首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The lytic activity of plague phage II, serovar 3, with respect to 1,800 bacterial strains has been studied: 760 Yersinia pestis strains, 262 Y. pseudotuberculosis strains, 252 Y. enterocolitica strains, 166 Escherichia coli strains, 90 Shigella strains and 270 strains of other species. The phage has been found to lyse 81.8% of Y. pestis strains, 1 Y. pseudotuberculosis strain and 1 Y. enterocolitica strain. The representatives of other 19 bacterial species have proved to be resistant to the phage. Though having a wide range of action within Y. pestis, the phage does not lyse most of the strains of the causative agent of plague, isolated in certain natural foci. This fact offers promise for using the phage for the differentiation of Y. pestis.  相似文献   

3.
Identification and cloning of a fur regulatory gene in Yersinia pestis.   总被引:22,自引:15,他引:22       下载免费PDF全文
Yersinia pestis is one of many microorganisms responding to environmental iron concentrations by regulating the synthesis of proteins and an iron transport system(s). In a number of bacteria, expression of iron uptake systems and other virulence determinants is controlled by the Fur regulatory protein. DNA hybridization analysis revealed that both pigmented and nonpigmented cells of Y. pestis possess a DNA locus homologous to the Escherichia coli fur gene. Introduction of a Fur-regulated beta-galactosidase reporter gene into Y. pestis KIM resulted in iron-responsive beta-galactosidase activity, indicating that Y. pestis KIM expresses a functional Fur regulatory protein. A cloned 1.9-kb ClaI fragment of Y. pestis chromosomal DNA hybridized specifically to the fur gene of E. coli. The coding region of the E. coli fur gene hybridized to a 1.1-kb region at one end of the cloned Y. pestis fragment. The failure of this clone to complement an E. coli fur mutant suggests that the 1.9-kb clone does not contain a functional promoter. Subcloning of this fragment into an inducible expression vector restored Fur regulation in an E. coli fur mutant. In addition, a larger 4.8-kb Y. pestis clone containing the putative promoter region complemented the Fur- phenotype. These results suggest that Y. pestis possesses a functional Fur regulatory protein capable of interacting with the E. coli Fur system. In Y. pestis Fur may regulate the expression of iron transport systems and other virulence factors in response to iron limitation in the environment. Possible candidates for Fur regulation in Y. pestis include genes involved in ferric iron transport as well as hemin, heme/hemopexin, heme/albumin, ferritin, hemoglobin, and hemoglobin/haptoglobin utilization.  相似文献   

4.
Fur regulation in Yersinia species   总被引:17,自引:0,他引:17  
  相似文献   

5.
A unique arrangement of promoter elements was found upstream of the bacteriophage P1 particle maturation gene (mat). A P1-specific late-promoter sequence with conserved elements located at positions -22 and -10 was expected from the function of the gene in phage morphogenesis. In addition to a late-promoter sequence, a -35 element and an operator sequence for the major repressor protein, C1, were found. The -35 and -10 elements constituted an active Escherichia coli sigma(70) consensus promoter, which was converted into a P1-regulated early promoter by the superimposition of a C1 operator. This combination of early- and late-promoter elements regulates and fine-tunes the expression of the particle maturation gene. During lysogenic growth the gene is turned off by P1 immunity functions. Upon induction of lytic growth, the expression of mat starts simultaneously with the expression of other C1-regulated P1 early functions. However, while most of the latter functions are downregulated during late stages of lytic growth the expression of mat continues throughout the entire lytic growth cycle of bacteriophage P1. Thus, the maturation function has a head start on the structural components of the phage particle.  相似文献   

6.
The authors compared the activity of acetyl-CoA-synthetase and of the enzymes belonging to the group of asparaginic acid in levomycetin sensitive and resistant strains of Y. pestis and E. coli. There were revealed marked differences in the activity of aspartase, fumarase, synthetase and desamidase of L-asparagin, and also of the enzyme activated by acetate in the E. coli strains with plasmide resistance. Transmission of R-factor to the pestis was accompanied by decomposition of L-asparadein, formation of AC-CoA. At the same time transformation of L-asparaginic acid catalyzed by aspartase remained on the same low level in the sensitive pestis cultures and their variants with the R-factor. When the resistance was controlled by chromosomal resistance markers, the activity of the enzymes providing formation of L-asparagic acid, its amide and L-malic acid showed no significant change. In chromosomal type of resistance in the mutants of pestis and E. coli the acetyl-CoA-synthetase reaction was as a rule somewhat increased.  相似文献   

