5-FC medium was more suitable for the isolation of dermatophytes and closely related species than the SDA medium; 6 were recovered on 5-FC, whereas only one on the SDA medium. Variation in the levels of keratinophilic fungal populations from the three stream sites sampled 5 times over an 8-month period, followed comparable fluctuation patterns. Waste water affected fungal population densities with the highest levels in the un-polluted stream sites, and lowest in the heavily polluted sites. Swimming pools, polluted and un-polluted stream sites were found to be rich in pathogenic and potentially pathogenic fungi.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
14.
The occurrence of internal phosphorus loading in two small,eutrophic, glacial lakes in Northeastern Ohio 总被引:4,自引:4,他引:0
G. Dennis Cooke Murray R. McComas David W. Waller Robert H. Kennedy 《Hydrobiologia》1977,56(2):129-135
Internal loading of phosphorus for the summers of 1972–1974 in the eutrophic Twin Lakes, Ohio, USA was calculated from nutrient budgets, and was found to account for 65–100% of the increase in phosphorus content of the lakes during this period. Recovery of lakes of this type after nutrient diversion may be delayed by internal loading and chemical inactivation of phosphorus may be needed. A discussion of sources of this internal loading is presented. 相似文献
15.
Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment 总被引:6,自引:6,他引:0
A. Dennis Lemly 《Hydrobiologia》1982,87(3):229-245
Responses of the benthic insect community of a southern Appalachian trout stream to inorganic sedimentation and nutrient enrichment
were monitored over a period of eight months. Entry of pollutants from point sources established differentially polluted zones,
allowing an assessment of impacts due to sedimentation alone and in association with elevated nutrient levels. Input of sediment
resulted in a significant increase in bed load and decrease of pH at the substrate-water interface (P < 0.05). The zone receiving
nutrient runoff from livestock pasture exhibited elevated levels of nitrate and phosphate, but available data indicated such
concentrations to be quite low. Species richness, diversity, and total biomass of filter feeding Trichoptera and Diptera,
predaceous Plecoptera, and certain Ephemeroptera were significantly reduced in the polluted zones. Inorganic sedimentation,
operating indirectly through disruption of feeding and filling of interstitial spaces, was considered to be the primary factor
affecting filter feeding taxa. Decomposition of compounds associated with materials in the bed load may depress pH and eliminate
acid sensitive species of Plecoptera and Ephemeroptera. Such processes of acidification may be particularly important to Appalachian
streams since the pH of regional surface waters is characteristically acidic prior to sedimentation. Accumulation of particles
on body surfaces and respiratory structures, perhaps as a function of wax and mucous secretion or surface electrical properties,
appears to be the major direct effect of inorganic sedimentation on stream insects. Growths of the filamentous bacterium Sphaerotilus natans were also frequently associated with silted individuals in the zone receiving nutrient addition. Distribution of the bacterium
suggested that silted substrates, perhaps as related to the presence of iron compounds, are required for colonization in dilute
nutrient solutions. The primary effect of Sphaerotilus colonies appears to be augmentation of particle accumulation through net formation by bacterial filaments. Data indicate
that inorganic sedimentation and nutrient addition operate synergistically, eliminating a significantly greater number of
taxa than exposure to one pollutant alone. 相似文献
16.
ROBERT S. STELZER LYNN A. BARTSCH WILLIAM B. RICHARDSON ERIC A. STRAUSS 《Freshwater Biology》2011,56(10):2021-2033
1. Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5 cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25 cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70 cm. 2. Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5 cm accounted for 68% of the mean depth‐integrated denitrification rate. 3. Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two‐source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5 cm) in Emmons Creek. 4. Vertical profiles showed that nitrate concentration in shallow ground water was about 10–60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73 mg NO3‐N L?1, respectively. 5. Deep ground water tended to be oxic (6.9 mg O2 L?1) but approached anoxia (0.8 mg O2 L?1) after passing through shallow, organic carbon‐rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6. Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. 相似文献
17.
