首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mapping resistance genes for Oculimacula acuformis in Aegilops longissima   总被引:1,自引:0,他引:1  

Key message

This study identified three QTL conferring resistance to Oculimacula acuformis in Aegilops longissima and their associated markers, which can be useful in marker-assisted selection breeding for eyespot resistance.

Abstract

Oculimacula acuformis is one of two species of soilborne fungi that cause eyespot of wheat, the other being Oculimacula yallundae. Both pathogens can coexist in the same field and produce elliptical lesions on stem bases of wheat that are indistinguishable. Pch1 and Pch2 are the only two eyespot resistance genes readily available to wheat breeders, but neither provides complete control. A new source of eyespot resistance was identified from Aegilops longissima (2n = 14, SlSl), a wild relative of wheat. Three QTL for resistance to O. acuformis were mapped in chromosomes 1Sl, 3Sl, and 5Sl using a recombinant inbred line population developed from the cross Ae. longissima accessions PI 542196 (R) × PI 330486 (S). The three QTL explained 66 % of phenotypic variation by β-glucuronidase score (GUS) and 84 % by visual rating. These QTL had LOD values of 10.6, 8.8, and 6.0 for GUS score, and 16.0, 10.0, and 13.0 for visual rating. QTL associated with resistance to O. acuformis have similar chromosomal locations as some for resistance to O. yallundae, except that a QTL for resistance to O. yallundae was found in chromosome 7Sl but not for O. acuformis. Thus, it appears that some genes at the same locus in Ae. longissima may control resistance to both eyespot pathogens. QTL effective against both pathogens will be most useful for breeding programs and have potential to improve the effectiveness and genetic diversity of eyespot resistance.  相似文献   

2.
Eyespot is a fungal disease of the stem base of cereal crops and causes lodging and the premature ripening of grain. Wheat cultivar Cappelle Desprez contains a highly durable eyespot resistance gene, Pch2 on the long arm of chromosome 7A. A cDNA-amplified fragment length polymorphism (AFLP) platform was used to identify genes differentially expressed between the eyespot susceptible variety Chinese Spring (CS) and the CS chromosome substitution line Cappelle Desprez 7A (CS/CD7A) which contains Pch2. Induced and constitutive gene expression was examined to compare differences between non-infected and plants infected with Oculimacula acuformis. Only 34 of approximately 4,700 cDNA-AFLP fragments were differentially expressed between CS and CS/CD7A. Clones were obtained for 29 fragments, of which four had homology to proteins involved with plant defence responses. Fourteen clones mapped to chromosome 7A and three of these mapped in the region of Pch2 making them putative candidates for involvement in eyespot resistance. Of particular importance are two fragments; 4CD7A8 and 19CD7A4, which have homology to an Oryza sativa putative callose synthase protein and a putative cereal cyst nematode NBS-LRR disease resistance protein (RCCN) respectively. Differential expression associated with Pch2 was examined by semi-quantitative RT-PCR. Of those genes tested, only four were differentially expressed at 14 days post inoculation. We therefore suggest that a majority of the differences in the cDNA-AFLP profiles are due to allelic polymorphisms between CS and CD alleles rather than differences in expression. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.

Key message

Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars.

Abstract

Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2 = 0.91. A total of 108 SSR and 235 SNP marker–trait associations (MTAs) were identified by considering associations with a ?log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.
  相似文献   

4.
Summary Gene Pch1, which confers resistance to eyespot disease (Pseudocercosporella herpotrichoides Fron), has been located on chromosome 7D in the H-93 wheat-Aegilops ventricosa transfer lines using isozyme markers and DNA probes corresponding to group 7 chromosomes. Previous experiments had failed to ascertain this location. The lack of segregation of the resistance trait in progeny from reciprocal crosses between lines H-93-70 and VPM1 indicates that their respective resistance factors are allelic. Line H-93-51 carries the endopeptidase allele Ep-D1b but is susceptible to eyespot, which indicates that resistance to eyespot is not a product of the Ep-D locus, as had been proposed in a previous hypohesis.  相似文献   

