首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compound UIC-94017 (TMC-114) is a second-generation HIV protease inhibitor with improved pharmacokinetics that is chemically related to the clinical inhibitor amprenavir. UIC-94017 is a broad-spectrum potent inhibitor active against HIV-1 clinical isolates with minimal cytotoxicity. We have determined the high-resolution crystal structures of UIC-94017 in complexes with wild-type HIV-1 protease (PR) and mutant proteases PR(V82A) and PR(I84V) that are common in drug-resistant HIV. The structures were refined at resolutions of 1.10-1.53A. The crystal structures of PR and PR(I84V) with UIC-94017 ternary complexes show that the inhibitor binds to the protease in two overlapping positions, while the PR(V82A) complex had one ordered inhibitor. In all three structures, UIC-94017 forms hydrogen bonds with the conserved main-chain atoms of Asp29 and Asp30 of the protease. These interactions are proposed to be critical for the potency of this compound against HIV isolates that are resistant to multiple protease inhibitors. Other small differences were observed in the interactions of the mutants with UIC-94017 as compared to PR. PR(V82A) showed differences in the position of the main-chain atoms of residue 82 compared to PR structure that better accommodated the inhibitor. Finally, the 1.10A resolution structure of PR(V82A) with UIC-94017 showed an unusual distribution of electron density for the catalytic aspartate residues, which is discussed in relation to the reaction mechanism.  相似文献   

2.
Lopinavir (LPV) is a second-generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long-term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a single I47A substitution has the inhibition constant (K(i) ) value for lopinavir by two orders of magnitude higher than for the wild-type PR. The addition of the I47A substitution to the background of a multiply mutated PR species from an AIDS patient showed a three-order-of-magnitude increase in K(i) in vitro relative to the patient PR without the I47A mutation. The crystal structure of I47A PR in complex with LPV showed the loss of van der Waals interactions in the S2/S2' subsites. This is caused by the loss of three side-chain methyl groups due to the I47A substitution and by structural changes in the A47 main chain that lead to structural changes in the flap antiparallel beta-strand. Furthermore, we analyzed possible interaction of the I47A mutation with secondary mutations V32I and I54V. We show that both mutations in combination with I47A synergistically increase the relative resistance to LPV in vitro. The crystal structure of the I47A/I54V PR double mutant in complex with LPV shows that the I54V mutation leads to a compaction of the flap, and molecular modeling suggests that the introduction of the I54V mutation indirectly affects the strain of the bound inhibitor in the PR binding cleft.  相似文献   

3.
The development of resistance to anti-retroviral drugs targeted against HIV is an increasing clinical problem in the treatment of HIV-1-infected individuals. Many patients develop drug-resistant strains of the virus after treatment with inhibitor cocktails (HAART therapy), which include multiple protease inhibitors. Therefore, it is imperative that we understand the mechanisms by which the viral proteins, in particular HIV-1 protease, develop resistance. We have determined the three-dimensional structure of HIV-1 protease NL4-3 in complex with the potent protease inhibitor TL-3 at 2.0 A resolution. We have also obtained the crystal structures of three mutant forms of NL4-3 protease containing one (V82A), three (V82A, M46I, F53L) and six (V82A, M46I, F53L, V77I, L24I, L63P) point mutations in complex with TL-3. The three protease mutants arose sequentially under ex vivo selective pressure in the presence of TL-3, and exhibit fourfold, 11-fold, and 30-fold resistance to TL-3, respectively. This series of protease crystal structures offers insights into the biochemical and structural mechanisms by which the enzyme can overcome inhibition by TL-3 while recovering some of its native catalytic activity.  相似文献   