Stable nitrogen isotope ratios of macrophytes and associated periphyton along a nitrate gradient in two subtropical, spring-fed streams 总被引:2,自引:0,他引:2
1. An increase in human population and associated changes in land use have caused an increase in groundwater nitrate concentrations throughout central Florida. Within the region, this nitrate‐laden groundwater returns to the surface via numerous large springs that serve as the origin of flow for many coastal streams and rivers. These rivers can exhibit strong nitrate gradients because of the high nutrient uptake potential of the rivers. 2. We hypothesised that downstream declines in nitrate concentrations would be manifested spatially as increases in the δ15N of the residual pool of nitrate, macrophytes and periphyton as a consequence of isotopic fractionation associated with preferential use of 14NO3−. This hypothesis was tested in two spring‐fed river systems, the Chassahowitzka and Homosassa rivers, along Florida's central Gulf of Mexico coast. 3. In general, δ15N values of nitrate, macrophytes and periphyton increased with decreasing fraction of nitrate remaining in each of the two study systems. The fractionation associated with nitrate uptake by macrophytes and associated periphyton was determined from the relationship between δ15N of both constituents of the macrophyte community and the fraction of nitrate removed from the system. Values for fractionation by macrophytes and periphyton ranged from 1.9‰ to 3.6‰ and from 0.7‰ to 2.5‰, respectively. 相似文献
18.
Oxisols have a high likelihood of NO3
– leaching which may strongly reduce N availability for tropical crops. The aim of this work was to evaluate the N and the water submodels of the STICS crop model for its ability to estimate N availability in N-fertilised field maize crops on two oxisols in Guadeloupe (French West Indies) with and without Al toxicity: a non-limed plot (NLI, pHKCl 3.9, 2.1 cmol Al3+ kg–1), and a limed plot (LI, pHKCl 4.5, 0 cmol Al3+ kg–1). An uncropped plot (UC, pHKCl 4.5, 0 cmol Al3+ kg–1) was used in order to fit some model parameters for soil evaporation, nitrification and NO3
– transport. The model was modified in order to describe nitrification as a partially inhibited process in acid soils, and to take into account NO3
– retention in oxisols. Nitrification was described as the result of the multiplicative effects of soil acidity, temperature and soil water content. Soil moisture and NO3
– and NH4
+ content up to 0.8 m soil depth, above-ground biomass and N uptake by crops, and their leaf area index (LAI), were measured from sowing to the beginning of grain filling. The model described correctly the changes in soil water content during the moist and the dry periods of the experiment, and there was some evidence that capillary rise occurred in the dry period. Nitrogen mineralization, nitrification in UC, NO3
– transport and plant uptake were satisfactorily simulated by the model. Because of the effect of Al toxicity on plant growth, LAI at flowering was three times higher in LI than in NLI. Some discrepancies between observed and simulated data were found for the distribution of NO3
– and NH4
+ in the cropped plots. This was probably due to the change of the ionic N form absorbed by the crops as a function of soil acidity and available P in the soil. No leaching was observed below 0.8 m depth and this was associated with NO3
– retention in the soil. The results showed that partial inhibition of nitrification and NO3
– retention should be taken into account by crop models to obtain realistic estimates of N availability for plants in tropical acid soils. 相似文献
19.
20.
Thaw depth determines reaction and transport of inorganic nitrogen in valley bottom permafrost soils
Nitrate (NO3–) export coupled with high inorganic nitrogen (N) concentrations in Alaskan streams suggests that N cycles of permafrost‐influenced ecosystems are more open than expected for N‐limited ecosystems. We tested the hypothesis that soil thaw depth governs inorganic N retention and removal in soils due to vertical patterns in the dominant N transformation pathways. Using an in situ, push–pull method, we estimated rates of inorganic N uptake and denitrification during snow melt, summer, and autumn, as depth of soil–stream flowpaths increased in the valley bottom of an arctic and a boreal catchment. Net NO3– uptake declined sharply from snow melt to summer and decreased as a nonlinear function of thaw depth. Peak denitrification rate occurred during snow melt at the arctic site, in summer at the boreal site, and declined as a nonlinear function of thaw depth across both sites. Seasonal patterns in ammonium (NH4+) uptake were not significant, but low rates during the peak growing season suggest uptake that is balanced by mineralization. Despite rapid rates of hydrologic transport during snow melt runoff, rates of uptake and removal of inorganic N tended to exceed water residence time during snow melt, indicating potential for retention of N in valley bottom soils when flowpaths are shallow. Decreased reaction rates relative to water residence time in subsequent seasons suggest greater export of inorganic N as the soil–stream flowpath deepens due to thawing soils. Using seasonal thaw as a proxy for longer term deepening of the thaw layer caused by climate warming and permafrost degradation, these results suggest increasing potential for export of inorganic N from permafrost‐influenced soils to streams. 相似文献