首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Non-random leaf orientation in Lactuca serriola L.   总被引:2,自引:2,他引:0  
Abstract Leaf shapes and leaf orientation of Lactuca serriola serriola and serriola integrifolia were studied. Leaf shapes in L. serriola serriola differed greatly from those of L.serriola integrifolia, but leaf surface areas were similar. In exposed habitats, leaf orientation of cauline leaves of both forms was non-random, with leaves almost vertical and tending to orient with their lamina normal to the east and west. In the shade, cauline leaves oriented randomly. An experiment demonstrated that the orientation of leaves did not change significantly once they were fully expanded. The leaf orientation in L. serriola affected the diurnal distribution of solar irradiance intercepted by a leaf. Peak solar radiation fluxes are incident on the rosette leaves at midday, but on the cauline leaves the peak solar radiation flux occurs early in the morning and again late in the afternoon. The significance of this unusual leaf orientation is discussed in relation to water loss and carbon gain.  相似文献   

2.
The responses of leaf conductance, leaf water potential and rates of transpiration and net photosynthesis at different vapour pressure deficits ranging from 10 to 30 Pa kPa-1 were followed in the sclerophyllous woody shrub Nerium oleander L. as the extractable soil water content decreased. When the vapour pressure deficit around a plant was kept constant at 25 Pa kPa-1 as the soil water content decreased, the leaf conductance and transpiration rate showed a marked closing response to leaf water potential at-1.1 to-1.2 MPa, whereas when the vapour pressure deficit around the plant was kept constant at 10 Pa kPa-1, leaf conductance decreased almost linearly from-0.4 to-1.1 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, decreased leaf conductance at all exchangeable soil water contents. Changing the leaf water potential in a single leaf by exposing the remainder of the plant to a high rate of transpiration decreased the water potential of that leaf, but did not influence leaf conductance when the soil water content was high. As the soil water content was decreased, leaf conductances and photosynthetic rates were higher at equal levels of water potential when the decrease in potential was caused by short-term increases in transpiration than when the potential was decreased by soil drying.As the soil dried and the stomata closed, the rate of photosynthesis decreased with a decrease in the internal carbon dioxide partial pressure, but neither the net photosynthetic rate nor the internal CO2 partial pressure were affected by low water potentials resulting from short-term increases in the rate of transpiration. Leaf conductance, transpiration rate and net photosynthetic rate showed no unique relationship to leaf water potential, but in all experiments the leaf gas exchange decreased when about one half of the extractable soil water had been utilized. We conclude that soil water status rather than leaf water status controls leaf gas exchange in N. oleander.  相似文献   

3.
Leaf age effects on the leaf conductance to water vapour diffusionof the adaxial and abaxial leaf surfaces were measured in themorning and in the afternoon on 17 different plantain and banana(Musa spp.) genotypes. The irradiance levels increased three-foldwhile leaf to air vapour pressure deficit levels increased two-to four-fold from morning to afternoon during the sampling periodin a field site located in the humid forest-moist savanna transitionzone of Nigeria. Conductance values were reduced in older, andsenescing leaves relative to the young and mature leaves bothin the morning and in the afternoon. Conductances were higherfor the abaxial leaf surfaces than the adaxial surface and higherin the afternoon than in the morning, with some genotypic differences.Lower values of leaf conductance to water vapour in the afternoonunder a short dry spell was sufficiently variable (P 0·05)among the test genotypes to indicate potential adaptation totransient dry conditions. Differential and relative leaf conductanceadjustments were noted among genotypes experiencing a shortdry spell versus non-limiting soil moisture conditions. Significantgenotypic differences were observed for leaf conductance amongthe 17 genotypes during the afternoon on the lower leaf surfaceof younger leaves. ABB cooking banana cultivars 'Fougamou' and'Bluggoe' might be potentially promising cultivars for transientdry conditions while AAB plantain 'Bobby Tannap' and one ofits hybrids TMPx 582-4 could be very sensitive to short dryspells according to this evaluation.Copyright 1994, 1999 AcademicPress Musa spp., Musa hybrids, adaxial leaf surface, abaxial leaf surface, stomatal response  相似文献   

