首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we examine the mechanism by which thaligrisine, a bisbenzyltetrahydroisoquinoline alkaloid, inhibits the contractile response of vascular smooth muscle. The work includes functional studies on rat isolated aorta and tail artery precontracted with noradrenaline or KCl. In other experiments rat aorta was precontracted by caffeine in the presence or absence of extracellular Ca2+. In order to assess whether thaligrisine interacts directly with calcium channel binding sites or with alpha-adrenoceptors we examined the effect of the alkaloid on [3H]-(+)-cis diltiazem, [3H]-nitrendipine and [3H]-prazosin binding to cerebral cortical membranes. The functional studies showed that the alkaloid inhibited in a concentration-dependent manner the contractile response induced by depolarization in rat aorta (IC50 = 8.9+/-2.9 microM, n=5) and in tail artery (IC50 = 3.04+/-0.3 microM, n=6) or noradrenaline induced contraction in rat aorta (IC50 = 23.0+/-0.39 microM, n=9) and in tail artery (IC50 = 3.8+/-0.9 microM, n=7). In rat aorta, thaligrisine concentration-dependently inhibited noradrenaline-induced contraction in Ca2+-free solution (IC50 = 13.3 microM, n=18). The alkaloid also relaxed the spontaneous contractile response elicited by extracellular calcium after depletion of noradrenaline-sensitive intracellular stores (IC50 = 7.7 microM, n=4). The radioligand receptor-binding study showed that thaligrisine has higher affinity for [3H]-prazosin than for [3H]-(+)-cis-diltiazem binding sites, with Ki values of 0.048+/-0.007 microM and 1.5+/-1.1 microM respectively. [3H]-nitrendipine binding was not affected by thaligrisine. The present work provides evidence that thaligrisine shows higher affinity for [3H]-prazosin binding site than [3H]-(+)-cis-diltiazem binding sites, in contrast with tetrandrine and isotetrandrine that present similar affinity for both receptors. In functional studies thaligrisine, acted as an alpha1-adrenoceptor antagonist and as a Ca2+ channel blocker, relaxing noradrenaline or KCl-induced contractions in vascular smooth muscle. This compound specifically inhibits the refilling of internal Ca2+-stores sensitive to noradrenaline, by blocking Ca2+-entry through voltage-dependent Ca2+-channels.  相似文献   

2.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

3.
Neurotensin (NT) is now classified as a brain-gut peptide in the central nervous system and gastrointestinal tract. In the present study, we characterized the NT receptors on the rat liver plasma membranes. The specific binding of [3H]NT was time dependent, reversible, and saturable. Scatchard analysis of the specific binding data yielded two classes of binding sites, a high affinity site and a low affinity site. The average maximum number of binding sites (Bmax) amounted to 13.3 +/- 1.1 fmol/mg protein at high affinity site and 122.3 +/- 21.5 fmol/mg protein at low affinity site, respectively. The dissociation constant (Kd) had values of 0.39 +/- 0.01 nM at high affinity site and 8.1 +/- 1.1 nM at low affinity site, respectively. The amount of specifically bound [3H]NT was significantly reduced in the presence of mono and divalent cations, EDTA, EGTA and a peptidase inhibitor bacitracin, NT1-13 competed with [3H]NT for its binding site with an IC50 of 0.19 nM at high affinity site (0.2 nM concentration of [3H]NT) and 0.7 nM at low affinity site (4.0 nM concentration of [3H]NT). Xenopsin, a NT analogue separated from the skin of Xenopus laevis, was equipotent (IC50 0.75 nM) with NT1-13 at 4.0 nM concentration of [3H]NT. C-terminal sequence of NT contains the structure necessary for interaction with NT binding sites whereas N-terminal sequence had no binding activity. Since NT has a hyperglysemic and a hypercholesterolemic effects in rats, these NT receptors on the rat liver plasma membranes may be involved in the hyperglycemia and/or hypercholesteroremia induced by NT.  相似文献   

