首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The effect of carbon sources and shock loadings have been studied using two sets of sequential upflow anaerobic sludge blanket (UASB) and rotating biological contactor (RBC) reactors viz., UASB-I followed by RBC-I and UASB-II followed by RBC-II for the removal of two different priority pollutants, 2-CP and 2,4-DCP present in simulated wastewaters. Sodium formate, sodium propionate, glucose and methanol were used separately as four different carbon sources in the feed as co-substrate. Methanol was found to be the best carbon source for UASB reactors showing 95% 2-CP and 81.1% 2,4-DCP removals. The carbon sources formate and propionate were not found suitable in UASB reactors as only 22.6-46.8% 2-CP and 41.9-42.8% 2,4-DCP removals were observed. With glucose as carbon source 93.7% 2-CP and 79.6% 2,4-DCP removals were observed in UASB reactors. For all the four carbon sources more than 97.6% 2-CP and 99.7% 2,4-DCP removals were observed in sequential reactors. Although all the four carbon sources could not serve as good carbon source for UASB reactor alone but could be successfully used by the sequential reactors for the removal of chlorophenols. The Performance of sequential reactors was also evaluated at five different chlorophenolic shock loadings. During shock loading study the concentration of chlorophenols in the wastewaters was increased to 45, 60, 75, 90 and 105 mg/l as compared to the normal feed containing 30 mg/l 2-CP or 2,4-DCP. During shock loading study complete removal of 2-CP and more than 99.6% removal of 2,4-DCP was observed in sequential reactors. Sequential reactors successfully withstood all the shock loadings and produced high quality effluents.  相似文献   

2.
This study was carried out to determine the effect of influent pH and alkalinity on the performance of sequential UASB and RBC reactors for the removal of 2-CP and 2,4-DCP from two different simulated wastewaters. The performance of methanogens at low (<6.0) to high (>8.0) pH values and at sufficiently high alkalinity (1500–3500 mg/l as CaCO3) is described in this paper. Sequential reactors were capable of handling wastewaters with influent pH, 5.5–8.5. However, with influent pH 7.0 ± 0.1 UASB reactor showed best performance for 2-CP (99%) and 2,4-DCP (88%) removals. Increase in alkalinity/COD ratio in the influent (>1.1) caused gradual decrease in the chlorophenol removal in UASB reactors. The UASB reactors could not tolerate wastewater with higher alkalinity/COD ratio (2.6) and showed significant deterioration of its performance in terms of chlorophenols removal achieving only 74.7% 2-CP and 60% 2,4-DCP removals, respectively.  相似文献   

3.
Treatment of simulated wastewater containing 40 mg/l of 4-chlorophenol (4-CP) was carried out in an upflow anaerobic sludge blanket (UASB) reactor under methanogenic condition. The performance of this test UASB reactor was evaluated in terms of 4-CP removal. Hydraulic retention time (HRT) and substrate:co-substrate ratio for the 4-CP removal was optimized by varying the influent flow rate (13-34.7 ml/min) and sodium acetate concentration (2-5 g/l), respectively. A control UASB reactor, which was not exposed to 4-CP was also operated under similar conditions. Organic loading rate (OLR) was varied in the range of 2-5.3 kg/m(3)/d and 1.7-4.2 kg/m(3)/d, respectively, for HRT and substrate:co-substrate ratio studies, respectively. The optimum HRT and substrate:co-substrate ratio for the removal of 4-CP was 12h and 1:75, respectively. Removal of 4-CP achieved at optimum HRT and substrate:co-substrate ratio was 88.3+/-0.7%. Removal of 4-CP occurred through dehalogenation and caused increase in chloride ion concentration in the effluent by 0.23-0.27 mg/mg 4-CP removed. The ring cleavage test showed the ortho mode of ring cleavage of 4-CP. Change in the elemental composition of the anaerobic biomass of UASB reactors was observed during the study period. Concentration of Ca(2+) increased in the biomass and this could be attributed to the biosoftening. Specific methanogenic activity of the sludge of control and test UASB reactor was 0.832 g CH(4) COD/g VSS d and 0.694 g CH(4) COD/g VSS d, respectively.  相似文献   