4.
HIV蛋白酶(protease,PR)耐药突变的大量出现严重地影响了AIDS的治疗.应用突变PR对展示HIVPR靶序列随机文库的噬菌体进行切割筛选,可获得突变PR的敏感噬菌体,该噬菌体可用于针对HIVPR耐药突变株的蛋白酶抑制剂(protease inhibitor,PI)新药筛选.为了探索这一可能性,将包含HIVPR靶位点P2/NC序列的Gag蛋白CAP2NC片段展示于噬菌体表面,并在该片段的N端连接一可与人免疫球蛋白分子特异结合的固相化标签序列LD3,将该噬菌体固定于人免疫球蛋白包被的酶标板上,用HIVSF2PR进行切割,用抗M13噬菌体酶标抗体ELISA法检测未被切割的剩余噬菌体以反映切割效果.结果表明,所构建的噬菌体能被HIVPR有效切割,最大切割效应可达80%以上,其ELISA检测值明显下降,并且该切割效应与HIVPR呈明显的量效关系,能被PI类药物Indinavir(IDV)特异抑制.首次成功构建了展示HIV Gag CAP2NC片段的噬菌体蛋白酶切割模型,不仅可为研究HIVPR的耐药性变异及其靶序列的适应性变异提供一新的研究平台,同时也为构建一种全新的PI类药物,尤其是针对耐药的PI类药物大规模体外噬菌体筛选模型打下基础.  相似文献   

5.
HIV-1 (human immunodeficiency virus type 1) protease (PR) and its mutants are important antiviral drug targets. The PR flap region is critical for binding substrates or inhibitors and catalytic activity. Hence, mutations of flap residues frequently contribute to reduced susceptibility to PR inhibitors in drug-resistant HIV. Structural and kinetic analyses were used to investigate the role of flap residues Gly48, Ile50, and Ile54 in the development of drug resistance. The crystal structures of flap mutants PRI50V (PR with I50V mutation), PRI54V (PR with I54V mutation), and PRI54M (PR with I54M mutation) complexed with saquinavir (SQV) as well as PRG48V (PR with G48V mutation), PRI54V, and PRI54M complexed with darunavir (DRV) were determined at resolutions of 1.05-1.40 Å. The PR mutants showed changes in flap conformation, interactions with adjacent residues, inhibitor binding, and the conformation of the 80s loop relative to the wild-type PR. The PR contacts with DRV were closer in PRG48V-DRV than in the wild-type PR-DRV, whereas they were longer in PRI54M-DRV. The relative inhibition of PRI54V and that of PRI54M were similar for SQV and DRV. PRG48V was about twofold less susceptible to SQV than to DRV, whereas the opposite was observed for PRI50V. The observed inhibition was in agreement with the association of G48V and I50V with clinical resistance to SQV and DRV, respectively. This analysis of structural and kinetic effects of the mutants will assist in the development of more effective inhibitors for drug-resistant HIV.  相似文献   

6.
HIV-1 protease (PR) and two drug-resistant variants--PR with the V82A mutation (PR(V82A)) and PR with the I84V mutation (PR(I84V))--were studied using reduced peptide analogs of five natural cleavage sites (CA-p2, p2-NC, p6pol-PR, p1-p6 and NC-p1) to understand the structural and kinetic changes. The common drug-resistant mutations V82A and I84V alter residues forming the substrate-binding site. Eight crystal structures were refined at resolutions of 1.10-1.60 A. Differences in the PR-analog interactions depended on the peptide sequence and were consistent with the relative inhibition. Analog p6(pol)-PR formed more hydrogen bonds of P2 Asn with PR and fewer van der Waals contacts at P1' Pro compared with those formed by CA-p2 or p2-NC in PR complexes. The P3 Gly in p1-p6 provided fewer van der Waals contacts and hydrogen bonds at P2-P3 and more water-mediated interactions. PR(I84V) showed reduced van der Waals interactions with inhibitor compared with PR, which was consistent with kinetic data. The structures suggest that the binding affinity for mutants is modulated by the conformational flexibility of the substrate analogs. The complexes of PR(V82A) showed smaller shifts of the main chain atoms of Ala82 relative to PR, but more movement of the peptide analog, compared to complexes with clinical inhibitors. PR(V82A) was able to compensate for the loss of interaction with inhibitor caused by mutation, in agreement with kinetic data, but substrate analogs have more flexibility than the drugs to accommodate the structural changes caused by mutation. Hence, these structures help to explain how HIV can develop drug resistance while retaining the ability of PR to hydrolyze natural substrates.  相似文献   

