首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of whole genome sequence data to infer baculovirus phylogeny   总被引:18,自引:0,他引:18       下载免费PDF全文
Several phylogenetic methods based on whole genome sequence data were evaluated using data from nine complete baculovirus genomes. The utility of three independent character sets was assessed. The first data set comprised the sequences of the 63 genes common to these viruses. The second set of characters was based on gene order, and phylogenies were inferred using both breakpoint distance analysis and a novel method developed here, termed neighbor pair analysis. The third set recorded gene content by scoring gene presence or absence in each genome. All three data sets yielded phylogenies supporting the separation of the Nucleopolyhedrovirus (NPV) and Granulovirus (GV) genera, the division of the NPVs into groups I and II, and species relationships within group I NPVs. Generation of phylogenies based on the combined sequences of all 63 shared genes proved to be the most effective approach to resolving the relationships among the group II NPVs and the GVs. The history of gene acquisitions and losses that have accompanied baculovirus diversification was visualized by mapping the gene content data onto the phylogenetic tree. This analysis highlighted the fluid nature of baculovirus genomes, with evidence of frequent genome rearrangements and multiple gene content changes during their evolution. Of more than 416 genes identified in the genomes analyzed, only 63 are present in all nine genomes, and 200 genes are found only in a single genome. Despite this fluidity, the whole genome-based methods we describe are sufficiently powerful to recover the underlying phylogeny of the viruses.  相似文献   

2.
Traditional phylogenetic analysis is based on multiple sequence alignment. With the development of worldwide genome sequencing project, more and more completely sequenced genomes become available. However, traditional sequence alignment tools are impossible to deal with large-scale genome sequence. So, the development of new algorithms to infer phylogenetic relationship without alignment from whole genome information represents a new direction of phylogenetic study in the post-genome era. In the present study, a novel algorithm based on BBC (base-base correlation) is proposed to analyze the phylogenetic relationships of HEV (Hepatitis E virus). When 48 HEV genome sequences are analyzed, the phylogenetic tree that is constructed based on BBC algorithm is well consistent with that of previous study. When compared with methods of sequence alignment, the merit of BBC algorithm appears to be more rapid in calculating evolutionary distances of whole genome sequence and not requires any human intervention, such as gene identification, parameter selection. BBC algorithm can serve as an alternative to rapidly construct phylogenetic trees and infer evolutionary relationships.  相似文献   

3.
A genome space is a moduli space of genomes. In this space, each point corresponds to a genome. The natural distance between two points in the genome space reflects the biological distance between these two genomes. Currently, there is no method to represent genomes by a point in a space without losing biological information. Here, we propose a new graphical representation for DNA sequences. The breakthrough of the subject is that we can construct the moment vectors from DNA sequences using this new graphical method and prove that the correspondence between moment vectors and DNA sequences is one-to-one. Using these moment vectors, we have constructed a novel genome space as a subspace in RN. It allows us to show that the SARS-CoV is most closely related to a coronavirus from the palm civet not from a bird as initially suspected, and the newly discovered human coronavirus HCoV-HKU1 is more closely related to SARS than to any other known member of group 2 coronavirus. Furthermore, we reconstructed the phylogenetic tree for 34 lentiviruses (including human immunodeficiency virus) based on their whole genome sequences. Our genome space will provide a new powerful tool for analyzing the classification of genomes and their phylogenetic relationships.  相似文献   

4.
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.  相似文献   

5.
Deng M  Yu C  Liang Q  He RL  Yau SS 《PloS one》2011,6(3):e17293

Background

Most existing methods for phylogenetic analysis involve developing an evolutionary model and then using some type of computational algorithm to perform multiple sequence alignment. There are two problems with this approach: (1) different evolutionary models can lead to different results, and (2) the computation time required for multiple alignments makes it impossible to analyse the phylogeny of a whole genome. This motivates us to create a new approach to characterize genetic sequences.

Methodology

To each DNA sequence, we associate a natural vector based on the distributions of nucleotides. This produces a one-to-one correspondence between the DNA sequence and its natural vector. We define the distance between two DNA sequences to be the distance between their associated natural vectors. This creates a genome space with a biological distance which makes global comparison of genomes with same topology possible. We use our proposed method to analyze the genomes of the new influenza A (H1N1) virus, human rhinoviruses (HRV) and mammalian mitochondrial. The result shows that a triple-reassortant swine virus circulating in North America and the Eurasian swine virus belong to the lineage of the influenza A (H1N1) virus. For the HRV and mammalian mitochondrial genomes, the results coincide with biologists'' analyses.