7.
When either the F' lac or the F'Cm plasmid was transferred from Escherichia coli into Pasteurella pseudotuberculosis, the P. pseudotuberculosis (F') strains isolated formed plaques with both ribonucleic acid (RNA)-containing and deoxyribonucleic acid-containing male-specific phages. In contrast, strains of P. pestis harboring E. coli (F') plasmids did not form plaques with male-specific phages, although such strains permitted limited multiplication of phage MS2. The adsorption and burst size of MS2 were approximately the same in both species of Pasteurella, but the per cent of adsorbed MS2 that produced infective centers was much lower in P. pestis than it was in P. pseudotuberculosis. By use of a sib-selection technique of P. pestis (F') cells, we isolated a single clone that could form MS2 plaques. (32)P-labeled MS2 adsorbed equally to and its RNA penetrated equally into both the typical MS2-nonpermissive P. pestis cells and the MS2-permissive P. pestis cells. No host modification occurred after growth of MS2 in Pasteurella. Our data suggest that typical strains of P. pestis inhibit the intracellular development of phage MS2.  相似文献   

8.
Although very little, if any, beta-galactosidase activity is detected in Yersinia pestis by a standard Miller assay, we found that Y. pestis KIM6+ cells formed blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). Searches of the Y. pestis genome databases revealed the presence of noncontiguous sequences highly homologous to Escherichia coli lacZ, lacY, and lacI. Yersinia pestis lacZ is predicted to encode a 1060 amino-acid protein with 62% identity and 72% similarity to beta-galactosidase from E. coli. A deletion in the Y. pestis lacZ gene caused the formation of white colonies on X-gal-containing plates and beta-galactosidase activity was at background levels in the KIM6+lacZ mutant, while the complemented strain expressed about 190 Miller units. The Y. pestis lacZ promoter was not regulated by isopropylthiogalactoside or glucose. Finally, uptake of lactose by Y. pestis may be impaired.  相似文献   

9.
10.
11.
Pathogenic Yersinia species (Y. enterocolitica, Y. pestis, and Y. pseudotuberculosis) make use of a virulence plasmid-encoded type three secretion system (TTSS) to inject effector proteins into host cells. Y. enterocolitica YscM1 (LcrQ in Y. pestis and Y. pseudotuberculosis) and its homologue YscM2 are regulatory components of the TTSS that are also secreted by this transport apparatus. YscM1 and YscM2 share 57% identity and are believed to be functionally equivalent. We have recombinantly expressed and purified YscM1 and YscM2 in Escherichia coli. After expression as glutathione S-transferase (GST) fusions purification to near homogeneity was achieved by glutathione-Sepharose affinity chromatography followed by PreScission protease treatment to cleave off GST and gel filtration on a Superdex 75 column. Such recombinant YscM1 and YscM2 bound efficiently to the specific chaperone SycH, indicating proper folding of the purified proteins. Gel filtration analyses revealed that both YscM1 and YscM2 formed homodimers. The YscM1 and YscM2 homodimers could be dissociated at high ionic strength, indicating that salt bridges essentially contribute to the dimerization. We further demonstrated that YscM1 and YscM2 are susceptible to thrombin cleavage.  相似文献   

12.
Various Escherichia coli promoters contain, in addition to the classical -35 and -10 hexamers, a third recognition element, named the UP element. Located upstream of the -35 box, UP elements stimulate promoter activity by forming a docking site for the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD). Accumulating genetic, biochemical and structural information has provided a detailed picture on the molecular mechanism underlying UP element-dependent promoter stimulation in E.coli. However, far less is known about functional UP elements of Bacillus subtilis promoters. Here we analyse the strong early sigma(A)-RNA polymerase-dependent promoters C2, A2c and A2b of the lytic B.subtilis phage phi29. We demonstrate that the phage promoters contain functional UP elements although their contribution to promoter strength is very different. Moreover, we show that the UP element of the A2b promoter, being critical for its activity, is located further upstream of the -35 box than most E.coli UP elements. The importance of the UP elements for the phage promoters and how they relate to other UP elements are discussed.  相似文献   