4.
Cultivated crisphead lettuce (Lactuca sativa L.) has a shallower root system than its wild relative, Lactuca serriola L. The effects of localized soil water, at depth, on plant water relations, gas exchange and root distribution were examined in the two species using soil columns with the soil hydraulic-ally separated into two layers, at (0–20 cm and 20–81) cm, but permitting root growth between the layers. Three treatments were imposed on 7-week-old plants, and maintained for 4 weeks: (i) watering, both layers to field capacity; (ii) drying the upper layer while watering the lower layer to field capacity, and (iii) drying both layers. Drying only 0–20 cm of soil had no effect on leaf water status, net photosynthesis, stomatal conductance or biomass production in L. serriola compared to a well-watered control, but caused a short-term reduction (10 d) in leaf water status and photosynthesis in L. sativa that reduced final shoot production. The different responses may be explained by differences in root distribution. Just before the treatments commenced, L. serriola had 50% of total root length at 20–80 cm compared to 35% in L. sativa. Allocation of total biomass to roots in L. serriola was approximately double that in L. sativa. The wild species could provide germplasm for cultivated lettuces to extract more soil water from depth, which may improve irrigation efficiency.  相似文献   

5.
Specificity of interactions between eight Lactuca species and 8 Bremia lactucae isolates was studied in seedlings and adult plants of 36 Lactuca accessions plus one L. serriola × L. sativa hybrid. Pathogenicity of the isolates and/or plant susceptibility was expressed by sporulation intensity. A highly compatible relationship was observed in all of L. serriola accession/isolate interactions tested. A differential reaction was found in numerous cases testifying to physiological specialization of the pathogen in a wild pathosystem. Nonspecific nondifferential compatibility (quantitative resistance) can be expected in L. serriola PI 281876. Age dependent resistance (seedlings versus adult plants, and vice versa) and heterogeneity of reactions were also recorded. The comparisonof B. lactucae isolates from L. sativa and L. serriola has shown a significant shift of pathogenicity in favour of L. serriola accessions. A high level of resistance was found in the L. serriola × L. sativa hybrid. The existence of basic incompatibility can be expected in L. saligna and L. virosa as well as in such taxonomically remote species as L. viminea, L. squarrosa and L. biennis. Other taxonomically remote species, i.e. L. dentata and L. alpina, exhibited a compatible reaction, although the reaction of the former was differential. A high level of sporulation was recorded in all accession/isolate interactions of L. alpina.  相似文献   

6.
The degree of relationships withinLactuca sativa and three wild relativesL. serriola, L. saligna, andL. virosa was studied by observing the performance, vigour and fertility of the F 1 hybrids obtained from crosses made in and between the four species. The crosses ofL. saligna ×L. virosa and the reciprocal crosses produced no hybrids.L. saligna andL. virosa are the least related of the four species.L. sativa ×L. serriola and the reciprocal crosses were successful and produced fertile hybrids These two species are genetically very closely related.L. saligna is known to produce, as a female parent, hybrids withL. sativa andL. serriola. Now the reciprocal cross was successful for the first time, so the unability to obtain hybrids in the past was based on the choice of accessions and not caused by unilateral incompatibility.L. virosa ×L. sativa and the reciprocal combination produced hybrids. The combinationL. serriola ×L. virosa produced hybrids with very limited fertility. In contrast to earlier reports (sterile hybrids) one combination of the reciprocal cross too produced hybrids with very limited fertility.—Some of theL. saligna ×L. sativa (and reciprocal) hybrids were found to look strikingly likeL. serriola. This adds evidence for the descent ofL. serriola andL. sativa:L. saligna also made part of the ancestral complex of the cultivated lettuce.  相似文献   