5.
Thinopyrum intermedium was identified previously as resistant to Tapesia yallundae, cause of eyespot of wheat. Using GUS-transformed isolates of T. yallundae as inoculum, we determined that wheat lines carrying Th. intermedium chromosome 4Ai#2 or the short arm of chromosome 4Ai#2 were as resistant to the pathogen as the eyespot-resistant wheat- Th. ponticum chromosome substitution line SS767 (PI 611939) and winter wheat cultivar Madsen, which carries gene Pch1 for eyespot resistance. Chromosome 4E from Th. elongatum and chromosome 4J from Th. bessarabicum did not confer resistance to T. yallundae. Genome-specific PCR primers confirmed the presence of Thinopyrum chromatin in these wheat- Thinopyrum lines. Genomic in situ hybridization using an St genomic probe from Pseudoroegneria strigosa demonstrated that chromosome 4Ai#2 belongs to the Js genome of Thinopyrum. The eyespot resistance in the wheat- Th. intermedium lines is thus controlled by the short arm of this Js chromosome. This is the first report of resistance to T. yallundae controlled by a Js genome chromosome of Th. intermedium.  相似文献   

6.
Wheat is prone to strawbreaker foot rot (eyespot), a fungal disease caused by Oculimacula yallundae and O. acuformis. The most effective source of genetic resistance is Pch1, a gene derived from Aegilops ventricosa. The endopeptidase isozyme marker allele Ep-D1b, linked to Pch1, has been shown to be more effective for tracking resistance than DNA-based markers developed to date. Therefore, we sought to identify a candidate gene for Ep-D1 as a basis for a DNA-based marker. Comparative mapping suggested that the endopeptidase loci Ep-D1 (wheat), enp1 (maize), and Enp (rice) were orthologous. Since the product of the maize endopeptidase locus enp1 has been shown to exhibit biochemical properties similar to oligopeptidase B purified from E. coli, we reasoned that Ep-D1 may also encode an oligopeptidase B. Consistent with this hypothesis, a sequence-tagged-site (STS) marker, Xorw1, derived from an oligopeptidase B-encoding wheat expressed-sequence-tag (EST) showed complete linkage with Ep-D1 and Pch1 in a population of 254 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Coda and Brundage. Two other STS markers, Xorw5 and Xorw6, and three microsatellite markers (Xwmc14, Xbarc97, and Xcfd175) were also completely linked to Pch1. On the other hand, Xwmc14, Xbarc97, and Xcfd175 showed recombination in the W7984 × Opata85 RIL population suggesting that recombination near Pch1 is reduced in the Coda/Brundage population. In a panel of 44 wheat varieties with known eyespot reactions, Xorw1, Xorw5, and Xorw6 were 100% accurate in predicting the presence or absence of Pch1 whereas Xwmc14, Xbarc97, and Xcfd175 were less effective. Thus, linkage mapping and a germplasm survey suggest that the STS markers identified here should be useful for indirect selection of Pch1.  相似文献   

7.
Introgressions into wheat from related species have been widely used as a source of agronomically beneficial traits. One such example is the introduction of the potent eyespot resistance gene Pch1 from the wild relative Aegilops ventricosa onto chromosome 7DL of wheat. In common with genes carried on many other such introgressions, the use of Pch1 in commercial wheat varieties has been hindered by linkage drag with yield-limiting traits. Attempts to break this linkage have been frustrated by a lack of co-dominant PCR markers suitable for identifying heterozygotes in F2 populations. We developed conserved orthologous sequence (COS) markers, utilising the Brachypodium distachyon (Brachypodium) genome sequence, to provide co-dominant markers in the Pch1 region. These were supplemented with previously developed sequence-tagged site (STS) markers and simple sequence repeat (SSR) markers. Markers were applied to a panel of varieties and to a BC6 F2 population, segregating between wheat and Ae. ventricosa over the distal portion of 7DL, to identify recombinants in the region of Pch1. By exploiting co-linearity between wheat chromosome 7D, Brachypodium chromosome 1, rice chromosome 6 and sorghum chromosome 10, Pch1 was located to an interval between the flanking markers Xwg7S and Xcos7-9. Furthermore candidate gene regions were identified in Brachypodium (364 Kb), rice (178 Kb) and sorghum (315 Kb) as a prelude to the map-based cloning of the gene. In addition, using homoeologue transferable markers, we obtained evidence that the eyespot resistances Pch1 and Pch2 on chromosomes 7D and 7A, respectively, are potentially homoeoloci. It is anticipated that the COS marker methodology could be used for the identification of recombinants in other introgressions into wheat from wild relatives. This would assist the mapping of genes of interest and the breaking of deleterious linkages to enable greater use of these introgressions in commercial varieties.  相似文献   