4.
In extensively washed rat cortical membranes [3H](+)-5-methyl-10,11-dihydro-5 H-dibenzo [a,d]cyclohepten-5,10-imine ([3H]MK-801) labeled a homogeneous set of sites (Bmax = 1.86 pmol/mg protein) with relatively low affinity (KD = 45 nM). L-Glutamate, glycine, and spermidine produced concentration-dependent increases in specific [3H]MK-801 binding due to a reduction in the KD of the radioligand. In the presence of high concentrations of L-glutamate, glycine, or spermidine, the KD values for [3H]MK-801 were reduced to 11 nM, 18 nM, and 15 nM, respectively. Maximally effective concentrations of combinations of the three compounds further increased [3H]MK-801 binding affinity as follows: L-glutamate + glycine, KD = 6.2 nM; L-glutamate + spermidine, KD = 2.2 nM; glycine + spermidine, KD = 8.3 nM. High concentrations of spermidine did not inhibit either [3H]glycine orf [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid binding to the N-methyl-D-aspartate (NMDA) receptor complex. The concentration of L-glutamate required to produce half-maximal enhancement (EC50) of [3H]MK-801 binding was reduced from 218 nM to 52 nM in the presence of 30 microM glycine and to 41 nM in the presence of 50 microM spermidine. The EC50 value for glycine enhancement of [3H]MK-801 binding was 184 nM. This was lowered to 47 nM in the presence of L-glutamate and to 59 nM in the presence of spermidine. Spermidine enhanced [3H]MK-801 binding with an EC50 value of 19.4 microM which was significantly reduced by high concentrations of L-glutamate (EC50 = 3.9 microM) or glycine (EC50 = 6.2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The novel kappa agonist U50-488H in vitro produced a concentration-dependent decrease (0.25-25 microM) in [3H]nimodipine binding in neuronal P2 fractions [corrected] from rat brain cortex. Kinetic analysis indicates the decrease in binding results from a reduced Bmax with no change in affinity (Kd). The kappa antagonist, MR2266, blocked the decrease in [3H]nimodipine binding to membrane fractions. At equimolar concentrations (25 microM), morphine in vitro had no effect on [3H]nimodipine binding, while U50-488H demonstrated potent inhibition. Further kinetic analysis indicates that the IC50 for U50-488H is 0.5-0.7 microM with a KI by a Dixon plot of 1.5-1.7 microM [corrected]. These results suggest that kappa opiate receptors may be coupled to dihydropyridine receptors and as a result modulate Ca++ entry and neurotransmitter release in brain neurons.  相似文献   