7.
TMC114, a newly designed human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is extremely potent against both wild-type (wt) and multidrug-resistant (MDR) viruses in vitro as well as in vivo. Although chemically similar to amprenavir (APV), the potency of TMC114 is substantially greater. To examine the basis for this potency, we solved crystal structures of TMC114 complexed with wt HIV-1 protease and TMC114 and APV complexed with an MDR (L63P, V82T, and I84V) protease variant. In addition, we determined the corresponding binding thermodynamics by isothermal titration calorimetry. TMC114 binds approximately 2 orders of magnitude more tightly to the wt enzyme (K(d) = 4.5 x 10(-12) M) than APV (K(d) = 3.9 x 10(-10) M). Our X-ray data (resolution ranging from 2.2 to 1.2 A) reveal strong interactions between the bis-tetrahydrofuranyl urethane moiety of TMC114 and main-chain atoms of D29 and D30. These interactions appear largely responsible for TMC114's very favorable binding enthalpy to the wt protease (-12.1 kcal/mol). However, TMC114 binding to the MDR HIV-1 protease is reduced by a factor of 13.3, whereas the APV binding constant is reduced only by a factor of 5.1. However, even with the reduction in binding affinity to the MDR HIV protease, TMC114 still binds with an affinity that is more than 1.5 orders of magnitude tighter than the first-generation inhibitors. Both APV and TMC114 fit predominantly within the substrate envelope, a property that may be associated with decreased susceptibility to drug-resistant mutations relative to that of first-generation inhibitors. Overall, TMC114's potency against MDR viruses is likely a combination of its extremely high affinity and close fit within the substrate envelope.  相似文献   

8.
Although a majority of HIV-1 infections in Brazil are caused by the subtype B virus (also prevalent in the United States and Western Europe), viral subtypes F and C are also found very frequently. Genomic differences between the subtypes give rise to sequence variations in the encoded proteins, including the HIV-1 protease. The current anti-HIV drugs have been developed primarily against subtype B and the effects arising from the combination of drug-resistance mutations with the naturally existing polymorphisms in non-B HIV-1 subtypes are only beginning to be elucidated. To gain more insights into the structure and function of different variants of HIV proteases, we have determined a 2.1 A structure of the native subtype F HIV-1 protease (PR) in complex with the protease inhibitor TL-3. We have also solved crystal structures of two multi-drug resistant mutant HIV PRs in complex with TL-3, from subtype B (Bmut) carrying the primary mutations V82A and L90M, and from subtype F (Fmut) carrying the primary mutation V82A plus the secondary mutation M36I, at 1.75 A and 2.8 A resolution, respectively. The proteases Bmut, Fwt and Fmut exhibit sevenfold, threefold, and 54-fold resistance to TL-3, respectively. In addition, the structure of subtype B wild type HIV-PR in complex with TL-3 has been redetermined in space group P6(1), consistent with the other three structures. Our results show that the primary mutation V82A causes the known effect of collapsing the S1/S1' pockets that ultimately lead to the reduced inhibitory effect of TL-3. Our results further indicate that two naturally occurring polymorphic substitutions in subtype F and other non-B HIV proteases, M36I and L89M, may lead to early development of drug resistance in patients infected with non-B HIV subtypes.  相似文献   

9.
A clinically‐relevant, drug‐resistant mutant of HIV‐1 protease (PR), termed Flap+(I54V) and containing L10I, G48V, I54V and V82A mutations, is known to produce significant changes in the entropy and enthalpy balance of drug‐PR interactions, compared to wild‐type PR. A similar mutant, Flap+(I54A), which evolves from Flap+(I54V) and contains the single change at residue 54 relative to Flap+(I54V), does not. Yet, how Flap+(I54A) behaves in solution is not known. To understand the molecular basis of V54A evolution, we compared nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, isothermal titration calorimetry, and enzymatic assay data from four PR proteins: PR (pWT), Flap+(I54V), Flap+(I54A), and Flap+(I54), a control mutant that contains only L10I, G48V and V82A mutations. Our data consistently show that selection to the smaller side chain at residue 54, not only decreases inhibitor affinity, but also restores the catalytic activity.  相似文献   