8.
Fungicide treatments, repeated twice yearly at timings suitable for controlling eyespot, to plots of continuous winter wheat over 17 yr (except for a year in “set‐aside”), resulted in altered population structures of the eyespot pathogens (Tapesia spp.) and performance of the fungicides. Carbendazim failed to control eyespot after 3 yr of the experiment because of rapid selection for resistance. Carbendazim often increased disease compared with that in untreated plots. This may have resulted from control of unknown antagonistic fungi or, possibly, from selection for increased fitness in carbendazim ‐resistant strains. In the final years of the experiment, prochloraz, applied with or without carbendazim, became ineffective. This gradual loss of efficacy is explained by selection in favour of T. acuformis rather than T. yallundae (which had a naturally narrower range of sensitivity levels in its populations) and for strains with least sensitivity within the T. acuformis population, although no resistance to prochloraz was found. Effects of treatments on yield were usually not statistically significant. This may be explained partly by the predominance of the more slowly developing T. acuformis in many of the plots.  相似文献   

9.
The polymerase chain reaction (PCR) was used to identify and quantify all fungal pathogens of wheat (Triticum aestivum) stem bases in nine field experiments at three locations in England. The main aim was to apply quantitative PCR to provide robust data on the efficacy of new fungicides against the individual components of the stem‐base disease complex. Cyprodinil most effectively controlled eyespot by decreasing both pathogens, Tapesia yallundae and T. acuformis (the most widespread species), and sometimes contributed to increased yields. Prochloraz controlled eyespot less consistently, its effectiveness dependent mainly on the presence of T. yallundae or on rainfall events soon after application. Azoxystrobin contributed to yield increases most consistently. Although it decreased sharp eyespot and its pathogen, Rhizoctonia cerealis, these effects were insufficient to account for much of the yield increases. The effects of fungicides on eyespot were sometimes greatest on the most susceptible cultivars. Amounts of Tapesia DNA were usually consistent with cultivar susceptibility ratings. The only pathogens of brown foot rot present in significant amounts were Microdochium nivale vars nivale and majus. They appeared not to affect yield or to respond greatly to fungicides. The susceptibility of cultivars to these pathogens was sometimes similar to their susceptibility to eyespot, suggesting that they may respond to the same host resistance genes or may in some cases be secondary colonisers of eyespot‐infected plants.  相似文献   

10.
Eyespot is an economically important disease of wheat caused by the soilborne fungi Oculimacula yallundae and O. acuformis. These pathogens infect and colonize the stem base, which results in lodging of diseased plants and reduced grain yield. Disease resistant cultivars are the most desirable control method, but resistance genes are limited in the wheat gene pool. Some accessions of the wheat wild relative Aegilops longissima are resistant to eyespot, but nothing is known about the genetic control of resistance. A recombinant inbred line population was developed from the cross PI 542196 (R) × PI 330486 (S) to map the resistance genes and better understand resistance in Ae. longissima. A genetic linkage map of the S(l) genome was constructed with 169 wheat microsatellite markers covering 1261.3 cM in 7 groups. F(5) lines (189) were tested for reaction to O. yallundae and four QTL were detected in chromosomes 1S(l), 3S(l), 5S(l), and 7S(l). These QTL explained 44 % of the total phenotypic variation in reaction to eyespot based on GUS scores and 63 % for visual disease ratings. These results demonstrate that genetic control of O. yallundae resistance in Ae. longissima is polygenic. This is the first report of multiple QTL conferring resistance to eyespot in Ae. longissima. Markers cfd6, wmc597, wmc415, and cfd2 are tightly linked to Q.Pch.wsu-1S ( l ), Q.Pch.wsu-3S ( l ), Q.Pch.wsu-5S ( l ), and Q.Pch.wsu-7S ( l ), respectively. These markers may be useful in marker-assisted selection for transferring resistance genes to wheat to increase the effectiveness of resistance and broaden the genetic diversity of eyespot resistance.  相似文献   

