共查询到20条相似文献,搜索用时 0 毫秒
1.
We have isolated and characterized cDNAs that encode a protein expressed in the axons and growth cones of a subset of Xenopus embryonic neurons. The protein is also expressed in a subset of cells of the brain, including cells in even-numbered rhombomeres, the eye, and the heart. The sequence of the cDNA suggests that the protein belongs to a new class of neural-specific intermediate filaments. Both the RNA and the protein are expressed in the neurula and persist during embryogenesis in the brain, cranial nerves, and spinal cord. Because of the predicted structure of the protein, we have named it tanabin (from the Persian word for rope). 相似文献
2.
The intermediate filament protein vimentin is a new target for epigallocatechin gallate 总被引:1,自引:0,他引:1
Ermakova S Choi BY Choi HS Kang BS Bode AM Dong Z 《The Journal of biological chemistry》2005,280(17):16882-16890
Epigallocatechin gallate (EGCG) is the major active polyphenol in green tea. Protein interaction with EGCG is a critical step in the effects of EGCG on the regulation of various key proteins involved in signal transduction. We have identified a novel molecular target of EGCG using affinity chromatography, two-dimensional electrophoresis, and mass spectrometry for protein identification. Spots of interest were identified as the intermediate filament, vimentin. The identification was confirmed by Western blot analysis using an anti-vimentin antibody. Experiments using a pull-down assay with [3H]EGCG demonstrate binding of EGCG to vimentin with a Kd of 3.3 nm. EGCG inhibited phosphorylation of vimentin at serines 50 and 55 and phosphorylation of vimentin by cyclin-dependent kinase 2 and cAMP-dependent protein kinase. EGCG specifically inhibits cell proliferation by binding to vimentin. Because vimentin is important for maintaining cellular functions and is essential in maintaining the structure and mechanical integration of the cellular space, the inhibitory effect of EGCG on vimentin may further explain its anti-tumor-promoting effect. 相似文献
3.
CNS stem cells express a new class of intermediate filament protein. 总被引:263,自引:0,他引:263
Multipotential CNS stem cells receive and implement instructions governing differentiation to diverse neuronal and glial fates. Exploration of the mechanisms generating the many cell types of the brain depends crucially on markers identifying the stem cell state. We describe a gene whose expression distinguishes the stem cells from the more differentiated cells in the neural tube. This gene was named nestin because it is specifically expressed in neuroepithelial stem cells. The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein. These observations extend a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation. 相似文献
4.
5.
An encapsidated,subgenomic messenger RNA encodes the coat protein of carnation mottle virus 总被引:4,自引:0,他引:4
The translation strategy of carnation mottle virus (CarMV) in vitro has been generally assumed to involve internal initiation events on full-length, genomic RNA (4.3 kb). We suggest that this is, at least in part, incorrect. Encapsidated RNA, fractionated on denaturing sucrose gradients, or total RNA from CarMV-infected leaves, fractionated under non-denaturing conditions, was translated in an mRNA-dependent rabbit reticulocyte cell-free system. Evidence for subgenomic RNAs which encode a polypeptide of Mr 38 000 was found. This product was shown to be related to authentic CarMV coat protein by partial proteolysis with -chymotrypsin and SDS/polyacrylamide-gel electrophoresis. 相似文献
6.
Phosphorylation of the peripherin 58-kDa neuronal intermediate filament protein. Regulation by nerve growth factor and other agents 总被引:2,自引:0,他引:2
Peripherin, a recently described member of the intermediate filament multigene family, is present in peripheral and certain central nervous system neurons as well as in cultured neuron-like cell lines, including PC12 pheochromocytoma cells. In PC12 cells, peripherin appears to be the major intermediate filament protein and its relative levels and synthesis are specifically increased during nerve growth factor (NGF)-promoted neuronal differentiation. The present study examines the phosphorylation of peripherin and the regulation thereof by nerve growth factor and other agents in cultured PC12 cells. Immunoblotting experiments using a peripherin-specific antiserum show five distinct isoforms of this protein in whole cell and cytoskeletal extracts resolved by two-dimensional isoelectric focusing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three of these isoforms incorporate detectable quantities of [32P]phosphate during metabolic radiolabeling. The small proportion (approximately 6%) of total cellular peripherin that is extractable with 1% Triton X-100, does not appear to incorporate phosphate. NGF increases peripherin phosphorylation by 2-3-fold within 1-2 h of treatment. Epidermal growth factor and insulin have no effect. The relative levels of phosphorylated peripherin are markedly elevated (17-fold) by long term NGF exposure, and peripherin becomes a major cytoskeletal phosphoprotein. Activators of protein kinases A and C and treatment with depolarizing levels of K+ also enhance peripherin phosphorylation by 2-3-fold, in cultures both with and without prior long term NGF treatment. Evidence is presented that NGF regulates peripherin phosphorylation by a mechanism independent of protein kinases A and C and of depolarization. The large increase in phosphorylated peripherin brought about by NGF treatment suggests that this neuronal filament protein may play a role in the elaboration and maintenance of neurites. The presence of multiple independent pathways that acutely enhance peripherin phosphorylation indicates that this role is subject to modulation by extrinsic signals. 相似文献
7.