10.
Clinical inhibitor amprenavir (APV) is less effective on HIV‐2 protease (PR2) than on HIV‐1 protease (PR1). We solved the crystal structure of PR2 with APV at 1.5 Å resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR1 mutant (PR1M) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR2. PR1M more closely resembled PR2 than PR1 in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR1M with APV, DRV, and SQV were compared with available PR1 and PR2 complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR1M and PR1, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR1M. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR1M and PR2 relative to the strong hydrogen bonds observed in PR1, consistent with 15‐ and 19‐fold weaker inhibition, respectively. Overall, PR1M partially replicates the specificity of PR2 and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV‐2.  相似文献   

11.
The crystal structures, dimer stabilities, and kinetics have been analyzed for wild-type human immunodeficiency virus type 1 (HIV-1) protease (PR) and resistant mutants PR(L24I), PR(I50V), and PR(G73S) to gain insight into the molecular basis of drug resistance. The mutations lie in different structural regions. Mutation I50V alters a residue in the flexible flap that interacts with the inhibitor, L24I alters a residue adjacent to the catalytic Asp25, and G73S lies at the protein surface far from the inhibitor-binding site. PR(L24I) and PR(I50V), showed a 4% and 18% lower k(cat)/K(m), respectively, relative to PR. The relative k(cat)/K(m) of PR(G73S) varied from 14% to 400% when assayed using different substrates. Inhibition constants (K(i)) of the antiviral drug indinavir for the reaction catalyzed by the mutant enzymes were about threefold and 50-fold higher for PR(L24I) and PR(I50V), respectively, relative to PR and PR(G73S). The dimer dissociation constant (K(d)) was estimated to be approximately 20 nM for both PR(L24I) and PR(I50V), and below 5 nM for PR(G73S) and PR. Crystal structures of the mutants PR(L24I), PR(I50V) and PR(G73S) were determined in complexes with indinavir, or the p2/NC substrate analog at resolutions of 1.10-1.50 Angstrom. Each mutant revealed distinct structural changes relative to PR. The mutated residues in PR(L24I) and PR(I50V) had reduced intersubunit contacts, consistent with the increased K(d) for dimer dissociation. Relative to PR, PR(I50V) had fewer interactions of Val50 with inhibitors, in agreement with the dramatically increased K(i). The distal mutation G73S introduced new hydrogen bond interactions that can transmit changes to the substrate-binding site and alter catalytic activity. Therefore, the structural alterations observed for drug-resistant mutations were in agreement with kinetic and stability changes.  相似文献   

12.
HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active site cavity of PR where normally the viral polyprotein substrate is bound and hydrolyzed. We report two high-resolution crystal structures of wild-type PR (PRWT) and the multi-drug-resistant variant with the I54V mutation (PRI54V) in complex with a peptide at 1.46 and 1.50 A resolution, respectively. The peptide forms a gem-diol tetrahedral reaction intermediate (TI) in the crystal structures. Distinctive interactions are observed for the TI binding in the active site cavity of PRWT and PRI54V. The mutant PRI54V/TI complex has lost water-mediated hydrogen bond interactions with the amides of Ile50 and Ile50' in the flap. Hence, the structures provide insight into the mechanism of drug resistance arising from this mutation. The structures also illustrate an intermediate state in the hydrolysis reaction. One of the gem-diol hydroxide groups in the PRWT complex forms a very short (2.3 A) hydrogen bond with the outer carboxylate oxygen of Asp25. Quantum chemical calculations based on this TI structure are consistent with protonation of the inner carboxylate oxygen of Asp25', in contrast to several theoretical studies. These TI complexes and quantum calculations are discussed in relation to the chemical mechanism of the peptide bond hydrolysis catalyzed by PR.  相似文献   

13.
The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements seen in the second tightest inhibitor complex. This occurs as adaptations in the S1 pocket of one monomer propagate through the dimer and affect the conformation of the S1 loop near P81 of the other monomer. Therefore, structural rearrangements that occur within the protease when it binds to an inhibitor with a single modification must be accounted for in the design of inhibitors with multiple modifications. This consideration is necessary to develop inhibitors that bind sufficiently tightly to drug-resistant variants of HIV-1 protease to potentially become the next generation of therapeutic agents.  相似文献   