Conclusions

Our approach provides a powerful new tool for analyzing and annotating genomes and their phylogenetic relationships. Whole or partial genomes can be handled more easily and more quickly than using multiple alignment methods. Once a genome space has been constructed, it can be stored in a database. There is no need to reconstruct the genome space for subsequent applications, whereas in multiple alignment methods, realignment is needed to add new sequences. Furthermore, one can make a global comparison of all genomes simultaneously, which no other existing method can achieve.  相似文献   

6.
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.  相似文献   

7.
Individual genes or regions are still commonly used to estimate the phylogenetic relationships among viral isolates. The genomic regions that can faithfully provide assessments consistent with those predicted with full-length genome sequences would be preferable to serve as good candidates of the phylogenetic markers for molecular epidemiological studies of many viruses. Here we employed a statistical method to evaluate the evolutionary relationships between individual viral genes and full-length genomes without tree construction as a way to determine which gene can match the genome well in phylogenetic analyses. This method was performed by calculation of linear correlations between the genetic distance matrices of aligned individual gene sequences and aligned genome sequences. We applied this method to the phylogenetic analyses of porcine circovirus 2 (PCV2), measles virus (MV), hepatitis E virus (HEV) and Japanese encephalitis virus (JEV). Phylogenetic trees were constructed for comparisons and the possible factors affecting the method accuracy were also discussed in the calculations. The results revealed that this method could produce results consistent with those of previous studies about the proper consensus sequences that could be successfully used as phylogenetic markers. And our results also suggested that these evolutionary correlations could provide useful information for identifying genes that could be used effectively to infer the genetic relationships.  相似文献   

8.
Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.  相似文献   

9.
Wei C  Wang G  Chen X  Huang H  Liu B  Xu Y  Li F 《PloS one》2011,6(10):e26296
Identification and typing of human enterovirus (HEVs) are important to pathogen detection and therapy. Previous phylogeny-based typing methods are mainly based on multiple sequence alignments of specific genes in the HEVs, but the results are not stable with respect to different choices of genes. Here we report a novel method for identification and typing of HEVs based on information derived from their whole genomes. Specifically, we calculate the k-mer based barcode image for each genome, HEV or other human viruses, for a fixed k, 1相似文献   

10.
The availability of the complete genome sequence of Mycobacterium tuberculosis allows its phylogenetic analysis based on the whole genome rather than single genes. As a genome-based tree is more representative of whole organisms and less inconsistent than single-gene trees, it could provide a better index for interpretation and inference about the origin and nature of species. The standard bacterial phylogeny based on 16S ribosomal RNA sequence comparison shows that M. tuberculosis is more related to Gram-positive than to Gram-negative bacteria. Our results based on genome comparison in terms of shared orthologous genes challenge this implication. We demonstrate that M. tuberculosis is more related to Gram-negative than to Gram-positive bacteria by a quantitative analysis on the genome tree. The numerical distance data derived from genome comparison and those from 16S rRNA comparison show high significant correlation, implying that conserved gene content carries a strong phylogenetic signature in evolution.  相似文献   

11.
MOTIVATION: Orthologous proteins in different species are likely to have similar biochemical function and biological role. When annotating a newly sequenced genome by sequence homology, the most precise and reliable functional information can thus be derived from orthologs in other species. A standard method of finding orthologs is to compare the sequence tree with the species tree. However, since the topology of phylogenetic tree is not always reliable one might get incorrect assignments. RESULTS: Here we present a novel method that resolves this problem by analyzing a set of bootstrap trees instead of the optimal tree. The frequency of orthology assignments in the bootstrap trees can be interpreted as a support value for the possible orthology of the sequences. Our method is efficient enough to analyze data in the scale of whole genomes. It is implemented in Java and calculates orthology support levels for all pairwise combinations of homologous sequences of two species. The method was tested on simulated datasets and on real data of homologous proteins.  相似文献   