11.

Key message

Phenotyping and mapping data reveal that chromosome intervals containing eyespot resistance genes Pch1 and Pch2 on 7D and 7A, respectively, do not overlap, and thus, these genes are not homoeloci.

Abstract

Eyespot is a stem-base fungal disease of cereals growing in temperate regions. Two main resistances are currently available for use in wheat. Pch1 is a potent single major gene transferred to wheat from Aegilops ventricosa and located on the distal end of chromosome 7D. Pch2, a moderate resistance deriving from Cappelle Desprez, is located at the end of 7AL. The relative positions of Pch1 and Pch2 on 7D and 7A, respectively, suggest that they are homoeoloci. A single seed decent recombinant F7 population was used to refine the position of Pch2 on 7A. New markers designed to 7D also allowed the position of Pch1 to be further defined. We exploited the syntenic relationship between Brachypodium distachyon and wheat to develop 7A and 7D specific KASP markers tagging inter-varietal and interspecific SNPs and allow the comparison of the relative positions of Pch1 and Pch2 on 7D and 7A. Together, phenotyping and mapping data reveal that the intervals containing Pch1 and Pch2 do not overlap, and thus, they cannot be considered homoeloci. Using this information, we analysed two durum wheat lines carrying Pch1 on 7A to determine whether the Ae.ventricosa introgression extended into the region associated with Pch2. This identified that the introgression is distal to Pch2 on 7A, providing further evidence that the genes are not homoeoloci. However, it is feasible to use this material to pyramid Pch1 and Pch2 on 7A in a tetraploid background and also to increase the copy number of Pch1 in combination with Pch2 in a hexaploid background.
  相似文献   

12.
 Three lines of the tetraploid wheat Aegilops ventricosa Tausch (2n=4x=28), which contains good resistance to eyespot, were analysed using fluorescent in situ hybridization. Probes used included rDNA, cloned repeated sequences from wheat and rye, simple-sequence repeats (SSRs) and total genomic DNA. The banding patterns produced could be used to distinguish most chromosome arms and will aid in the identification of Ae. ventricosa chromosomes or chromosome segments in breeding programmes. All lines had a single major 18S-25S rDNA site, the nucleolar organizing region (NOR) in chromosome 5N and several minor sites of 18S-25S rDNA and 5S rDNA. A 1NL.3DL, 1NS.3DS translocation was identified, and other minor differences were found between the lines. Received: 11 August 1998 / Accepted: 28 November 1998  相似文献   

13.
Two eyespot resistance genes (Pch1 and Pch2) have been characterised in wheat. The potent resistance gene Pch1, transferred from Aegilops ventricosa, is located on the distal end of the long arm of chromosome 7D (7DL). Pch2 derives from the variety Cappelle Desprez and is located at the distal end of chromosome 7AL. The RFLP marker Xpsr121 and the endopeptidase isozyme allele Ep-D1b, are very closely linked to Pch1, probably due to reduced recombination in the region of the introgressed A. ventricosa segment. Pch2 is less closely linked to these markers but is thought to be closer to Xpsr121 than to Ep-A1b. In the present study simple sequence repeat (SSR) markers were integrated into the genetic map of a single chromosome (7D) recombinant (RVPM) population segregating for Pch1. Sequence-tagged-site (STS)-based assays were developed for Xpsp121 and a 7DL wheat EST containing a SSR. SSR markers Xwmc14 and Xbarc97 and the Xpsr121-derived marker co-segregated with Pch1 in the RVPM population. A single chromosome (7A) recombinant population segregating for Pch2 was screened for eyespot resistance and mapped using SSRs. QTL interval mapping closely associated Pch2 with the SSR marker Xwmc525.  相似文献   