6.
The bovine cardiac sarcolemmal binding sites for the dihydropyridine nimodipine and the phenylalkylamine (-)-desmethoxyverapamil were studied. The density of the nimodipine and (-)-desmethoxyverapamil binding sites increased 8.3-fold and 3.4-fold with the sarcolemma. The binding sites for both compounds were destroyed by trypsin. Nimodipine bound in the presence of 1 mM free calcium to a high-affinity and a low-affinity site with apparent Kd values of 0.35 +/- 0.09 nM (n = 9) and 33 +/- 6.0 nM (n = 9) and with apparent densities of 0.3 +/- 0.05 pmol/mg (n = 9) and 8.2 +/- 1.0 pmol/mg (n = 9). The binding to the high-affinity site was abolished by 1 mM EGTA. The binding sites were specific for dihydropyridines. The (-)-isomers of several phenylalkylamines inhibited nimodipine binding by an apparent allosteric mechanism. (-)-Desmethoxyverapamil bound in the presence of 5 mM EGTA to a high-affinity and a low-affinity site with apparent Kd values of 1.4 +/- 0.3 nM (n = 6) and 171 +/- 26 nM (n = 6) and with apparent densities of 0.16 +/- 0.02 pmol/mg (n = 6) and 13.6 +/- 2.7 pmol/mg (n = 6). The binding to both sites was inhibited by calcium with a half-maximal concentration of 4.3 mM. The binding sites were specific for the other phenylalkylamines and had a higher affinity for the (-)-isomers than for the (+)-isomers. Nimodipine inhibited the binding of (-)-desmethoxyverapamil by an apparent allosteric mechanism. d-cis-Diltiazem inhibited non-competitively the binding of (-)-[3H]desmethoxyverapamil with a Ki of 3.7 microM. Diltiazem up to concentrations of 10 microM did not affect the amount of nimodipine bound at equilibrium at 20 degrees C. However, but in agreement with this result, diltiazem decreased threefold at 20 degrees C the dissociation and association rates for the high-affinity nimodipine receptor. These rates were only marginally affected at 4 degrees C and 37 degrees C. d-cis-Diltiazem reversed in a competitive manner the inhibition of nimodipine binding elicited by the addition of (-)-desmethoxyverapamil with a Ka value of 1.6 microM. The amount of nimodipine bound was inhibited by 50% by the adenosine uptake inhibitors nitrobenzylthioinosine and hexobendine with apparent median inhibitory concentrations of 1 nM and 3 nM, respectively. Nitrobenzylthioinosine completely abolished binding of nimodipine to the low-affinity site, but did not affect binding to the high-affinity site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
High affinity binding sites for the calcium channel inhibitor [3H]nitrendipine have been identified in microsomes from pig coronary arteries (KD=1.6 nM; Bmax=35 fmol/mg) and in purified sarcolemma from dog heart (KD=0.11 nM; Bmax=230 fmol/mg). [3H]nitrendipine binding to coronary artery microsomes was completely inhibited by nifedipine, partially by verapamil and D600 and, surprisingly, was stimulated by d-cis-diltiazem but not by 1-cis-diltiazem, a less active isomer. Half-maximal relaxation of KCl-depolarized coronary rings occurred in a slow process at 1 nM nitrendipine or 100 nM d-cis-diltiazem. In dog trabecular strips, nitrendipine caused a negative inotropic response (ED50=1μM). These results suggest that there may be multiple binding sites for different “subclasses” of calcium channel inhibitors, and that drug binding sites may be different molecular entities from the putative calcium channels.  相似文献   

8.
The inhibition of [3H]5-hydroxytryptamine [( 3H]5-HT) binding in rat brain by 1-[2-(3-bromoacetamidophenyl)ethyl]-4-(3-trifluoromethylphenyl) piperazine (BrAcTFMPP) and that by spiperone were compared. Spiperone inhibition of [3H]5-HT binding in cortex was consistent with displacement from two sites with dissociation constants (KD) of 24 nM (5-HT-1A site) and 19 microM (5-HT-1B site) for spiperone. BrAcTFMPP also discriminated two subpopulations of [3H]5-HT binding sites with dissociation constants of 0.5 nM and 146 nM for the compound. The proportion of high-affinity sites for each compound represented about 35% of the specific [3H]5-HT binding. In the presence of 1 microM spiperone, a concentration that saturates the 5-HT-1A sites while having a minimal effect on 5-HT-1B sites, BrAcTFMPP displaced [3H]5-HT from a single site with a KD for BrAcTFMPP of 145 nM. The inhibition of [3H]5-HT binding by spiperone in the presence of 30 nM BrAcTFMPP was best fit by a single-site model with a KD of 21 microM for spiperone. In corpus striatum, 5-HT-1A sites, as defined with spiperone, represented 15% of the specific [3H]5-HT binding and 30 nM BrAcTFMPP also blocked about 15% of the binding. A significant difference between spiperone and BrAcTFMPP was their affinity for 5-HT-2 receptors. BrAcTFMPP (KD = 41 nM) had an 80-fold lower affinity for these sites than spiperone (KD = 0.5 nM). Thus, BrAcTFMPP and spiperone discriminate the same two subpopulations of [3H]5-HT binding sites and BrAcTFMPP displays a high affinity and a selectivity for 5-HT-1A sites versus both 5-HT-1B and 5-HT-2 sites.  相似文献   