12.
We present ParaDB (http://abi.marseille.inserm.fr/paradb/), a new database for large-scale paralogy studies in vertebrate genomes. We intended to collect all information (sequence, mapping and phylogenetic data) needed to map and detect new paralogous regions, previously defined as Paralogons. The AceDB database software was used to generate graphical objects and to organize data. General data were automatically collated from public sources (Ensembl, GadFly and RefSeq). ParaDB provides access to data derived from whole genome sequences (Homo sapiens, Mus musculus and Drosophila melanogaster): cDNA and protein sequences, positional information, bibliographical links. In addition, we provide BLAST results for each protein sequence, InParanoid orthologs and 'In-Paralogs' data, previously established paralogy data, and, to compare vertebrates and Drosophila, orthology data.  相似文献   

13.
MOTIVATION: Genome projects have produced large amounts of data on the sequences of new genes whose functions are as yet unknown. The functions of new genes are usually inferred by comparing their sequences with those of known genes, but evaluation of the sequence homology of individual genes does not make the most of the available sequence information. Therefore, new methods and tools for extracting more biological information from homology searches would be advantageous. RESULTS: We have developed a computational tool, ORI-GENE, to analyze the results of sequence homology searches from the perspective of the evolution of selected sets of new genes. ORI-GENE has a graphical interface and accomplishes two important tasks: first, based on the output of homology searches, it identifies species with similar genes and displays their pattern of distribution on the phylogenetic tree. This function enables one to infer the way in which a given gene may have propagated among species over time. Second, from the distribution patterns, it predicts the point at which a given gene may have been first acquired (i.e. its 'origin'), then classifies the gene on that basis. Because it makes use of available evolutionary information to show the way in which genes cluster among species, ORI-GENE should be an effective tool for the screening and classification of new genes revealed by genome analysis. AVAILABILITY: ORI-GENE is retrievable via the Internet at: http://www.rtc.riken.go.jp/jouhou/ORI-GENE.  相似文献   

14.
From basepairs to birdsongs: phylogenetic data in the age of genomics   总被引:4,自引:0,他引:4  
Given the quantity of molecular data now available, including complete genomes for some organisms, one can ask whether there is a need for any data beyond complete genomic sequences for phylogenetic analysis. One reason to look beyond the genome is that not all character information is encoded in organismal genomes. We propose a hierarchy of characters that ranges from biologically transmitted but nongenomically encoded characters, such as bird songs, to characters that are genomically encoded. All of these characters can retain historical information and are potentially useful for phylogenetic analysis. In addition, a number of phenotypic levels that are expressions of the genome can be identified. The question whether it is worth including any of these levels if all of the underlying sequence data have been collected arises, since issues of redundancy occur. Utilization of phenotypic levels that are ultimately based on sequences may facilitate reconstructing homologies that are not evident from sequence data alone. We propose the use of simultaneous analysis of sequence data and as many levels of phenotypic characters as possible to take advantage of homology information that may be more easily recovered from the latter. A method that eliminates redundancy to the degree that it can be detected is proposed.  相似文献   

15.
In silico genomic fingerprints were produced by virtual hybridization of 191 fully sequenced bacterial genomes using a set of 15,264 13-mer probes specially designed to produce universal whole genome fingerprints. A novel approach for constructing phylogenetic trees, based on comparative analysis of genomic fingerprints, was developed. The resultant bacterial phylogenetic tree had strong similarities to those produced from the alignment of conserved sequences. Notably, the trees derived from the alignment of other conserved COG genes divided the Bacillus and Corynebacterium genera into the same subgroups produced by the novel bacterial tree. A number of discrepancies between both techniques were observed for the grouping of some Lactobacillus species. However, a detailed analysis of the alignment of these genomes using other bioinformatics tools revealed that the grouping of these organisms in the novel tree was more satisfactory than the groupings from previous classifications, which used only a few conserved genes. All these data suggest that the bacterial taxonomy produced by genomic fingerprints is satisfactory, but sometimes different from classical taxonomies. Discrepancies probably arise because the fingerprinting technique analyzes genomic sequences and reveals more information than previously used approaches.  相似文献   

16.
In silico genomic fingerprints were produced by virtual hybridization of 191 fully sequenced bacterial genomes using a set of 15,264 13-mer probes specially designed to produce universal whole genome fingerprints. A novel approach for constructing phylogenetic trees, based on comparative analysis of genomic fingerprints, was developed. The resultant bacterial phylogenetic tree had strong similarities to those produced from the alignment of conserved sequences. Notably, the trees derived from the alignment of other conserved COG genes divided the Bacillus and Corynebacterium genera into the same subgroups produced by the novel bacterial tree. A number of discrepancies between both techniques were observed for the grouping of some Lactobacillus species. However, a detailed analysis of the alignment of these genomes using other bioinformatics tools revealed that the grouping of these organisms in the novel tree was more satisfactory than the groupings from previous classifications, which used only a few conserved genes. All these data suggest that the bacterial taxonomy produced by genomic fingerprints is satisfactory, but sometimes different from classical taxonomies. Discrepancies probably arise because the fingerprinting technique analyzes genomic sequences and reveals more information than previously used approaches.  相似文献   