Characterization of a messenger RNA transport protein 总被引:3,自引:0,他引:3
A cytoplasmic protein which facilitates the energy-dependent transport of mRNA from isolated nuclei to a specified medium has been further characterized, since it could have relevance to the mechanism of mRNA nucleo-cytoplasmic transport in vivo. This protein is now shown, by cDNA hybridization analysis using appropriate recombinant probes, to be obligatory for the transport of alpha 2u-globulin and albumin mRNA from male rat liver nuclei. It is concentrated in the cytoplasm. When isolated under conditions where they retain nuclear proteins, the nuclei contain less than 2% of the total mRNA transport activity. Approx. 20% is recovered in the cytosol, while the rest (80%) copurifies with the messenger ribonucleoproteins in the polyribosome fraction. The protein is eluted from the poly A-messenger ribonucleoproteins between 0.25 and 0.50 M NaCl. The activities of the cytosolic- and messenger ribonucleoprotein-derived transport proteins were mutually additive below saturation of the transport system. Further, the activities of both fractions were increased when they were fortified with the catalytic subunit of the cAMP-dependent protein kinase in the presence of ATP. On the other hand, protein kinase-induced thiophosphorylation of the protein with ATP[S] decreased transport activity. The molecular weight of the transport protein from either cell compartment as judged by molecular sieving is approx. 35,000. It has now been purified 2000-fold and requires manganese ions and serum albumin for stabilization of activity. The highly purified transport factor from the cytosol is tentatively assigned a molecular weight of 32,000 by SDS-polyacrylamide gel electrophoresis. 相似文献
8.
A monoclonal antibody was produced, using as antigen a BHK-21 cytoskeletal preparation enriched in intermediate filaments (IF) and their associated proteins. This antibody reacted exclusively with a reproducible set of 70-280 kD polypeptides present in minor quantities in this preparation, as detected by immunoblot analysis. Based upon several criteria, this immunologically related group of polypeptides was designated as IFAP-70/280 kD (IF-Associated Protein): (1) it co-isolated with IF in vitro, (2) it co-localized (by both immunofluorescence and immunoelectron microscopy) with IF in situ in all stages of cell spreading, and (3) it segregated in vitro with the 54/55 kD (desmin/vimentin) structural IF subunit proteins of BHK cells through two cycles of in vitro disassembly/assembly. Immunogold labeling further localized IFAP-70/280 kD to regions of parallel or loosely bundled IF in situ, suggesting a role in regulating the supramolecular organization of IF. When this monoclonal antibody was used for double-label immunofluorescence observations of colchicine-treated BHK cells, it demonstrated the presence of colchicine-sensitive and colchicine-insensitive IF. Anti-IFAP-70/280 kD localized entirely to the drug-induced juxtanuclear IF cap, while a polyclonal antibody directed against the desmin/vimentin structural IF subunits and the previously characterized monoclonal anti-IFAP-300 kD [Yang et al., 1985; J. Cell Biol. 100:620] localized to both the juxtanuclear IF cap and a colchicine-insensitive IF network peripheral to the cap in the same cells. The colchicine-insensitive IF pattern often exhibited similarities to that observed for the actin-based stress fiber system, suggesting that stress fiber association may be an additional factor in IF organization. 相似文献
9.
Interaction of the intermediate filament protein vimentin with ribosomal subunits and ribosomal RNA in vitro 总被引:2,自引:0,他引:2
If in a low ionic strength extract of Triton X-100-resistant residual cell structures derived from Ehrlich ascites tumour (EAT) cells Mg2+ was chelated by EDTA, vimentin became associated with unfolded ribosomal subunits. The first molecular characterization of this association has shown that (1) vimentin binds to the RNA moiety of the ribosomes, (2) vimentin has a higher affinity for unfolded small ribosomal subunits or 18S rRNA than for unfolded large ribosomal subunits or 28S rRNA, (3) the limited degradation of vimentin by the vimentin-specific, Ca2+-activated proteinase, with the formation of a 48 Kd breakdown product, abolishes its affinity for rRNA, (4) the association products are rather sensitive to moderate concentrations of KCl and Mg2+, and (5) reductive alkylation of vimentin with pyridoxal-5-phosphate and NaBH4 has no effect on the affinity of vimentin for rRNA. Actin and tubulin do not interact with EAT cell rRNA under the above ionic conditions. 相似文献
10.