14.
15.
The efficacy of HIV-1 protease inhibition therapies is often compromised by the appearance of mutations in the protease molecule that lower the binding affinity of inhibitors while maintaining viable catalytic activity and substrate affinity. The V82F/I84V double mutation is located within the binding site cavity and affects all protease inhibitors in clinical use. KNI-764, a second-generation inhibitor currently under development, maintains significant potency against this mutation by entropically compensating for enthalpic losses, thus minimizing the loss in binding affinity. KNI-577 differs from KNI-764 by a single functional group critical to the inhibitor response to the protease mutation. This single difference changes the response of the two inhibitors to the mutation by one order of magnitude. Accordingly, a structural understanding of the inhibitor response will provide important guidelines for the design of inhibitors that are less susceptible to mutations conveying drug resistance. The structures of the two compounds bound to the wild type and V82F/I84V HIV-1 protease have been determined by X-ray crystallography at 2.0 A resolution. The presence of two asymmetric functional groups, linked by rotatable bonds to the inhibitor scaffold, allows KNI-764 to adapt to the mutated binding site cavity more readily than KNI-577, with a single asymmetric group. Both inhibitors lose about 2.5 kcal/mol in binding enthalpy when facing the drug-resistant mutant protease; however KNI-764 gains binding entropy while KNI-577 loses binding entropy. The gain in binding entropy by KNI-764 accounts for its low susceptibility to the drug-resistant mutation. The heat capacity change associated with binding becomes more negative when KNI-764 binds to the mutant protease, consistent with increased desolvation. With KNI-577, the opposite effect is observed. Structurally, the crystallographic B factors increase for KNI-764 when it is bound to the drug-resistant mutant. The opposite is observed for KNI-577. Consistent with these observations, it appears that KNI-764 is able to gain binding entropy by a two-fold mechanism: it gains solvation entropy by burying itself deeper within the binding pocket and gains conformational entropy by losing interaction with the protease.  相似文献   

16.
为探讨南宁市某县艾滋病病毒1型(HIV-1)感染人群中治疗前pol区遗传特性及蛋白结构变化情况,本研究通过RT-PCR扩增pol区部分序列并进行测序,将序列同源比对构建系统进化树;分型确定毒株亚型和斯坦福大学HIV耐药性数据库比对,分析耐药相关位点;SWISS-MODEL蛋白质同源数据库进行建模分析氨基酸的突变对蛋白质结构和功能的影响。本研究在90份HIV-1标本中获得46个pol区有效序列,共发现4种亚型,其中CRF01_AE占76.08%(35/46)、CRF08_BC占15.22%(7/46)、CRF07_BC占(3/46)6.52%、CRF59_01B1占2.17%(1/46);46个序列中有4例(8.69%)出现耐药突变位点,没有针对核苷酸反转录酶抑制剂(NRTI)的耐药突变;针对蛋白酶类抑制剂(PIs)1例,PR蛋白酶的柔性部位I47V位点发生突变,β折叠结构的I84V位点发生突变,都是异亮氨酸突变为缬氨酸;针对非核苷酸反转录酶抑制剂(NNRTI)有3例,2例位于活性中心的Y181C位点由酪氨酸突变为半胱氨酸,1例位于转角处的E138G位点由谷氨酸突变为甘氨酸。研究表明,南宁市某县HIV-1病毒CRF01_AE重组亚型比例最大,未经抗病毒治疗HIV1感染者中已经出现pol区耐药突变株,突变位点主要位于活性中心及柔性部位,传播水平已经处于中等流行状态。深入分析蛋白质与抑制剂相互作用机制,有助于为艾滋病抗病毒及耐药性监测方案提供科学依据。  相似文献   