9.
Identification of putative calcium channels in skeletal muscle microsomes   总被引:8,自引:0,他引:8  
D R Ferry  H Glossmann 《FEBS letters》1982,148(2):331-337
Saturable binding sites for the labelled calcium antagonist (+/-)[3H]nimodipine were found in guinea-pig hind limb skeletal muscle homogenates. Binding sites were enriched in a microsomal pellet by differential centrifugation of the homogenate. [3H]Nimodipine binding (Kd = 1.5 +/- 0.03 nM, Bmax = 2.1 +/- 0.25 pmol/protein, at 37 degrees C) copurified (6-fold) in this fraction with [3H]ouabain binding (6.6-fold) and 125I-alpha-bungarotoxin binding (5-fold). d-cis-Diltiazem (but not 1-cis-diltiazem) stimulated (+/-) [3H]nimodipine binding (ED50 1 microM) by increasing the Bmax. Binding sites discriminated between the optical enantiomers of 1.4-dihydropyridine calcium antagonists and the optically pure enantiomers of D-600. The data confirm, with biochemical techniques, the presence of 1,4-dihydropyridine and (+/-) D-600 inhibitable calcium channels in skeletal muscle, previously found with electrophysiological techniques.  相似文献   

10.
Binding sites were solubilized from human placental membrane using 1.5% sodium cholate and were assayed using polyethylene glycol precipitation. These soluble binding sites had properties of an adenosine A1 binding site. 2-[3H]Chloroadenosine and N-[3H]-ethylcarboxamidoadenosine (NECA) binding were time dependent and reversible. Scatchard plots indicate two classes of binding sites with Kd values of 6 and 357 nM for 2-chloro[8-3H]adenosine and 0.1 and 26 nM with [3H]NECA. The specificity of [3H]NECA binding was assessed by the ability of adenosine analogs to complete for binding sites. Using this approach the estimated IC50 values were 60 nM for (R-PIA), 160 nM for S-PIA, 80 nM for NECA, and 20 nM for 2-chloroadenosine. Binding of [3H]NECA to the soluble sites is inhibited to 48% of the control value by 100 microM guanylyl-5'-imidodiphosphate (Gpp(NH)p). The IC50 value for NECA binding to the soluble binding site was increased from 80 nM to 1500 by Gpp(NH)p. There was a shift of binding affinity from a mixture of high and low affinity to only low affinity with 100 microM Gpp(NH)p. Despite these alterations a NECA prelabeled molecular species of 150 kDa did not decrease in molecular weight upon the addition of 100 microM Gpp(NH)p during high-performance liquid chromatography on a Superose 12 column. Other evidence to support the concept of preferential solubilization and assay of a small population of A1 binding sites was obtained. Following solubilization adenosine A2-like binding sites could be detected only in reconstituted vesicles. The existence of small amounts of A1 binding sites in intact human placental membranes was directly demonstrated using the A1 agonist ligand N6-[3H]cyclohexyladenosine and the A1 antagonist ligand 8-[3H]cyclopentyl-1,3-dipropylxanthine. JAR choriocarcinoma cells have "A2-like" membrane binding sites. In contrast to placental membranes, only A2-like binding sites could be solubilized from JAR choriocarcinoma cells. These observations indicate that human placental membranes contain adenosine A1 binding sites in addition to A2-like binding sites. These sites are guanine nucleotide sensitive, but do not shift to a lower molecular weight form upon assumption of a low affinity state.  相似文献   