14.
R C Pe?a  T D Murray  S S Jones 《Génome》1997,40(2):249-252
The gene Pch2 in 'Cappelle Desprez' is one of two genes found in hexaploid wheat known to confer resistance to eyespot disease. This study was conducted to develop an RFLP linkage map of the distal portion of wheat chromosome 7AL, and to locate and identify markers closely associated with Pch2 for use in marker-assisted selection. Ten loci in addition to Pch2 were mapped on chromosome 7AL, using segregation data from 102 homozygous chromosome 7A recombinant substitution lines derived from 'Chinese Spring' x 'Chinese Spring' ('Cappelle Desprez' 7A). The Pch2 locus was bracketed by two RFLP markers, one 11.0 cM distal to Xcdo347 and the other 18.8 cM proximal to Xwg380. The position of Pch2 on chromosome 7AL is similar to that of Pch1 on chromosome 7DL, suggesting that these resistance genes are homoeoloci. Although no single marker was closely linked to Pch2, simultaneous selection of the flanking RFLP markers Xcdo347 and Xwg380 could be used for selecting Pch2, since double recombination occurred in only 3% of the recombinant population. The use of the flanking RFLP markers to select for Pch2, in combination with previously identified Pch1-linked markers, would facilitate the development of cultivars carrying two genes for resistance to eyespot.  相似文献   

15.
 A new Hessian fly (Mayetiola destructor) resistance gene from Aegilops ventricosa and its transfer to hexaploid wheat is described. The 4D(4Mv) substitution line H-93-33 derived from the cross [(Triticum turgidum H-1-1×Aegilops ventricosa no. 11)×Triticum aestivum H-10-15] was highly resistant to the Spanish population tested. Resistance seemed to be inherited as a single dominant factor in the F2 generation resulting from a cross of H-93-33 with its susceptible parent (H-10-15). Resistance in Ae. venticosa no. 10 was located on chromosome 4Mv using Mv wheat/Ae. ventricosa addition lines. The resistance gene transferred from Ae. ventricosa no. 11 to H-93-33 (H27) is allelic with respect to that of Ae. ventricosa no. 10 and is non-allelic with respect to the genes H3 and H6 from Monon and Caldwell respectively. The assignment of H27 gene to chromosome 4Mv is further supported by its linkage to a gene encoding isozyme Acph-Mv1, previously located on chromosome 4Mv in the line H-93-33. A new marker from homoeologous chromosome group 4 (Amp-Mv2) present in H-93-33 and the 4Mv addition line is described. Received: 12 October 1996 / Accepted: 22 November 1996  相似文献   

16.
Bread wheat lines introgressed with Aegilops ventricosa chromosomes were evaluated for their resistance to the Australian cereal cyst nematode (CCN, Heterodera avenae) pathotype Ha13. Higher levels of resistance relative to the phenotype of the Cre1 CCN resistance gene in wheat were found in the donor Ae. ventricosa parental lines and chromosome-5Nv substitution or addition lines. The newly identified resistance to pathotype Ha13 on chromosome 5Nv, designated, Cre6, was shown to be independent of the Ae. ventricosa-derived Cre2 gene, effective against several European pathotypes. Another Ae. ventricosa derived gene, Cre5, showed partial resistance to pathotype Ha13. Inhibition of Ha13 female nematode reproduction was ranked in the order Cre6 >Cre1 >CreFCre5. Cre6 was inherited as a single dominant locus. Gene sequences encoding nucleotide-binding sites and leucine-rich repeats (NBS-LRR) from the Cre3 CCN-pathotype Ha13 resistance locus were used as probes to isolate related sequences from one of the donor Ae. ventricosa parents. Related sequences from Ae. ventricosa (71–73% similarity at the amino-acid level to the Cre3-derived sequences) of chromosome 5Nv origin were identified and served as diagnostic molecular markers for the presence of 5Nv. CCN-susceptible plants, found as variants in some of the purported chromosome 5Nv lines, were also found to be missing the diagnostic 5Nv RFLP markers assayed by the NBS-LRR probe. An alloplasmic chromosome-5Nv addition line with Ae. ventricosa cytoplasm in the wheat cultivar, Moisson, background was particularly variable, with 43% CCN-susceptible plants and a corresponding loss of the diagnostic chromosome-5 molecular markers. Received: 26 June 2000 / Accepted: 15 July 2000  相似文献   