7.
During the grain filling period we followed diurnal courses in leaf water potential (ψ1), leaf osmotic potential (ψπ), transpiration (E), leaf conductance to water vapour transfer (g) and microclimatic parameters in field-grown spring barley (Hordeum distichum L. cv. Gunnar). The barley crop was grown on a coarse textured sandy soil at low (50 kg ha−1) or high (200 kg ha−1) levels of potassium applied as KCl. The investigation was undertaken at full irrigation or under drought. Drought was imposed at the beginning of the grain filling period. Leaf conductance and rate of transpiration were higher in the flag leaf than in the leaves of lower insertion. The rate of transpiration of the awns on a dry weight basis was of similar magnitude to that of the flag leaves. On clear days the rate of transpiration of fully watered barley plants was at a high level during most part of the day. The transpiration only decreased at low light intensities. The rate of transpiration was high despite leaf water potentials falling to rather low values due to high evaporative demands. In water stressed plants transpiration decreased and midday depression of transpiration occurred. Normally, daily accumulated transpirational water loss was lower in high K leaves than in low K leaves and generally the bulk water relations of the leaves were more favourable in high K plants than in low K plants. The factorial dependency of the flag leaf conductances on leaf water potential, light intensity, leaf temperature, and leaf-to-air water vapour concentration difference (ΔW) was analysed from a set of field data. From these data, similar sets of microclimatic conditions were classified, and dependencies of leaf conductance on the various environmental parameters were ascertained. The resulting mathematical functions were combined in an empirical simulation model. The results of the model were tested against other sets of measured data. Deviations between measured and predicted leaf conductance occurred at low light intensities. In the flag leaf, water potentials below-1.6 MPa reduced the stomatal apertures and determined the upper limit of leaf conductance. In leaves of lower insertion level conductances were reduced already at higher leaf water potentials. Leaf conductance was increased hyperbolically as photosynthetic active radiation (PAR) increased from darkness to full light. Leaf conductance as a function of leaf temperature followed an optimum curve which in the model was replaced by two linear regression lines intersecting at the optimum temperature of 23.4°C. Increasing leaf-to-air water vapour concentration difference caused a linear decrease in leaf conductance. Leaf conductances became slightly more reduced by lowered water potentials in the low K plants. Stomatal closure in response to a temperature change away from the optimum was more sensitive in high K plants, and also the decrease in leaf conductance under the influence of lowered ambient humidity proceeded with a higher sensitivity in high K plants. Thus, under conditions which favoured high conductances increase of evaporative demand caused an about 10% larger decrease in leaf conductance in the high K plants than in the low K plants. Stomatal sizes and density in the flag leaves differed between low and high K plants. In plants with partially open stomata, leaf conductance, calculated from stomatal pore dimensions, was up to 10% lower in the high K plants than in the low K plants. A similar reduction in leaf conductance in high K plants was measured porometrically. It was concluded that the beneficial effect of K supply on water use efficiency reported in former studies primarily resulted from altered stomatal sizes and densities.  相似文献   