11.
The properties of interaction of both tetrodotoxin (TTX) and tritiated ethylenediamine tetrodotoxin [3H] en-TTX) were studied in rat heart membranes at different stages of development and in cultured cells. Studies by electrophysiology and by 22Na+ flux measurements on cardiac cultured cells indicate that the functional form of the Na+ channel is of low affinity for TTX (250-700 nM). Binding experiments (bioassay and [3H]en-TTX binding) on cultured cardiac cells from newborn rats indicate the presence of both high and low affinity binding sites for TTX with dissociation constants (Kd) of 1.6 and 135 nM, respectively. On homogenates of hearts taken just after birth, [3H]en-TTX binding reveals no high affinity binding site for TTX but the presence of a low affinity binding site with a Kd of 125 nM. This result was confirmed by kinetic studies and competition experiments. Conversely, binding studies on homogenates and extensively purified membranes from adult ventricles reveal the presence of both high and low affinity binding sites for TTX with Kd values of 1.5 and 170 nM, respectively. The maximum binding capacity for the low affinity binding sites is 45 times higher than that of the high affinity binding sites. High affinity sites do not exist at the fetal stage or at birth, but after 5 days their number gradually increases to reach a maximum level around 45 days after birth. Conversely, the number of low affinity binding sites is essentially invariant between birth and adulthood. Monolayers of cardiac cells from hearts at 2 days after birth which have no high affinity TTX-binding sites in vivo develop both high and low affinity binding sites for TTX in vitro. The results presented here are the first direct demonstration of the coexistence in rat heart plasma membrane of two families of binding sites for TTX.  相似文献   

12.
Two populations of [3H]CGP 12177 binding sites exist in rat interscapular brown adipose tissue (IBAT) plasma membranes. The majority of binding sites are of low affinity with a Kd of 31 nM, a value in close agreement with that for the Kd of [3H]CGP 12177 binding to a cloned rat beta 3-adrenergic receptor (AR) expressed in CHO cells (44 nM). Competition binding studies demonstrate that the Ki values of the cloned rat beta 3-AR and of the low affinity sites in IBAT are 45 and 29 nM, respectively, for BRL 37344 and 1.4 and 1.0 microM, for (-)-propranolol. These findings strongly suggest that the low affinity [3H]CGP 12177 binding site measured in IBAT plasma membranes represents the atypical beta 3-AR in this tissue.  相似文献   

13.
(-)-[3H]Desmethoxyverapamil (2,7-dimethyl-3-(3,4-dimethoxyphenyl)-3-cyan- 7-aza-9-(3-methoxyphenyl)-nonanhydrochloride) was used to label putative Ca2+ channels in guinea pig skeletal muscle. The binding sites for (-)-[3H]desmethoxyverapamil co-purified with t-tubule membrane markers in an established subcellular fractionation procedure. (-)-[3H]Desmethoxyverapamil bound to partially purified t-tubule membranes with a KD of 2.2 +/- 0.1 nM and a Bmax of 18 +/- 4 pmol/mg membrane protein at 25 degrees C. Binding was stereoselectively inhibited by phenylalkylamine Ca2+ antagonists and in a mixed, non-competitive fashion by the benzothiazepine Ca2+ antagonist d-cis-diltiazem and the 1,4-dihydropyridine Ca2+ antagonist (+)-PN 200-110. Target size analysis of the (-)-[3H]desmethoxyverapamil drug receptor site revealed a molecular mass of 107 +/- 2 kDa. In contrast, the target size of the allosterically coupled benzothiazepine drug receptor site, labelled by d-cis-[3H]diltiazem, was 130.5 +/- 4 kDa (p less than 0.01) and of the 1,4-dihydropyridine binding site 179 kDa, when labelled with [3H]nimodipine. It is concluded that (-)-[3H]desmethoxyverapamil is an extremely useful radioligand for the phenylalkylamine-selective receptor site of the t-tubule localized Ca2+ channel which is allosterically linked to two other distinct drug receptor sites.  相似文献   