13.
Various representatives of the genus Yersinia were found to differ in their sensitivity to the lytic action of bacteriophage Mu cts62, which could serve as an auxiliary test for the differentiation of Y. pestis and Y. pseudotuberculosis. Among the strains under study, the causative agents of plague (34 strains) were sensitive to phage Mu cts62, while the causative agents of enteric yersiniosis (42 strains) and pseudotuberculosis (73 strains), except 3 strains with the properties of Y. pestis, were resistant to this phage.  相似文献   

14.
Four putative promoters of the temperate mycobacteriophage L1 were cloned by detecting the beta-galactosidase reporter expression in E. coli transformants that carried L1 specific operon-fusion library. All of the four L1 promoters were also found to express differentially in the homologous environment of mycobacteria. Of the four promoters, two were suggested to be the putative early promoters of L1 since they express within 0 to 10 min of the initiation of the lytic growth of L1. One of the putative early promoters showed a relatively better and almost identical activity in both E. coli and M. smegmatis. By a sequence analysis, we suggest that the L1 insert that contained the stronger early promoter possibly carries two convergent E. coli sigma70-like L1 promoters, which are separated from each other by about 300 nucleotides. One of them is the early promoter of L1 as it showed a 100% similarity with the early Pleft promoter of the homoimmune phage L5. The second promoter, designated P4, was suggested for its appreciable level of reporter activity in the absence of the -10 element of the Pleft equivalent of L1. By analyzing most of the best characterized mycobacteriophages-specific promoters, including the L1 promoter P4, we suggest that both the -10 and -35 hexamers of the mycobacteriophage promoters are highly conserved and almost similar to the consensus -10 and -35 hexamers of the E. coli sigma70 promoters.  相似文献   

15.
16.
The genome of bacteriophage P1 harbors a gene coding for a 162-amino-acid protein which shows 66% amino acid sequence identity to the Escherichia coli single-stranded DNA-binding protein (SSB). The expression of the P1 gene is tightly regulated by P1 immunity proteins. It is completely repressed during lysogenic growth and only weakly expressed during lytic growth, as assayed by an ssb-P1/lacZ fusion construct. When cloned on an intermediate-copy-number plasmid, the P1 gene is able to suppress the temperature-sensitive defect of an E. coli ssb mutant, indicating that the two proteins are functionally interchangeable. Many bacteriophages and conjugative plasmids do not rely on the SSB protein provided by their host organism but code for their own SSB proteins. However, the close relationship between SSB-P1 and the SSB protein of the P1 host, E. coli, raises questions about the functional significance of the phage protein.  相似文献   

17.
18.
19.
20.
The Yersinia high-pathogenicity island.   总被引:7,自引:0,他引:7  
A pathogenicity island present only in highly pathogenic strains of Yersinia (Y. enterocolitica 1B, Y. pseudotuberculosis I and Y. pestis) has been identified on the chromosome of Yersinia spp. and has been designated High-Pathogenicity Island (HPI). The Yersinia HPI carries a cluster of genes involved in the biosynthesis, transport and regulation of the siderophore yersiniabactin. The major function of this island is thus to acquire iron molecules essential for in vivo bacterial growth and dissemination. The presence of an integrase gene and att sites homologous to those of phage P4, together with a G + C content much higher than the chromosomal background, suggests that the HPI is of foreign origin and has been acquired by chromosomal integration of a phage. The HPI can excise from the chromosome of Y. pseudotuberculosis and is found inserted into any of the three copies of the asn tRNA loci present in this species. A unique characteristic of the HPI is its wide distribution in various enterobacteria. Although first identified in Yersinia spp., it has subsequently been detected in other genera such as E. coli, Klebsiella and Citrobacter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号