4.
Chlorophenol degradation was studied by combined anaerobic–aerobic treatments as a single or multi-substrate system. 2,4-Dichlorophenol (2,4-DCP) was degraded to the extent of 52 and 78% in up-flow anaerobic sludge blanket (UASB) and aerobic suspended growth (ASG) reactors respectively, at organic loading rates of 0.18kg/m3/day and hydraulic retention time of 26.4h in the presence of glucose. The UASB represents the dominating facultative anaerobic microbial population. When the effluent from the anaerobic reactor (UASB) was subjected to aerobic treatment on the ASG reactor, 2,4-DCP and COD removals of 86 and 95% respectively were achieved. Aerobic degradation of chlorophenol by acclimated mixed bacterial isolates was found to be sequential: 2-Chlorophenol (2-CP) and 4-CP were degraded first, followed by 2,4-DCP and 2,4,6-Trichlorophenol (2,4,6-TCP) while the contrary was obtained in anaerobic degradation. In anaerobic degradation by acclimated mixed bacterial cells, 2,4-DCP and 2,4,6-TCP were degraded first followed by mono-chlorophenols. The anaerobic/aerobic bioreactors were most efficient when operated in sequence (series) rather than in parallel.  相似文献   

5.
Oh WD  Lim PE  Seng CE  Sujari AN 《Bioresource technology》2011,102(20):9497-9502
The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.  相似文献   

6.
Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors   总被引:11,自引:0,他引:11  
Four identical bench-scale upflow anaerobic sludge blanket (UASB) reactors, R1, R2, R3 and R4, were used to assess nitrophenols degradation at four different hydraulic retention times (HRT). Reactor R1 was used as control, whereas R2, R3, and R4 were fed with 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. The concentration of each nitrophenol was gradually varied from 2 to 30 mg/l during acclimation. After acclimation reactors were operated under steady-state conditions at four different HRTs – 30, 24, 18, and 12 h, to study its effect on the removal of nitrophenols. Overall removal of 2-NP and 4-NP was always more than 99% but 2,4-DNP removal decreased from 96% to 89.7% as HRT was lowered from 30 to 12 h. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found to be the major intermediates during the degradation of 2-NP, 4-NP and 2,4-DNP, respectively. Out of the total input of nitrophenolic concentration (30 mg/l), on molar basis, about 41.2–48.4% of 2-NP, 59.4–68% of 4-NP, 30–26.6% of 2,4-DNP was recovered in the form of their respective amino derivatives at 30–12 h HRT. COD removal was 98–89%, 97–56%, 97–52%, and 94–46% at 30–12 h HRT for R1, R2, R3 and R4, respectively. Average cell growth was observed to be 0.15 g volatile suspended solid (VSS) per g COD consumed. Methanogenic inhibition was observed at lower HRTs (18 and 12 h), however denitrification was always more than 99% with non-detectable level of nitrite. The granules developed inside the reactors were black in color and their average size varied between 1.9 and 2.1 mm.  相似文献   

7.
Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader’s fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds.  相似文献   

8.
The inhibitory effects and removal efficiency of dieldrin (DLD) in anaerobic reactors were investigated. Anaerobic toxicity assay (ATA) experiments conducted in batch reactors revealed that 30 mg/l DLD had inhibitory effects on the unacclimated mixed anaerobic cultures. Continuous reactor experiments performed in a lab-scale two-stage upflow anaerobic sludge blanket (UASB) reactor system which was fed with ethanol as the sole carbon source, indicated that anaerobic granular cultures could be successfully acclimated to DLD. Chemical oxygen demand (COD) removal efficiencies were 88-92% for the two-stage system. The influent DLD concentration of 10 mg/l was removed by 44-86% and 86-94% in the second stage and overall UASB system, respectively. Biosorption of DLD on granular anaerobic biomass was found to be a significant mechanism for DLD removal in the UASB system. The maximum DLD loading rate and minimum HRT achievable for the first stage UASB reactor were 0.5 mg/lday (76 microg DLD/g VSS.day) and 10 h, respectively, which resulted in the overall COD removal efficiency of 85%.  相似文献   

9.
The performance and biomass retention of an upflow anaerobic sludge bed (UASB) reactor treating liquid fraction of dairy manure has been investigated at several organic loading rates. Two identical UASB reactors were employed. The biomass of one UASB reactor (FBR) had previously been treated with a cationic polyacrylamide, the other reactor was operated as a control reactor (CR). At 3 and 2 days of HRT both reactors functioned similarly, but at 1.5 days HRT some differences were observed between both effluents. Mean COD(T) removal percentages were 83.4% and 76.5%; COD(VFA) values in effluents were 977 and 2682 mg l(-1) for the FBR and the CR respectively. The VSS initial value in both reactors was 25.66 g VSS, whereas after the experiment the quantities were 31.83 g VSS in the FBR and 23.18 g VSS in the CR reactors. Polymer addition resulted in a higher degree of biomass retention and better performance in the FBR reactor.  相似文献   