14.
The human red blood cell ghost Ca2+-antagonist binding sites were characterized with (+/-)-[3H]nimodipine. The labelled 1,4-dihydropyridine bound in a non-cooperative, reversible manner with a Kd of 52 nM at 25 degrees C to 9.65 pmol sites/mg ghost protein. The stereochemistry of the binding domain was evaluated with the optically pure enantiomers of chiral 1,4-dihydropyridines. In contrast to the 1,4-dihydropyridine-selective receptors on Ca2+ channels in electrically excitable tissues, the (+) enantiomer of nimodipine and the (-) enantiomer of the benzoxadiazol 1,4-dihydropyridine (PN 200-110) were bound with higher affinity than the respective optical antipodes. The human red blood cell ghost [3H]nimodipine-labelled sites also interacted with the inorganic Ca2+-antagonist La3+ (increase in the number of binding sites), and were allosterically regulated by the optical enantiomers of the phenylalkylamine-type Ca2+-antagonists (e.g. verapamil, desmethoxyverapamil, methoxyverapamil). The benzothiazepines d- or l-cis-diltiazem were without effect. Nucleosides (adenosine approximately equal to inosine greater than cytidine) were inhibitory at the nimodipine-labelled site, as were the nucleoside uptake inhibitors dipyridamole, hexobendine, dilazep, nitrobenzylthioinosine and nitrobenzylthioguanosine. The binding sites have essential sulfhydryl groups, show trypsin sensitivity, but are relatively heat stable. When nitrobenzylthioinosine was employed as a covalent probe to inactivate the red blood cell ghost nucleoside carrier, [3H]nimodipine binding was irreversibly lost. (+)-Nimodipine greater than (-)-nimodipine inhibited [14C]adenosine transport into human red blood cells. A good correlation between IC50 values for inhibition of [3H]nimodipine binding and IC50 values for inhibition of [14C]adenosine uptake was found for 18 compounds. Sheep red blood cells (which lack the nucleoside transporter) had no detectable [3H]nimodipine binding sites. It is concluded that the Ca2+-antagonist receptor sites of the human erythrocyte are coupled to the nucleoside transporter.  相似文献   

15.
Tetrabutyl-2(2-phenoxyethyl)-1,3-propylidene diphosphonate (SR-7037) completely displaced dihydropyridine [( 3H]PN200-110), phenylalkylamine [( 3H]D888), and benzothiazepine [( 3H]diltiazem) ligands from brain L-type calcium channels. Half-maximal inhibition of [3H]PN200-110 binding occurred at 19 nM with a Hill coefficient of 0.96. SR-7037 primarily decreased the affinity for [3H]PN200-110 with a small, but significantly, effect on the maximal binding capacity. Kinetic studies showed that this was due to an increased radioligand dissociation rate from 0.04 min-1 to 0.43 min-1 in the presence of the diphosphonate. Displacement of [3H]D888 by SR-7037 was biphasic with respective IC50 of 44 and 8400 nM. Likewise, unlabeled (-)-D888 identified two sites with IC50 values of 0.9 and 27 nM. Both SR-7037 (1000 nM) and D888 (200 nM) accelerated radioligand dissociation about 2-fold. [3H]Diltiazem binding was inhibited by SR-7037 with an IC50 value of 29 nM. The inhibition of dihydropyridine binding by SR-7037 is enhanced by most divalent cations at millimolar concentrations with the following potency: Mn2+ greater than Mg2+ greater than Ca2+ greater than Co2+. Barium has the opposite effect. The half-maximal effect of calcium occurred at 6 microM free ion. Specific binding of [3H]D888 was antagonized in the presence of 1 mM CaCl2. It is concluded that SR-7037 has allosteric interactions with the dihydropyridine receptor of the L-type calcium channel. The differential effect of Ca2+ on the potency of D888 and diltiazem relative to that of SR-7037 indicates that the three drugs may bind to nonequivalent sites. These results support specific calcium channel inhibition, possibly at a novel site, as the primary mechanism of the diphosphonate's pharmacological actions.  相似文献   