8.
Haase  Peter  Pugnaire  Francisco I.  Clark  S.C.  Incoll  L.D. 《Plant Ecology》1999,145(2):327-339
Seasonal changes in leaf demography and gas exchange physiology in the tall evergreen tussock grass Stipa tenacissima, one of the few dominant plant species in the driest vegetation of Europe, were monitored over a period of two years at a field site in semi-arid south-eastern Spain. Three age-classes of leaves – young, mature and senescent – were distinguished in the green canopy. Production of new leaves and extension growth of older leaves occurred exclusively from October–November to May–June. The rate of extension was significantly correlated with gravimetric soil water content. Leaf growth ceased after gravimetric soil water content fell below 0.015 g g–1 at the beginning of the dry season which corresponded to pre-dawn leaf water potentials of -3.0 MPa. Leaf senescence and desiccation reduced green leaf area by 43–49% during the dry season. Diurnal changes in the net photosynthetic rate of all three cohorts of leaves were bimodal with an early morning maximum, a pronounced midday depression and a small recovery late in the afternoon. Maximum photosynthetic rates of 10–16 mol CO2 m–2 s–1 were attained from November 1993 to early May 1994 in young and mature leaves. Photosynthetic rate declined strongly during the dry season and was at or below compensation in September 1994. Gas exchange variables of young and mature leaves were not significantly different, but photosynthetic rate and diffusive conductance to water vapour of senescing leaves were significantly lower than in the two younger cohorts. Leaf nitrogen content of mature leaves varied seasonally between 2.9 and 5.2 g m–2 (based on projected area of folded leaves), but was poorly correlated with maxima of the photosynthetic rate. There was a stronger linear relationship between the daily maxima of leaf conductance and pre-dawn leaf water potential than with atmospheric water vapour saturation deficit. Seasonal and between-year variation in daily carbon assimilation were caused mainly by differences in climatic conditions and canopy size whereas the effect of age structure of canopies was negligible. Since water is the most important limiting factor for growth and reproduction of S. tenacissima, any future rise in mean temperature, which might increase evapotranspiration, or decrease in rainfall, may considerably reduce the productivity of the grasslands, particularly at the drier end of their geographical distribution.  相似文献   

9.
Summary The leaves of Cymopterus longipes form prostrate rosettes early in the spring. As the weather warms, these leaves are elevated on a pseudoscape (false stem) which develops below the rosette through the elongation of the caudex (in the region between root and shoot). The effect of this growth form change on the water relations and photosynthesis in C. longipes was investigated. Pseudoscape height was not linked to phenology or plant size. Leaf conductance, leaf temperature, and leaf water potential were notably similar between plants with different pseudoscape height growing in different microsites. Experimental manipulation of the microclimate around plants growing naturally allowed us to demonstrate that increased temperature led to an increase in the rate of pseudoscape elongation. By changing the distance above the ground surface of the rosettes of some plants we determined that leaf temperature, leaf to air vapour concentration deficits, leaf conductances, and leaf water potentials were all influenced by pseudoscape height. Leaf conductance in C. longipes had a strong negative relationship with W. Since the temperature response of net photosynthesis was extremely flat it was concluded that pseudoscape elongation may be an important morphological means of increasing water use efficiency.  相似文献   

10.
The leaf gas exchange of mature olive trees (Olea europaea L.) was characterized over a wide range of water deficits in the field during 1998, in Cordoba, Spain. Leaf photosynthesis (A) and stomatal conductance (gl) responded diurnally and seasonally to variations in tree water status and evaporative demand. In the absence of water stress, A and gl were generally high during autumn and low in days of high vapour pressure deficits (VPD). Leaf A varied between 0 and 2 µmol m?2 s?1 under severe water deficits that lowered the stem water potential (Ψx) to ?8·0 MPa, but recovered rapidly following rehydration. Transpiration efficiency (TE) was curvilinearly related to VPD and not influenced by water deficits except in cases of severe water stress, where low TE values were observed at Ψx below ?4 MPa. Three models of leaf conductance were calibrated and validated with the experimental data; two were based on the model proposed by Leuning (L) and the other was derived from the widely used Jarvis (J) model. The L models performed better than the J model in two validation tests. The scatter of the predictions and the limited accuracy of all three models suggest that, in addition to the physiological and environmental variables considered, there are additional endogenous factors influencing the gl of olive leaves.  相似文献   

11.
The cauline leaves of an annual, Lactuca serriola L., are naturally oriented vertically with the lamina perpendicular to the east and west. Previous physiological data indicated that this nonrandom leaf orientation should reduce water loss without substantially reducing photosynthesis and could thus influence plant growth and reproduction (Werk and Ehleringer, 1984, 1985). The effect of leaf orientation on flower and seed production was tested experimentally using potted L. serriola grown outdoors. Leaves of half the plants were forced to remain approximately horizontal while the other plants were allowed to orient naturally. The plants with horizontal leaves lost water more rapidly than the plants with naturally oriented leaves. Above-ground weight, below-ground weight, seed weight, and the number of seeds per flower were not significantly affected by leaf orientation. Flower production was a linear function of plant size for both treatments with plants with natural leaf orientation having a significantly greater slope. These results indicate that the nonrandom leaf orientation observed in L. serriola is a morphological character which can enhance reproduction.  相似文献   