10.
COD, nitrogen, phosphate and para-chlorophenol (4-chlorophenol, 4-CP) removal from synthetic wastewater was investigated using a four-step sequencing batch reactor (SBR) at different sludge ages and initial para-chlorophenol (4-CP) concentrations. The nutrient removal process consisted of anaerobic, oxic, anoxic and oxic phases with hydraulic residence times (HRT) of 1/3/1/1 h and a settling phase of 0.75 h. A Box-Wilson statistical experiment design was used considering the sludge age (5-25 days) and 4-CP concentration (0-400 mg l(-1)) as independent variables. Variations of percent COD, NH4-N, PO4-P and 4-CP removals with sludge age and initial 4-CP concentration were investigated. Percent nutrient removals increased with increasing sludge age and decreasing 4-CP concentrations. Low nutrient removals were obtained at high initial 4-CP concentrations especially at low sludge ages. However, high sludge ages partially overcome the adverse effects of 4-CP and resulted in high nutrient removals. COD, NH4-N, PO4-P and 4-CP removals were 76%, 72%, 26% and 34% at a sludge age of 25 days and initial 4-CP concentration of 200 mg l(-1). Sludge volume index (SVI) also decreased with increasing sludge age and decreasing 4-CP concentrations. An SVI value of 104 ml g(-1) was obtained at a sludge age of 25 days and initial 4-CP of 200 mg l(-1).  相似文献   

11.
Effects of 2,4-dichlorophenol on activated sludge   总被引:6,自引:0,他引:6  
The effects of 2,4-dichlorophenol (2,4-DCP) on both acclimated and unacclimated activated sludge were investigated in batch reactors. The IC(50) values on the basis of maximum specific growth rate ( micro(m)), percent chemical oxygen demand (COD) removal efficiency and sludge activity were found to be 72, 60 and 47 mg l(-1), respectively, for unacclimated culture. The percent COD removal efficiencies of unacclimated culture were affected adversely, even at low concentrations, whereas culture acclimated to 75 mg 2,4-DCP l(-1) could tolerate about 200 mg 2,4-DCP l(-1)on the basis of COD removal efficiency. Although yield coefficient values of unacclimated culture increased surprisingly to very high values with the addition of 2,4-DCP, a linear decrease with respect to 2,4-DCP concentrations was observed for acclimated culture. Although no removal was observed with unacclimated culture, almost complete removal of 2,4-DCP up to a concentration of 148.7 mg l(-1) was observed with acclimated culture. It was showed that the culture could use 2,4-DCP as sole organic carbon source, although higher removal efficiencies in the presence of a readily degradable substrate were observed. Culture acclimated to 4-chlorophenol used 2,4-DCP as sole organic carbon source better than those acclimated to 2,4-DCP.  相似文献   

12.
The biodegradation kinetics of 2,4-dichlorophenol (2,4-DCP) by culture (Culture M) acclimated to mixture of 4-chlorophenol (4-CP) and 2,4-DCP and the culture (Culture 4) acclimated to 4-CP only were investigated in aerobic batch reactors. Also, pure strains isolated from mixed cultures were searched for their ability towards the biodegradation of 2,4-DCP. Culture 4 was able to completely degrade 2,4-DCP up to 80 mg/L within 30 h and removal efficiency dropped to 21% upon increasing initial concentration to 108.8 mg/L. When the Culture M was used, complete degradation of 2,4-DCP in the range of 12.5-104.4 mg/L was attained. A linear relationship between time required for complete degradation and initial 2,4-DCP concentrations was observed for both mixed cultures. It was observed that the Haldane equation can be used to predict specific degradation rate (SDR) (R(2)>0.99) as a function of initial 2,4-DCP concentrations and it adequately describes 2,4-DCP concentration profiles. Both of the mixed cultures settled well, which is important to maintain good removal efficiency for longer periods of time for real full-scale applications. Although the pure strains isolated from mixed cultures were found to have higher SDR of 2,4-DCP compared to mixed cultures, they did not settle well under quiescent conditions.  相似文献   