16.
Bovine adrenal medulla plasma membranes were purified by a differential centrifugation procedure using sucrose and Urografin discontinuous density gradients; the membranes were enriched 10-12-fold in acetylcholinesterase activity and [3H]ouabain binding sites. Specific (+)-[3H]PN200-110 binding to these membranes amounted to 90% of total binding and was saturable and of high affinity (KD = 41 pM; Bmax = 119 fmol/mg of protein) with a Hill coefficient close to 1, a result suggesting the presence of a single, homogeneous population of dihydropyridine receptors. The association and dissociation rate constants were, respectively, 7.5 X 108 M-1 min-1 and 0.023 min-1. Unlabeled (+)-PN200-110 displaced (+)-[3H]PN200-110 binding with a potency 100-fold higher than (-)-PN200-110 (IC50,0.5 and 45nM, respectively). Although the two enantiomers of BAY K 8644 completely displaced (+)-[3H]PN200-110 binding, they exhibited no stereoselectivity (IC50, 69 and 83 nM,respectively). Whereas ( +/- )-nitrendipine very potently displaced (+)-[3H]PN200-110 binding (IC50 = 1.3 nM) verapamil and cinnarizine displaced the binding by only 30 and 40% at 1 microM, and diltiazem increased it by 20% at 10 microM. [3H]Ouabain bound to plasma membranes with a KD of 34 nM and a Bmax of 9.75 pmol/mg of protein, a figure 80-fold higher than the Bmax for (+)-PN200-110. [3H]Ouabain also bound to intact chromaffin cells with a Bmax of 244 fmol/10(6) cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The binding properties of N6-cyclohexyl [3H]adenosine ( [3H]CHA) and 1,3-diethyl-8-[3H]phenylxanthine ( [3H]DPX) in rat forebrain membrane are compared. The kinetic parameters of binding for each ligand are quite distinct, with [3H]CHA displaying two populations of binding sites (KD = 0.4 +/- 0.05 nM and 4.2 +/- 0.3 nM; Bmax = 159 +/- 17 and 326 +/- 21 fmol/mg protein), whereas [3H]DPX yielded monophasic Scatchard plots (KD = 13.9 +/- 1.1 nM; Bmax = 634 +/- 27 fmol/mg protein). The metals copper, zinc, and cadmium are potent inhibitors of [3H]CHA binding, with respective IC50 concentrations of 36 microM, 250 microM, and 70 microM. Copper is a much less potent inhibitor of [3H]DPX binding (IC50 = 350 microM). The inhibitory effect of copper on both [3H]CHA and [3H]DPX binding is apparently irreversible, as membranes pretreated with copper cannot be washed free of its inhibitory effect. The inhibitory effect of both copper and zinc on [3H]CHA binding was reversed by the guanine nucleotide Gpp(NH)p. [3H]DPX binding is only partially inhibited by zinc and cadmium (60% of specific binding remains unaffected), suggesting that this adenosine receptor ligand binds to two separate sites. Guanine nucleotides had no effect on the inhibition of [3H]DPX binding by either copper or zinc. Differential thermal and proteolytic denaturation profiles are also observed for [3H]CHA and [3H]DPX binding, with the former ligand binding site being more labile in both cases. Stereospecificity is observed in the inhibition of both [3H]CHA and [3H]DPX binding, with L-N-phenylisopropyladenosine (PIA) being 50-fold more potent than D-PIA in both cases. Evidence is therefore provided that adenosine receptor agonists and antagonists have markedly different binding properties to brain adenosine receptors.  相似文献   