17.
Summary The hexaploid wheat line H-93-70 carries a gene (Pch-1) that has been transferred from the wild grass Aegilops ventricosa and confers a high degree of resistance to eyespot diesease, caused by the fungus Pseudocercosporella herpotrichoides. Crosses of the resistant line H-93-70 with the susceptible wheat Pané 247 and with a 7D/7Ag wheat/Agropyron substitution line were carried out and F2 kernels were obtained. The kernels were cut transversally and the halves carrying the embryos were used for the resistance test, while the distal halves were used for genetic typing. Biochemical markers were used to discriminate whether the transferred Pch-1 gene was located in chromosome 7D, as is the case for a resistance factor present in Roazon wheat. In the crosses involving Pané 247, resistance was not associated with the 7D locus Pln, which determines sterol ester pattern (dominant allele in H-93-70). In the crosses with the 7D/7Ag substitution line, resistance was neither associated with protein NGE-11 (7D marker), nor alternatively inherited with respect to protein C-7 (7Ag marker). It is concluded that gene Pch-1 represents a different locus and is not an allele of the resistance factor in Roazon wheat.  相似文献   

18.
Pyramiding of genes that confer partial resistance is a method for developing wheat (Triticum aestivum L.) cultivars with durable resistance to leaf rust caused by Puccinia triticina. In this research, a doubled haploid population derived from the cross between the synthetic hexaploid wheat (SHW) (×Aegilotriticum spp.) line TA4152-60 and the North Dakota breeding line ND495 was used for identifying genes conferring partial resistance to leaf rust in both the adult plant and seedling stages. Five QTLs located on chromosome arms 3AL, 3BL, 4DL, 5BL and 6BL were associated with adult plant resistance with the latter four representing novel leaf rust resistance QTLs. Resistance effects of the 4DL QTL were contributed by ND495 and the effects of the other QTLs were contributed by the SHW line. The QTL on chromosome arm 3AL had large effects and also conferred seedling resistance to leaf rust races MJBJ, TDBG and MFPS. The other major QTL, which was on chromosome arm 3BL, conferred seedling resistance to race MFPS and was involved in a significant interaction with a locus on chromosome arm 5DS. The QTLs and the associated molecular markers identified in this research can be used to develop wheat cultivars with potentially durable leaf rust resistance.  相似文献   

19.
20.
The chromosome 7Dv of Aegilops ventricosa (syn. Triticum ventricosum, 2n = 4x = 28, genome DvDvMvMv) carries the gene Pch1 for resistance to eyespot. This gene has previously been transferred to chromosome 7D of bread wheat, T. aestivum (2n = 6x = 42, genome AABBDD). To (1) enhance the level of resistance of bread wheat by increasing the copy number of Pch1, and (2) create eyespot-resistant triticales, meiotically stable Pch1-carrying durum lines were selected from the backcross progenies of a cross between Ae. ventricosa and T. durum cv. Creso ph1c (2n = 4x = 28, genome AABB). The Pch1 transfer, likely resulting from homoeologous recombination, was located at the distal position on the long arm of chromosome 7A. The 7A microsatellite marker Xgwm 698 was found closely linked in repulsion to the introgression in the resistant recombination lines, and the endopeptidase allele located on chromosome 7A of cv. Creso ph1c was lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号