12.
Summary The seasonal course of water relations in field populations of two leaf solar tracking desert winter annuals was examined. Measurements were made of leaf movements in relation to leaf conductance and water potential. Malvastrum rotundifolium maintained solar tracking movements up to the wilting point of the plant (-4 MPa). Lupinus arizonicus altered its morphology through paraheliotropic leaf movements as leaf water potentials declined to-1.8 MPa. Diurnal patterns of leaf conductance showed marked seasonal trends, with gas exchange activity being restricted to early morning hours as water availability declined. Studies of potted plants showed that L. arizonicus was not able to alter its osmotic potential in response to drought, while M. rotundifolium underwent a 1.86 MPa reduction in osmotic potential. The significance of the two contrasting patterns is discussed in terms of observed plant distribution and origin.  相似文献   

13.
Stomatal control of transpiration from a developing sugarcane canopy   总被引:2,自引:2,他引:0  
Abstract. Stomatal conductance of single leaves and transpiration from an entire sugarcane (Saccharum spp. hybrid) canopy were measured simultaneously using independent techniques. Stomatal and environmental controls of transpiration were assessed at three stages of canopy development, corresponding to leaf area indices (L) of 2.2, 3.6 and 5.6. Leaf and canopy boundary layers impeded transport of transpired water vapour away from the canopy, causing humidity around the leaves to find its own value through local equilibration rather than a value determined by the humidity of the bulk air mass above the canopy. This tended to uncouple transpiration from direct stomatal control, so that transpiration predicted from measurement of stomatal conductance and leaf-to-air vapour pressure differences was increasingly overestimated as the reference point for ambient vapour pressure measurement was moved farther from the leaf and into the bulk air. The partitioning of control between net radiation and stomata was expressed as a dimensionless decoupling coefficent ranging from zero to 1.0. When the stomatal aperture was near its maximum this coefficient was approximately 0.9, indicating that small reductions in stomatal aperture would have had little effect on canopy transpiration. Maximum rates of transpiration were, however, limited by large adjustments in maximum stomatal conductance during canopy development. The product of maximum stomatal conductance and L. a potential total canopy conductance in the absence of boundary layer effects, remained constant as L increased. Similarly, maximum canopy conductance, derived from independent micrometeorological measurements, also remained constant over this period. Calculations indicated that combined leaf and canopy boundary layer conductance decreased with increasing L such that the ratio of boundary layer conductance to maximum stomatal conductance remained nearly constant at approximately 0.5. These observations indicated that stomata adjusted to maintain both transpiration and the degree of stomatal control of transpiration constant as canopy development proceeded.  相似文献   

14.
Abstract It had been hypothesized that if daily CO2 assimilation is to be maximized at a given level of daily transpiration, stomatal apertures should change during the day so that the gain ratio (?A/?g)/(?E/?g) remains constant. These partial differentials describe the sensitivity of assimilation rate (A) and transpiration rate (E) to changes in stomatal conductance (g). Experiments were conducted to determine whether stomata respond to environment in a manner which results in constant gain ratios. Gas–exchange measurements were made of the stomatal and photosynthetic responses of Vigna unguiculata L. Walp. in controlled environments. Leaf conductance to water vapour responded to step changes in temperature and humidity so that for different steady-state conditions the gain ratio remained constant on all but one day. Depletion of water in the root zone resulted in day-to-day increases in gain ratio which were correlated with decreases in maximum leaf conductance to water vapour. The significance of the results for plant adaptation and stomatal mechanisms, and methods for measuring the gain ratio, are discussed.  相似文献   

