首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While transposons have traditionally been viewed as genomic parasites or "junk DNA," the discovery of transposon-derived host genes has fueled an ongoing debate over the evolutionary role of transposons. In particular, while mobility-related open reading frames have been known to acquire host functions, the contribution of these types of events to the evolution of genes is not well understood. Here we report that genome-wide searches for Mutator transposase-derived host genes in Arabidopsis thaliana (Columbia-0) and Oryza sativa ssp. japonica (cv. Nipponbare) (domesticated rice) identified 121 sequences, including the taxonomically conserved MUSTANG1. Syntenic MUSTANG1 orthologs in such varied plant species as rice, poplar, Arabidopsis, and Medicago truncatula appear to be under purifying selection. However, despite the evidence of this pathway of gene evolution, MUSTANG1 belongs to one of only two Mutator-like gene families with members in both monocotyledonous and dicotyledonous plants, suggesting that Mutator-like elements seldom evolve into taxonomically widespread host genes.  相似文献   

2.
Horizontal transfer of a plant transposon   总被引:3,自引:0,他引:3       下载免费PDF全文
The majority of well-documented cases of horizontal transfer between higher eukaryotes involve the movement of transposable elements between animals. Surprisingly, although plant genomes often contain vast numbers of these mobile genetic elements, no evidence of horizontal transfer of a nuclear-encoded transposon between plant species has been detected to date. The most mutagenic known plant transposable element system is the Mutator system in maize. Mu-like elements (MULEs) are widespread among plants, and previous analysis has suggested that the distribution of various subgroups of MULEs is patchy, consistent with horizontal transfer. We have sequenced portions of MULE transposons from a number of species of the genus Setaria and compared them to each other and to publicly available databases. A subset of these elements is remarkably similar to a small family of MULEs in rice. A comparison of noncoding and synonymous sequences revealed that the observed similarity is not due to selection at the amino acid level. Given the amount of time separating Setaria and rice, the degree of similarity between these elements excludes the possibility of simple vertical transmission of this class of MULEs. This is the first well-documented example of horizontal transfer of any nuclear-encoded genes between higher plants.  相似文献   

3.
4.
Transposon display for active DNA transposons in rice   总被引:2,自引:0,他引:2  
Transposon display (TD) is a powerful technique to identify the integration site of transposons in gene tagging as a functional genomic tool for elucidating gene function. Although active endogenous DNA transposons have been used extensively for gene tagging in maize, only two active endogenous DNA transposons in rice have been identified, the 0.43-kb element mPing of the MITE family and the 0.6-kb nDart element of the hAT family. The nDart transposition was shown to be induced by crossing with a line containing its autonomous element aDart and stabilized by segregating aDart under natural growth conditions, while mPing-related elements were shown to transpose in cultured cells, plants regenerated from an anther culture, and gamma-ray-irradiated plants. No somaclonal variation should occur in nDart-promoted gene tagging because no tissue culture was involved in nDart activation. As an initial step to develop an effective tagging system using nDart in rice, we tried to visualize GC-rich nDart-related elements comprising 18 nDart-related sequences of 0.6-kb and 63 nDart-related elements longer than 2 kb in Nipponbare by TD. Comparing the observed bands in TD with the anticipated virtual bands of the nDart-related elements based upon the available rice genome sequence, we have improved our TD protocol by optimizing the PCR amplification conditions and are able to visualize approximately 87% of the anticipated bands produced from the nDart-related elements. To compare the visualization efficiency of these nDart-related elements with that of 50 mPing elements and a unique Ping sequence in Nipponbare, we also tried to visualize the mPing-related elements; all mPing-related elements are easily visualized. Based on these results, we discuss the parameters affecting the visualization efficiencies of these rice DNA transposons. We also discuss the utilization of nDart elements in gene tagging for functional genomics in rice.  相似文献   

5.
In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analysed in order to evaluate the gene-tagging efficiency. The 3' end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3' end of the Ds in rice. Nearly 80% of Ds elements were excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds which underwent secondary transposition in the later cultures. Eight per cent of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybridization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds-mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a large scale mutagenesis using a heterologous Ac/Ds family in rice.  相似文献   