11.
Multiple mRNAs encode peripherin, a neuronal intermediate filament protein. 总被引:7,自引:3,他引:7 下载免费PDF全文
F Landon M Lemonnier R Benarous C Huc M Fiszman F Gros M M Portier 《The EMBO journal》1989,8(6):1719-1726
Three cDNA clones of 1.6 (3u), 1.2 (5g) and 0.6 (5b) kbp, specific for peripherin, a neuronal intermediate filament protein (IFP), have been isolated from a murine neuroblastoma cell lambda gt11 library by immunoscreening using peripherin antiserum. Antibodies eluted from the fusion proteins produced by clones 3u and 5g recognize the peripherin spots on immunoblots. Where they overlap the three cDNAs have identical sequences. cDNA 5g exhibits the closest homology to type III IFP cDNAs. cDNA 3u is identical to the corresponding region of cDNA 5g, except for the insertion of a 96 bp fragment at a position corresponding to the junction of exons 4 and 5 in type III IFP cDNAs. cDNA 5b is also identical to the corresponding region of cDNA 5g, except for the deletion of a 62 bp fragment at the junction of exons 8 and 9 in type III IFP cDNAs. S1 mapping experiments performed with probes covering the 3' end of the two unexpected regions show that three distinct mRNAs correspond to the three cDNAs. Moreover, three peripherin products, two minor 61 and 56 kd products in addition to the major 58 kd peripherin, are observed when poly(A)+ RNA is in vitro translated, the 61 kd peripherin being translated from the 3u-selected RNA. The three RNAs originate from alternative splicing of a unique peripherin gene, thus generating polymorphism of peripherin. 相似文献
12.
Hassina Darenfed Xiaoying Ma Lynn Davis Nicolas Juge Pierre E. Savard Gregory J. Cole Michel Vincent 《Histochemistry and cell biology》2001,116(5):397-409
Transitin is an avian intermediate filament protein whose transient expression in the progenitor cells of the muscle and nerve tissues is similar to that of mammalian nestin. Both proteins contain an alpha-helical core domain flanked by a short N-terminal head and a long C-terminal extremity. However, the tail region of transitin is significantly different from that of nestin in that it harbors a unique motif containing more than 50 leucine zipper-like heptad repeats which is not found in any other intermediate filament protein. Despite the absence of introns in this region of the transitin gene, it was reported that different isoforms of the protein were produced by exclusion or inclusion of a number of repeats generated by an unusual splicing mechanism recognizing consensus 5' and 3' splice sites contained within the coding sequence of the heptad repeat domain [Napier et al. (1999) J Mol Neurosci 12:11-22]. Two monoclonal antibodies (mAbs) reacting with repeated epitopes of this motif were used to monitor transitin expression during in vitro myogenesis of the quail myogenic cell line QM7. Confocal microscopy revealed that the subcellular domains decorated with mAbs A2B11 and VAP-5 were mutually exclusive: the intermediate filament network visualized with mAb VAP-5 appeared to abut on a submembranous domain defined by mAb A2B11. When QM7 cells were induced to differentiate by switching to medium containing low serum components, an early effect was the local loss of A2B11 cortical staining at the points of cell-cell contacts. The A2B11 signal also disappeared before that of VAP-5 in newly formed myotubes. Unexpectedly, the mutually exclusive staining pattern of the mAbs could not be explained by alternative splicing since both epitopes mapped to a repeated element preceding the consensus 5' splice sites of the heptad repeat domain. An alternative explanation would be that the central repeat domain of transitin is a polymorphic structure from which different conformations exist depending on the local context. This hypothesis is strengthened by the observation that in cultured neural crest cells, the A2B11 antigen is preferentially expressed by freely migrating crest cells whose intracellular pH and calcium concentrations are different from those of non-migrating cells. 相似文献
13.
14.
Hapiak V Hresko MC Schriefer LA Saiyasisongkhram K Bercher M Plenefisch J 《Developmental biology》2003,263(2):330-342
Locomotion in Caenorhabditis elegans requires force transmission through a network of proteins linking the skeletal muscle, via an intervening basal lamina and epidermis (hypodermis), to the cuticle. Mutations in mua-6 result in hypodermal rupture, muscle detachment from the bodywall, and progressive paralysis. It is shown that mua-6 encodes the cytoplasmic intermediate filament (cIF) A2 protein and that a MUA-6/IFA-2::GFP fusion protein that rescues the presumptive mua-6 null allele localizes to hypodermal hemidesmosomes. This result is consistent with what is known about the function of cIFs in vertebrates. Although MUA-6/IFA-2 is expressed embryonically, and plays an essential postembryonic role in tissue integrity, it is not required for embryonic development of muscle-cuticle linkages nor for the localization of other cIFs or hemidesmosome-associated proteins in the embryo. Finally, the molecular lesion in the mua-6(rh85) allele suggests that the head domain of the MUA-6/IFA-2 is dispensable for its function. 相似文献
15.