15.
Summary The responses of photosynthesis, transpiration and leaf conductance to changes in vapour pressure deficit were followed in well-watered plants of the herbaceous species, Helianthus annuus, Helianthus nuttallii, Pisum sativum and Vigna unguiculata, and in the woody species having either sclerophyllous leaves, Arbutus unedo, Nerium oleander and Pistacia vera, or mesomorphic leaves, Corylus avellana, Gossypium hirsutum and Prunus dulcis. When the vapour pressure deficit of the air around a single leaf in a cuvette was varied from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, while holding the remainder of the plant at a vapour presure deficit of 10 Pa kPa-1, the leaf conductance and net photosynthetic rate of the leaf decreased in all species. The rate of transpiration increased initially with increase in vapour pressure deficit in all species, but in several species a maximum transpiration rate was observed at 20 to 25 Pa kPa-1. Concurrent measurements of the leaf water potential by in situ psychrometry showed that an increase in the vapour pressure deficit decreased the leaf water potential in all species. The decrease was greatest in woody species, and least in herbaceous species. When the vapour pressure deficit around the remainder of the plant was increased while the leaf in the cuvette was exposed to a low and constant vapour pressure deficit, similar responses in both degree and magnitude in the rates of transpiration and leaf conductance were observed in the remainder of the plant as those occurring when the vapour pressure deficit around the single leaf was varied. Increasing the external vapour pressure deficit lowered the water potential of the leaf in the cuvette in the woody species and induced a decrease in leaf conductance in some, but not all, speies. The decrease in leaf conductance with decreasing water potential was greater in the woody species when the vapour pressure deficit was increased than when it remained low and constant, indicating that changing the leaf-to-air vapour pressure difference had a direct effect on the stomata in these species. The low hydraulic resistance and maintenance of a high leaf water potential precluded such an analysis in the herbaceous species. We conclude that at least in the woody species studied, an increase in the vapour pressure deficit around a leaf will decrease leaf gas exchange through a direct effect on the leaf epidermis and sometimes additionally through a lowering of the mesophyll water potential.  相似文献   

16.
Vulnerability to cavitation of leaf minor veins and stems of Laurus nobilis L. was quantified together with that of leaflets, rachides and stems of Ceratonia siliqua L. during air‐dehydration of 3‐year‐old branches. Embolism was estimated by counting ultrasound acoustic emissions (UAE) and relating them to leaf water potential (ΨL). The threshold ΨL for cavitation was less negative in L. nobilis than in C. siliqua according to the known higher drought resistance of the latter species. Leaf minor vein cavitation was also quantified by infiltrating leaves with fluorescein at different dehydration levels and observing them under microscope. Distinct decreases in the functional integrity of minor veins were observed during leaf dehydration, with high correlation between the two variables. The relationship between leaf conductance to water vapour (gL) and ΨL showed that stomata of L. nobilis closed in response to stem and not to leaf cavitation. However, in C. siliqua, gL decreased in coincidence to the leaf cavitation threshold, which was, nevertheless, very close to that of the stem. The hypothesis that stem cavitation acts as a signal for stomatal closure was confirmed, while the same role for leaf cavitation remains an open problem.  相似文献   

17.
Impatiens pallida, a succulent annual herb of moist temperate forests, typically wilts on summer days after several minutes of direct sunlight. Time courses of gas exchange and leaf water potential were measured to determine if wilting resulted in substantially reduced photosynthesis, stomatal conductance, or leaf internal CO2 concentrations. Leaves quickly wilted with the onset of high-light, but photosynthesis and stomatal conductance increased markedly. Photosynthetic rates and stomatal conductance declined slightly after several hours of high-light, and from morning to late afternoon shade conditions. Leaf internal CO2 declined with increased photosynthesis, but there was no evidence that stomatal conductance limited photosynthesis through the day. We propose that rapid wilting is an adaptation that facultatively limits heat loading and extreme water loss under high-light. Further whole plant studies in natural settings are needed to fully evaluate the quantitative significance of wilting in relation to water use and photosynthesis.  相似文献   