17.
The focus of the research is on the analysis of genome sequences. Based on the inter-nucleotide distance sequence, we propose the conditional multinomial distribution profile for the complete genomic sequence. These profiles can be used to define a very simple, computationally efficient, alignment-free, distance measure that reflects the evolutionary relationships between genomic sequences. We use this distance measure to classify chromosomes according to species of origin, to build the phylogenetic tree of 24 complete genome sequences of coronaviruses. Our results demonstrate the new method is powerful and efficient.  相似文献   

18.
The increasing availability of complete genome sequences and the development of new, faster methods for phylogenetic reconstruction allow the exploration of the set of evolutionary trees for each gene in the genome of any species. This has led to the development of new phylogenomic methods. Here, we have compared different phylogenetic and phylogenomic methods in the analysis of the monophyletic origin of insect endosymbionts from the gamma-Proteobacteria, a hotly debated issue with several recent, conflicting reports. We have obtained the phylogenetic tree for each of the 579 identified protein-coding genes in the genome of the primary endosymbiont of carpenter ants, Blochmannia floridanus, after determining their presumed orthologs in 20 additional Proteobacteria genomes. A reference phylogeny reflecting the monophyletic origin of insect endosymbionts was further confirmed with different approaches, which led us to consider it as the presumed species tree. Remarkably, only 43 individual genes produced exactly the same topology as this presumed species tree. Most discrepancies between this tree and those obtained from individual genes or by concatenation of different genes were due to the grouping of Xanthomonadales with beta-Proteobacteria and not to uncertainties over the monophyly of insect endosymbionts. As previously noted, operational genes were more prone to reject the presumed species tree than those included in information-processing categories, but caution should be exerted when selecting genes for phylogenetic inference on the basis of their functional category assignment. We have obtained strong evidence in support of the monophyletic origin of gamma-Proteobacteria insect endosymbionts by a combination of phylogenetic and phylogenomic methods. In our analysis, the use of concatenated genes has shown to be a valuable tool for analyzing primary phylogenetic signals coded in the genomes. Nevertheless, other phylogenomic methods such as supertree approaches were useful in revealing alternative phylogenetic signals and should be included in comprehensive phylogenomic studies.  相似文献   

19.
Sampling properties of DNA sequence data in phylogenetic analysis   总被引:26,自引:6,他引:20  
We inferred phylogenetic trees from individual genes and random samples of nucleotides from the mitochondrial genomes of 10 vertebrates and compared the results to those obtained by analyzing the whole genomes. Individual genes are poor samples in that they infrequently lead to the whole-genome tree. A large number of nucleotide sites is needed to exactly determine the whole-genome tree. A relatively small number of sites, however, often results in a tree close to the whole-genome tree. We found that blocks of contiguous sites were less likely to lead to the whole-genome tree than samples composed of sites drawn individually from throughout the genome. Samples of contiguous sites are not representative of the entire genome, a condition that violates a basic assumption of the bootstrap method as it is applied in phylogenetic studies.   相似文献   

20.

Background  

Until today, analysis of 16S ribosomal RNA (rRNA) sequences has been the de-facto gold standard for the assessment of phylogenetic relationships among prokaryotes. However, the branching order of the individual phlya is not well-resolved in 16S rRNA-based trees. In search of an improvement, new phylogenetic methods have been developed alongside with the growing availability of complete genome sequences. Unfortunately, only a few genes in prokaryotic genomes qualify as universal phylogenetic markers and almost all of them have a lower information content than the 16S rRNA gene. Therefore, emphasis has been placed on methods that are based on multiple genes or even entire genomes. The concatenation of ribosomal protein sequences is one method which has been ascribed an improved resolution. Since there is neither a comprehensive database for ribosomal protein sequences nor a tool that assists in sequence retrieval and generation of respective input files for phylogenetic reconstruction programs, RibAlign has been developed to fill this gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号