17.
An infectious chimeric feline immunodeficiency virus (FIV)/HIV strain carrying six HIV-like protease (PR) mutations (I37V/N55M/V59I/I98S/Q99V/P100N) was subjected to selection in culture against the PR inhibitor lopinavir (LPV), darunavir (DRV), or TL-3. LPV selection resulted in the sequential emergence of V99A (strain S-1X), I59V (strain S-2X), and I108V (strain S-3X) mutations, followed by V37I (strain S-4X). Mutant PRs were analyzed in vitro, and an isogenic virus producing each mutant PR was analyzed in culture for LPV sensitivity, yielding results consistent with the original selection. The 50% inhibitory concentrations (IC50s) for S-1X, S-2X, S-3X, and S-4X were 95, 643, 627, and 1,543 nM, respectively. The primary resistance mutations, V9982A, I5950V, and V3732I, are consistent with the resistance pattern developed by HIV-1 under similar selection conditions. While resistance to LPV emerged readily, similar PR mutations causing resistance to either DRV or TL-3 failed to emerge after passage for more than a year. However, a G37D mutation in the nucleocapsid (NC) was observed in both selections and an isogenic G37D mutant replicated in the presence of 100 nM DRV or TL-3, whereas parental chimeric FIV could not. An additional mutation, L92V, near the PR active site in the folded structure recently emerged during TL-3 selection. The L92V mutant PR exhibited an IC50 of 50 nM, compared to 35 nM for 6s-98S PR, and processed the NC-p2 junction more efficiently, consistent with increased viral fitness. These findings emphasize the role of mutations outside the active site of PR in increasing viral resistance to active-site inhibitors and suggest additional targets for inhibitor development.  相似文献   

18.
Retroviral proteases are obligate homodimers and play an essential role in the viral life cycle. Dissociation of dimers or prevention of their assembly may inactivate these enzymes and prevent viral maturation. A salient structural feature of these enzymes is an extended interface composed of interdigitating N- and C-terminal residues of both monomers, which form a four-stranded beta-sheet. Peptides mimicking one beta-strand (residues 95-99), or two beta-strands (residues 1-5 plus 95-99 or 95-99 plus 95-99) from the human immunodeficiency virus 1 (HIV1) interface were shown to inhibit the HIV1 and 2 proteases (PRs) with IC50's in the low micromolar range. These interface peptides show cognate enzyme preference and do not inhibit pepsin, renin, or the Rous sarcoma virus PR, indicating a degree of specificity for the HIV PRs. A tethered HIV1 PR dimer was not inhibited to the same extent as the wild-type enzymes by any of the interface peptides, suggesting that these peptides can only interact effectively with the interface of the two-subunit HIV PR. Measurements of relative dissociation constants by limit dilution of the enzyme show that the one-strand peptide causes a shift in the observed Kd for the HIV1 PR. Both one- and two-strand peptides alter the monomer/dimer equilibrium of both HIV1 and HIV2 PRs. This was shown by the reduced cross-linking of the HIV2 PR by disuccinimidyl suberate in the presence of the interface peptides. Refolding of the HIV1 and HIV2 PRs with the interface peptides shows that only the two-strand peptides prevent the assembly of active PR dimers. Although both one- and two-strand peptides seem to affect dimer dissociation, only the two-strand peptides appear to block assembly. The latter may prove to be more effective backbones for the design of inhibitors directed toward retroviral PR dimerization in vivo.  相似文献   

19.
No drug has been targeted specifically for HIV-2 (human immunodeficiency virus type 2) infection despite its increasing prevalence worldwide. The antiviral HIV-1 (human immunodeficiency virus type 1) protease (PR) inhibitor darunavir and the chemically related GRL98065 and GRL06579A were designed with the same chemical scaffold and different substituents at P2 and P2′ to optimize polar interactions for HIV-1 PR (PR1). These inhibitors are also effective antiviral agents for HIV-2-infected cells. Therefore, crystal structures of HIV-2 PR (PR2) complexes with the three inhibitors have been solved at 1.2-Å resolution to analyze the molecular basis for their antiviral potency. Unusually, the crystals were grown in imidazole and zinc acetate buffer, which formed interactions with the PR2 and the inhibitors. Overall, the structures were very similar to the corresponding inhibitor complexes of PR1 with an RMSD of 1.1 Å on main-chain atoms. Most hydrogen-bond and weaker C-H…O interactions with inhibitors were conserved in the PR2 and PR1 complexes, except for small changes in interactions with water or disordered side chains. Small differences were observed in the hydrophobic contacts for the darunavir complexes, in agreement with relative inhibition of the two PRs. These near-atomic-resolution crystal structures verify the inhibitor potency for PR1 and PR2 and will provide the basis for the development of antiviral inhibitors targeting PR2.  相似文献   

20.
The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号