18.
Abstract Pitcairnia integrifolia is endemic to northern Trinidad and the Paria peninsula of Venezuela and is the only member of the bromeliad-subfamily Pitcairnioideae in Trinidad. It is terrestrial with roots fully functional in water and solute uptake, grows on exposed steep rocky cliffs and can occur just above the spill zone of sea waves under continuous sea spray. Thus, it can be subject both to water stress, particularly during the dry season, and to salt stress. Gas exchange of P. integrifolia leaves was measured on a clear day in Trinidad. Uptake of CO2 and leaf conductance to diffusion of water vapour had two peaks during the light period, a larger one in the early morning and a smaller one in the late afternoon, which were separated by an extended midday depression of gas exchange. CO2 partial pressure in the leaf air-spaces increased during the midday depression. Leaf temperatures reached a maximum of 51.6°C and leaf-air water-vapour-concentration differences were also very high during the midday depression, when quantum fluxes were up to 2 mmol m?2 s?1 and higher. The midday depression is considered as a functional adaptation to temporary water stress. Although P. integrifolia is subject to sea-spray, an internal osmotic pressure of only 0.91 MPa indicated that NaCl is not accumulated. Leaf epidermis cells are thick-walled and have a prominent cuticle. The abaxial leaf surface with the trichomes is not wettable, and the trichomes apparently do not function in water and solute uptake. They cover the stomata densely and may create a favourable microenvironment around them. They also have a high reflectance. This does not prevent overheating of the leaves, but does reduce the photosynthetically active radiation penetrating to the mesophyll. The trichomes may thus contribute to the prevention of photoinhibition at high incident quantum flux.  相似文献   

19.
Chromosome banding patterns obtained with C- and N- banding, and AgNO3 staining were studied in somatic metaphase complements of fourLactuca species.L. sativa andL. serriola have almost identical chromosome morphology, andL. saligna differs only slightly from them, butL. virosa is quite distinct from the other species. A gross comparison of the banded karyotypes suggests a closer relationship ofL. saligna toL. sativa/serriola than toL. virosa. Our data agree with the results of previous crossing experiments in these species but conflict partly with recent RFLP data which indicate a closer phenetic relationship ofL. saligna toL. virosa than toL. sativa/serriola. Such a discrepancy may be explained assuming that domestication ofL. sativa/serriola resulted in an increased selection pressure on unique DNA sequences as demonstrated by the RFLP data. Differential evolution of specific heterochromatin classes (and presumably of highly repetitive DNA classes), as revealed by chromosome banding techniques was not linked to domestication. Thus the disparity in conclusions about relationship (in terms of genetic similarity) as based on the different experimental approaches reflects a non-parallel evolution of highly repetitive vs. unique DNA classes.  相似文献   

20.
Summary Diurnal courses of stomatal conductance, leaf water potential, and the components of tissue water potential were measured in six canopy species in an elfin cloud forest. High values of stomatal conductance were measured on cloudy days and during early morning and late afternoon of sunny days. Decreases in stomatal conductance with increases in vapour pressure deficit may have been a response to avoid further water deficits and suggested a stomatal response to changes in relative humidity. Daily transpiration varied between 470 and 1014 g m-2 day-1 during cloudy days and between 532 and 944 g m-2 day-1 during clear days. Stomatal conductance may have also responded to changes in leaf water potential, which was minimum at noon. The minimum tissue water potential measured in the field was -1.8 MPa in Myrcianthes fragrans, and the minimum turgor pressure was 0.49 MPa also in M. fragrans. There was a correlation between the osmotic potential and the minimum tissue water potential, suggesting that osmotic potential plays a major role in the maintenance of turgor in these species, in spite of the great variability in the elastic properties of leaf tissues. Turgor pressure decreased during the day following the course of water potential but never approached the turgor loss point, as it has been measured in some lowland rain forest trees. This is a strong indication that elfin cloud forest trees do not suffer severe water deficits, and that small tree stature is not directly related to water shortage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号