6.
Pack-TYPE transposable elements (TEs) are a group of non-autonomous DNA transposons found in plants. These elements can efficiently capture and shuffle coding DNA across the host genome, accelerating the evolution of genes. Despite their relevance for plant genome plasticity, the detection and study of Pack-TYPE TEs are challenging due to the high similarity these elements have with genes. Here, we produced an automated annotation pipeline designed to study Pack-TYPE elements and used it to successfully annotate and analyse more than 10,000 new Pack-TYPE TEs in the rice and maize genomes. Our analysis indicates that Pack-TYPE TEs are an abundant and heterogeneous group of elements. We found that these elements are associated with all main superfamilies of Class II DNA transposons in plants and likely share a similar mechanism to capture new chromosomal DNA sequences. Furthermore, we report examples of the direct contribution of these TEs to coding genes, suggesting a generalised and extensive role of Pack-TYPE TEs in plant genome evolution.  相似文献   

7.
8.
转座子是植物基因组的重要组成部分, 对于研究植物基因组进化等具有重要意义。随着水稻全基因组测序计划的开展和完成, 水稻转座子研究取得了极大进展, 目前已经在水稻基因组中发现了几乎所有类型的转座子, 约占水稻基因组的35%。在正常情况下, 大多数水稻转座子不具有转座活性, 但是在特定的条件下(如组织培养或辐射等), 水稻基因组中沉默的转座子可以被激活, 从而可能导致插入突变并影响基因的表达。在水稻中已鉴定出6个有活性的转座子, 其中Tos17已被应用到水稻功能基因组研究中。转座子序列的新的分子标记转座子展示(transposon display, TD)现已被开发, 并在水稻遗传作图和遗传分化研究中得到应用  相似文献   

9.
Tomita M  Tanisaka T 《Hereditas》2010,147(6):256-263
Development of semidwarf rice cultivars contributed to the epoch of high yielding crops called the 'Green Revolution'. However, over-reliance on semidwarf rice also has intrinsic limitations to supply food for an ever expanding world population. As a solution to the food supply problem, we propose the development of 'tall dwarf' rice cultivars that are characterized by increased biomass with long culms or large grains. However, genetic studies on the elongation of rice culms have remained scarce. This study seeks to analyze mutant genes involved in culm elongation in long-culm mutants induced by the MITE transposon mPing, which has been shown to be active in the japonica cultivar Gimbozu. Through analysis of the experimental results, we have confirmed that the three mutant long-culm genes exhibit genetic dominance. These represent rare cases of artificially induced dominant mutations. It is very likely that the mPing transposons played an important role in inducing the dominant mutations and also play an evolutionary interesting role.  相似文献   

10.
Helitrons on a roll: eukaryotic rolling-circle transposons   总被引:4,自引:0,他引:4  
Rolling-circle eukaryotic transposons, known as Helitron transposons, were first discovered in plants (Arabidopsis thaliana and Oryza sativa) and in the nematode Caenorhabditis elegans. To date, Helitrons have been identified in a diverse range of species, from protists to mammals. They represent a major class of eukaryotic transposons and are fundamentally different from classical transposons in terms of their structure and mechanism of transposition. Helitrons seem to have a major role in the evolution of host genomes. They frequently capture diverse host genes, some of which can evolve into novel host genes or become essential for helitron transposition.  相似文献   

11.
12.
13.
RNA silencing-mediated small interfering RNAs (siRNAs) and microRNAs (miRNAs) have diverse natural roles, ranging from regulation of gene expression and heterochromatin formation to genome defense against transposons and viruses. Unlike miRNAs, endogenous siRNAs are generally not conserved between species; consequently, their identification requires experimental approaches. Thus far, endogenous siRNAs have not been reported from rice, which is a model species for monocotyledonous plants. We identified a large set of putative endogenous siRNAs from root, shoot and inflorescence small RNA cDNA libraries of rice. Most of these siRNAs are from intergenic regions, although a substantial proportion (22%) originates from the introns and exons of protein-coding genes. Northern and RT–PCR analysis revealed that the expression of some of the siRNAs is tissue specific or developmental stage specific. A total of 25 transposons and 21 protein-coding genes were predicted to be cis-targets of some of the siRNAs. Based on sequence homology, we also predicted 111 putative trans-targets for 44 of the siRNAs. Interestingly, ~46% of the predicted trans-targets are transposable elements, which suggests that endogenous siRNAs may play an important role in the suppression of transposon proliferation. Using RNA ligase-mediated-5′ rapid amplification of cDNA end assays, we validated three of the predicted targets and provided evidence for both cis- and trans-silencing of target genes by siRNAs-guided mRNA cleavage.  相似文献   