13.
A two-stage anaerobic treatment pilot plant was tested for the treatment of raw domestic wastewater under temperatures ranging from 21 to 14 degrees C. The plant consisted of a hydrolytic upflow sludge bed (HUSB) digester (25.5m3) followed by an upflow anaerobic sludge blanket (UASB) digester (20.36m3). The hydraulic retention time (HRT) varied from 5.7 to 2.8h for the first stage (HUSB digester) and from 13.9 to 6.5h for the second stage (UASB digester). Total suspended solids (TSS), total chemical oxygen demand (TCOD), and biochemical oxygen demand (BOD) removals ranged from 76% to 89%, from 49% to 65%, and from 50% to 77%, respectively, for the overall system. The percentage of influent COD converted to methane was 36.1%, the hydrolysis of influent volatile suspended solids (VSS) reached 59.7% and excess biomass was 21.6% of the incoming VSS. Plant performance was influenced by the wastewater concentration and temperature, yet better results were obtained for influent COD higher than 250mg/l.  相似文献   

14.
Karim K  Gupta SK 《Biodegradation》2002,13(5):353-360
The removal of nitrophenols under denitrifying conditions was studied in bench-scale upflow anaerobic sludge blanket (UASB) reactors (R1, R2, R3 and R4) using three different carbon sources. Initially acetate was used as carbon source (substrate) in all the four reactors followed by glucose and methanol. Reactor R1 was kept as control and R2, R3, R4 were fed with 30 mg/l concentration of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. Throughout the study the hydraulic retention time (HRT) and COD/NO3 -–N ratio were kept as 24 h and 10, respectively. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found as the major intermediate metabolites of 2-NP, 4-NP and 2,4-DNP degradation, respectively. Methanol was found to be a better carbon source for 4-NP and 2,4-DNP degradation as compared to acetate and glucose, while 2-NP degradation was not influenced much by the change of substrate. Nitrate nitrogen removal was always more than 99%. COD removal efficiency of the nitrophenol fed reactors varied from 85.7% to 97.7%. The oxidation-reduction potential (ORP) inside the reactors dropped, up to –300 mv, with glucose as carbon source. As the reactors were switched over to methanol, ORP increased to –190 mv. The granular sludge developed inside the reactors was light brown in colour when acetate and glucose were used as substrate, which turned dark brown to black at the end of methanol run. Biomass yield in terms of volatile suspended solids was observed as 0.15, 0.089 and 0.14 g per gram of COD removal for acetate, glucose and methanol, respectively.  相似文献   

15.
Wastewater from a food-manufacturing plant with a low concentration of organic matter below 100 mg/l TOC was first treated at 37°C in an anaerobic fluidized-bed reactor (AFBR) or in an upflow anaerobic sludge blanket (UASB). The TOC removal efficiency in both reactors decreased from 85% to 65% as the influent TOC concentration decreased from 100 to 35 mg/l at a hydraulic retention time (HRT) of 6 h. Treatment at an HRT of 4 h resulted in an effluent TOC concentration of 11 to 15 mg/l. The concentration of suspended solids in the effluent could be reduced to 20 mg/l, which corresponded to 7% of that of the influent. The effluent from both reactors was then treated anaerobically in a fixed-bed reactor system. The TOC concentration and optical density (OD) of the effluent from the aerobic treatment were reduced to 5 mg/l and 0.005, respectively, at an HRT of 2 h. When anaerobically or aerobically treated effluent was passed over an activated carbon column, the effluent TOC concentration was reduced to 2 to 3 mg/l. The conductivity of 1.3 mS/cm in raw wastewater, which was not removed through the above treatments, was reduced to 0.001 mS/cm on an ion-exchange resin column. An effluent quality corresponding to that of ultra-pure water for industrial use was finally attained by the treatment in this multi-step system.  相似文献   

16.
Low strength wastewater having chemical oxygen demands (COD) concentrations of 1000, 800, 600 and 400mg/l were treated at 35, 25, 20 and 15¡C using four anaerobic sequencing batch reactors (ASBRs). Reactor 1 was operated at hydraulic retention time (HRT) of 48h, reactor 2 at 24h HRT, reactor 3 at 16h HRT and reactor 4 at 12h HRT. 80 to 99% soluble COD was removed at the various operational conditions, except during 15¡C treatment of 1000 and 800mg/l COD wastewater at 12h HRT and 1000mg/l COD wastewater at 16h HRT, where excessive loss of biological solids occurred. The ASBR process can be an effective process for the treatment of low concentrated wastewaters which are usually treated aerobically with large amount of sludge production and higher energy expenditures.  相似文献   