18.
[3H]H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 ([3H]CTOP), a potent and highly selective mu opioid antagonist, was used to localize the mu receptors in rat brain by light microscopic autoradiography. Radioligand binding studies with [3H]CTOP using slide-mounted tissue sections of rat brain produced a Kd value of 1.1 nM with a Bmax value of 79.1 fmol/mg protein. Mu opioid agonists and antagonists inhibited [3H]CTOP binding with high affinity (IC50 values of 0.2-2.4 nM), while the delta agonist DPDPE, delta antagonist ICI 174,864, and kappa agonist U 69, 593 were very weak inhibitors of [3H]CTOP binding (IC50 values of 234-3631 nM). Light microscopic autoradiography of [3H]CTOP binding sites revealed regions of high density (nucleus of the solitary tract, clusters in the caudate-putamen, interpeduncular nucleus, superior and inferior colliculus, subiculum, substantia nigra zona reticulata, medial geniculate, locus coeruleus and dorsal motor nucleus of the vagus) and regions of moderate labeling (areas outside of clusters in the caudate-putamen, cingulate cortex, claustrum and nucleus accumbens). The cerebral cortex (parietal) showed a low density of [3H]CTOP binding.  相似文献   

19.
Purified calcium channels have three allosterically coupled drug receptors   总被引:4,自引:0,他引:4  
(-)-[3H]Desmethoxyverapamil and (+)-[3H]PN 200-110 were employed to characterize phenylalkylamine-selective and 1,4-dihydropyridine-selective receptors on purified Ca2+ channels from guinea-pig skeletal muscle t-tubules. In contrast to the membrane-bound Ca2+ channel, d-cis-diltiazem (EC50 = 4.5 +/- 1.7 microM) markedly stimulated the binding of (+)-[3H]PN 200-110 to the purified ionic pore. In the presence of 100 microM d-cis-diltiazem (which binds to the benzothiazepine-selective receptors) the Bmax for (+)-[3H]PN 200-110 increased from 497 +/- 81 to 1557 +/- 43 pmol per mg protein, whereas the Kd decreased from 8.8 +/- 1.7 to 4.7 +/- 1.8 nM at 25 degrees C. P-cis-Diltiazem was inactive. (-)-Desmethoxyverapamil, which is a negative heterotropic allosteric inhibitor of (+)-[3H]IN 200-110 binding to membrane-bound channels, stimulated 1,4-dihydropyridine binding to the isolated channel. (-)-[3H]Desmethoxyverapamil binding was stimulated by antagonistic 1,4-dihydropyridines [(+)-PN 200-110 greater than (-)(R)-202-791 greater than (+)(4R)-Bay K 8644] whereas the agonistic enantiomers (+)(S)-202-791 and (-)(4S)-Bay K 8644 were inhibitory and (-)-PN 200-110 was inactive. The results indicate that three distinct drug-receptor sites exist on the purified Ca2+ channel, two of which are shown by direct labelling to be reciprocally allosterically coupled.  相似文献   

20.
N-[3H]Methylscopolamine (NMS) binding, amylase secretion, and 45Ca efflux from dispersed rat pancreatic acini were investigated in parallel, in the presence or absence of 4 muscarinic agonists and 3 muscarinic antagonists. Scatchard analysis of [3H]NMS saturation isotherms gave a KD of 0.9 nM and an average binding capacity of 24,000 sites per cell. Binding competition curves with the antagonists atropine, dexetimide, and NMS gave KD values of 3.5, 3.5, and 0.5 nM, respectively. With the 3 full agonists oxotremorine, muscarine, and carbamylcholine, the receptor population could be divided into two classes of binding sites: a minor one (15%) with high affinity (KD = 20-35 nM) and a major one (85%) with low affinity (KD = 3-65 microM). There was a receptor reserve of about 50% with respect to carbamylcholine-stimulated amylase secretion. Further analysis of dose-effect curves suggests that low affinity binding sites were involved in the secretory response to muscarinic stimulation. Pilocarpine, like muscarinic antagonists, recognized all binding sites with the same affinity but acted as a partial agonist on amylase secretion and 45Ca efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号