14.
15.
Survey of transposable elements from rice genomic sequences   总被引:27,自引:0,他引:27  
Oryza sativa L. (domesticated rice) is a monocotyledonous plant, and its 430 Mb genome has been targeted for complete sequencing. We performed a high-resolution computer-based survey for transposable elements on 910 Kb of rice genomic DNA sequences. Both class I and II transposable elements were present, contributing 19.9% of the sequences surveyed. Class II elements greatly outnumbered class I elements (166 versus 22), although class I elements made up a greater percentage (12.2% versus 6.6%) of nucleotides surveyed. Several Mutator-like elements (MULEs) were identified, including rice elements that harbor truncated host cellular genes. MITEs (miniature inverted-repeat transposable elements) account for 71.6% of the mined transposable elements and are clearly the predominant type of transposable element in the sequences examined. Moreover, a putative Stowaway transposase has been identified based on shared sequence similarity with the mined MITEs and previously identified plant mariner-like elements (MLEs). Members of a group of novel rice elements resembling the structurally unusual members of the Basho family in Arabidopsis suggest a wide distribution of these transposons among plants. Our survey provides a preview of transposable element diversity and abundance in rice, and allows for comparison with genomes of other plant species.  相似文献   

16.
17.
18.
A transposable element that is active in intact plants has been identified in rice (Oryza sativa L.). The 607-bp element itself, termed nonautonomous DNA-based active rice transposon (nDart), has no coding capacity. It was found inserted in the gene encoding Mg-protoporphyrin IX methyltransferase in a chlorophyll-deficient albino mutant isolated from backcross progeny derived from a cross between wild-type japonica varieties. The nDart has 19-bp terminal inverted repeats (TIRs) and, when mobilized, generates an 8-bp target-site duplication (TSD). At least 13 nDart elements were identified in the genome sequence of the japonica cultivar Nipponbare. Database searches identified larger elements, termed DNA-based active rice transposon (Dart) that contained one ORF for a protein that contains a region with high similarity to the hAT dimerization motif. Dart shares several features with nDart, including identical TIRs, similar subterminal sequences and the generation of an 8-bp TSD. These shared features indicate that the nonautonomous element nDart is an internal deletion derivative of the autonomous element Dart. We conclude that these active transposon systems belong to the hAT superfamily of class II transposons. Because the transposons are active in intact rice plants, they should be useful tools for tagging genes in studies of functional genomics.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
Towards the ideal GMP: homologous recombination and marker gene excision   总被引:9,自引:0,他引:9  
A mayor aim of biotechnology is the establishment of techniques for the precise manipulation of plant genomes. Two major efforts have been undertaken over the last dozen years, one to set up techniques for site-specific alteration of the plant genome via homologous recombination ("gene targeting") and the other for the removal of selectable marker genes from transgenic plants. Unfortunately, despite multiple promising approaches that will be shortly described in this review no feasible gene targeting technique has been developed till now for crop plants. In contrast, several alternative procedures have been established successfully to remove selectable markers from plant genomes. Intriguingly besides techniques relying on transposons and site-specific recombinases, recent results indicate that homologous recombination might be a valuable alternative for the excision of marker genes.  相似文献   

20.
宋晓军  谢凯斌  张艳萍  金萍 《遗传》2014,36(10):1027-1035
植物在进化过程中为了适应外界环境,已经具有一套完整的抵抗外界特殊环境的调控系统。但是,关于水稻抗逆相关基因的分子进化方面的研究还未见报道。文章通过Plant Tolerance Gene Database数据库,获得22个水稻抗逆相关基因。利用比较基因组学和生物信息学方法对水稻抗逆相关基因的进化动态进行研究,结果表明水稻抗逆相关基因在低等植物中比较保守;随着植物的不断进化和生存环境的改变,其基因数量也随之增加。具有相似抗性功能的基因往往具有相似的基因结构和基序(motif)结构。文章还发现4个保守motif 的存在:HRDXK、DXXSXG、LLPR和GXGXXG(X代表任意氨基酸)。在GSK1、RAN2抗逆基因中发现了3个特有的motif结构:GSK1特有的P-rich motif,RAN2特有的G-rich motif和E-rich motif。推测这些保守的motif结构与基因的抗逆功能密切相关。进化速率分析结果表明,尽管植物抗逆性相关基因在进化过程中受到较强的纯化选择作用,但是仍然有50%的抗逆性相关基因存在正选择位点。这些正选择位点的存在有可能为基因适应外界环境变化提供了重要的物质基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号