17.
The effects of phenol, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 1,2,4-trichlorobenzene (1,2,4-TCB) on the biodegradation kinetics of the conventional activated sludge system (CASS) and the selector activated sludge system (SASS) were investigated. Experiments were carried out using a respirometric method on unacclimated biomass from two lab-scale systems that were operated with the sludge age of 8 days. Toxicity of the test compounds for both reactors were arranged according to EC50 (effective concentration) values in order as: 1,2,4-TCB > 2,4-DCP > 2-CP > phenol. All selected test compounds induced higher inhibition effect in the CASS. The SASS appeared to reduce inhibition effect in comparison to the CASS, by 21.36%, 66.95%, 64.37% and 33.33% for phenol, 2-CP, 2,4-DCP and 1,2,4-TCB, respectively. Consequently, the SASS may be recommended as a promising configuration alternative for the waste streams containing toxic compounds.  相似文献   

18.
Water extract of Moringa oleifera seeds (WEMOS) was used to enhance the start-up of a self-inoculated upflow anaerobic sludge blanket (UASB) reactor treating raw domestic wastewater. Two reactors labelled control (RC) and WEMOS addition (RM) were started without special inoculum. Both reactors were fed continuously for 22 weeks with domestic wastewater containing an average total chemical oxygen demand (COD) of 320 mg O2/l and suspended solid (SS) of 165 mg/l. The reactors operated during the entire experimental period at 29 degrees C and at a hydraulic retention time (HRT) of 4 h. The RM reactor received 2 ml WEMOS per litre of influent. WEMOS solution was prepared on the basis of 2.5% (w/v) ground M. oleifera seeds in water. The results of 22 weeks' operation showed an improvement in the performance of the RM compared to that of the RC. The dosage of WEMOS in the feed (1) shortened the biological start-up period by 20%, (2) increased acidogenic and methanogenic activity by a factor of 2.4 and 2.2 respectively, (3) increased the specific biogas production by a factor of 1.6, (4) favoured fast growth of the sludge bed, and (5) allowed the aggregation of coccoid bacteria and growth of microbial nuclei, which are precursors of anaerobic granulation.  相似文献   

19.
The effect of cationic polymer additives on biomass granulation and COD removal efficiency had been examined in lab-scale upflow anaerobic sludge blanket (UASB) reactors, treating low strength synthetic wastewater (COD 300-630 mg/l). Under identical conditions, two reactors were operated with and without polymer additives in inoculum under four different organic loading rates (OLRs). The optimum polymer dose was adopted based upon the results of jar test and settling test carried out with inoculum seed sludge. With the use of thick inoculum, SS greater than 110 g/l and VSS/SS ratio less than 0.3, granulation was observed in UASB reactor treating synthetic wastewater as well as actual sewage, when OLR was greater than 1.0 kg COD/m(3) d. Polymer additive with such thick inoculum was observed to deteriorate percentage granules and COD removal efficiency compared to inoculum without polymer additives. At OLR less than 1.0 kg COD/m(3) d, proper granulation could not be achieved in both the reactors inoculated with and without polymer additive. Also, under this low loading, drastic reduction in COD removal efficiency was observed with polymer additives in inoculum. Hence, it is rational to conclude that biomass granulation for treatment of low strength biodegradable wastewater depends on the applied loading rate and selection of thick inoculum sludge.  相似文献   

20.
Degradation of chlorophenols catalyzed by laccase   总被引:1,自引:0,他引:1  
The degradations of 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 2-chlorophenol (2-CP) catalyzed by laccase were carried out. The optimal condition regarding degradation efficiency was also discussed, which included reaction time, pH value, temperature, concentration series of chlorophenols and laccase. Results showed that the capability of laccase was the best, while to oxidize 2,4-DCP among the above-mentioned chlorophenols. Within 10 h, the removal efficiency of 2,4-DCP, 2-CP and 4-CP could reach 94%, 75% and 69%, respectively. The optimal pH for laccase to degrade chlorophenols was around 5.5. The increase of laccase concentration or temperature might result in the degradation promotion. The trends of degradation percentage were various among these three chlorophenols with the concentration increase of chlorophenols. Degradation of 2,4-DCP is a first-order reaction and the reaction activation energy is about 44.8 kJ mol−1. When laccase was immobilized on chitosan, crosslinked with glutaraldehyde, the activity of immobilized laccase was lower than that of free laccase, but the stability improved significantly. The removal efficiency of immobilized laccase to 2,4-DCP still remained over 65% after six cycles of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号