Whether the highly dynamic structure of the vimentin intermediate filament (IF) cytoskeleton responds to cues from cellular organelles, and what proteins might participate in such events is largely unknown. We have shown previously that the Golgi protein formiminotransferase cyclodeaminase (FTCD) binds to vimentin filaments in vivo and in vitro, and that overexpression of FTCD causes dramatic rearrangements of the vimentin IF cytoskeleton (Gao and Sztul, J. Cell Biol. 152, 877-894, 2001). Using real-time imaging, we now show that FTCD causes bundling of individual thinner vimentin filaments into fibers and that the bundling always originates at the Golgi. FTCD appears to be the molecular "glue" since FTCD cross-links vimentin filaments in vitro. To initiate the analysis of structural determinants required for FTCD function in vimentin dynamics, we used structure-based design to generate individual formiminotransferase (FT) and cyclodeaminase (CD) domains, and to produce an enzymatically inactive FTCD. We show that the intact octameric structure is required for FTCD binding to vimentin filaments and for promoting filament assembly, but that eliminating enzymatic activity does not affect FTCD effects on the vimentin cytoskeleton. Our findings indicate that the Golgi protein FTCD is a potent modulator of the vimentin IF cytoskeleton, and suggest that the Golgi might act as a reservoir for proteins that regulate cytoskeletal dynamics. 相似文献
16.
17.
Immunocytochemical staining with antibodies to the class III intermediate filament protein peripherin reveals discrete subpopulations of neurons and nerve fibres throughout the rat central nervous system. Some of these fibres enter the cerebellar granular and molecular layers. Here we use light and electron microscopic immunocytochemistry and confocal fluorescence microscopy to identify the peripherin positive fibres in the molecular layer of the cerebella of various mammals. 1) The peripherin positive fibres in the molecular layer have morphological attributes of climbing fibres, and peripherin positive fibres are also detected in the olivo-cerebellar tract. Furthermore peripherin positive neurons can be seen in the inferior olive, from which climbing fibres originate. (2 ) The peripherin positive molecular layer fibres rapidly degenerate in rats treated with 3-acetylpyridine (3-AP), a reagent which destroys neurons in the inferior olive, and the time course of degeneration of these mirrors that previously described for 3-AP induced destruction of climbing fibres. (3) Cerebella of other mammal species tested (mouse, rabbit, pig, cow and human) revealed a similar peripherin staining pattern in the cerebellum, including fibres in the molecular layer with the morphology of climbing fibres. (4) We also noted peripherin positive spinocerebellar and vestibulocerebellar mossy fibres in the cerebellar granular layer of folia known to receive these inputs. (5) A subset of perivascular nerve fibres are also peripherin positive. These results show that peripherin is a useful marker for mammalian cerebellar climbing fibres, and that a subset of morphologically distinct cerebellar mossy fibres are also peripherin positive. 相似文献
18.
A novel, simple and relatively rapid method is described for the isolation of the intermediate-sized filament protein vimentin from eye lens tissue. Chromatofocusing is applied as the sole purification step. The apparent isoelectric point of the protein in 6 M urea and at 22°C is 4.9. Electrophoretic mobility on one- and two-dimensional polyacrylamide gels, solubility in 6 M urea and amino acid composition were used for identification 相似文献
19.
Angiotensin 'antipeptides': (-)messenger RNA complementary to human angiotensin II (+)messenger RNA encodes an angiotensin receptor antagonist 总被引:1,自引:0,他引:1
G J Moore R C Ganter K J Franklin 《Biochemical and biophysical research communications》1989,160(3):1387-1391
(-)mRNA complementary to human angiotensin II (+)mRNA encodes the 'antipeptide' Glu-Gly-Val-Tyr-Val-His-Pro-Val which is structurally related to angiotensin II. Angiotensin II 'antipeptide' (antiANG II) and the desglutamyl heptapeptide (antiANG III) are Type I antagonists which inhibit the contractile action of angiotensin at smooth muscle receptors by binding to a negative modulatory site on the angiotensin receptor which is distinct from the angiotensin binding site. These findings may illustrate that the inhibitory binding site on the angiotensin receptor exists to accomodate a naturally occurring inhibitor(s), which is encoded by the DNA strand complementary to that encoding angiotensin II. 相似文献
20.
Caterina Mencarelli Silvia Ciolfi Daniela Caroti Pietro Lupetti Romano Dallai 《BMC biology》2011,9(1):17