首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Neoplasms progress through genetic and epigenetic mutations that deregulate pathways in the malignant cell that stimulate more aggressive growth of the malignant cell itself and/or remodel the tumor microenvironment to support the developing tumor mass. The appearance of new blood vessels in malignant tumors is known as the "angiogenic switch." The angiogenic switch triggers a stage of rapid tumor growth supported by extensive tumor angiogenesis and a more aggressive tumor phenotype and its onset is a poor prognostic indicator for host survival. Identification of the factors that stimulate the angiogenic switch thus is of high importance. Pleiotrophin (PTN the protein, Ptn the gene) is an angiogenic factor and the Ptn gene has been found to be constitutively expressed in many human tumors of different cell types. These studies use a nude mouse model to test if Ptn constitutively expressed in premalignant cells is sufficient to trigger an angiogenic switch in vivo. We introduced an ectopic Ptn gene into "premalignant" SW-13 cells and analyzed the phenotype of SW-13 Ptn cell tumor implants in the flanks of nude mice. SW-13 Ptn cell subcutaneous tumor implants grew very rapidly and had a striking increase in the density of new blood vessels compared to the SW-13 cell tumor implants, suggesting that constitutive PTN signaling in the premalignant SW-13 cell implants in the nude mouse recapitulates fully the angiogenic switch. It was found also that ectopic expression of the C-terminal domain of PTN in SW-13 cell implants was equally effective in initiating an angiogenic switch as the full-length PTN whereas implants of SW-13 cells in nude mice that express the N-terminal domain of PTN grew rapidly but failed to develop tumor angiogenesis. The data suggest the possibility that mutations that activate Ptn in premalignant cells are sufficient to stimulate an angiogenic switch in vivo and, since these mutations are frequently found in human malignancies, that constitutive PTN signaling may be an important contributor to progression of human tumors. The data also suggest that the C-terminal and the N-terminal domains of PTN equally initiate switches in premalignant cells to cells of a more aggressive tumor phenotype but the separate domains of PTN signal different mechanisms and perhaps signal through activation of a separate receptor-like protein.  相似文献   

3.
Midkine (MK) is a developmentally regulated, secreted growth factor homologous to pleiotrophin (PTN). To investigate the potential role of MK in tumor growth, we expressed MK in human SW-13 cells and studied receptor binding, signal transduction, and activity of MK. The MK protein stimulates soft agar colony formation in vitro and tumor growth of SW-13 cells in athymic nude mice, as well as proliferation of human endothelial cells from brain microvasculature and umbilical vein (HUVEC) in the low ng/ml range. MK binds to anaplastic lymphoma kinase (ALK), the receptor for PTN, with an apparent K(d) of 170 pm in intact cells, and this receptor binding of MK is competed by PTN with an apparent K(d) of approximately 20 pm. Monoclonal antibodies raised against the extracellular ligand-binding domain of ALK inhibit ALK receptor binding of MK as well as MK-stimulated colony formation of SW-13 cells. Furthermore, MK stimulates ALK phosphorylation in WI-38 human fibroblasts and activates PI3-kinase and MAP kinase signal transduction in WI-38, HUVEC, neuroblastoma (SH SY-5Y) and glioblastoma (U87MG) cells that express the ALK protein. We conclude that MK can act as a growth, survival, and angiogenic factor during tumorigenesis and signals through the ALK receptor.  相似文献   

4.
Transforming growth factor-beta (TGF-beta) is a potent growth suppressor. Acquisition of TGF-beta resistance has been reported in many tumors, and has been associated with reduced TGF-beta receptor expression. In this study, we examined TGF-beta 1, TGF-beta type I receptor (TbetaRI) and TGF-beta type II receptor (TbetaRII) expression in SW-13 adrenocortical carcinoma cells by Northern and Western blot analysis. SW-13 cells did not express TbetaRII mRNA or protein. We have investigated the role of TbetaRII in modulating tumorigenic potential using stably transfected SW-13 cells with TbetaRII expression plasmid. TbetaRII-positive SW-13 cell growth was inhibited by exogenous human TGF-beta1 (hTGF-beta1) in a dose-dependent manner. In contrast, SW-13 cells and control clones transfected with empty vector remained hTGF-beta1-insensitive. Xenograft examination in athymic nude mice demonstrated that TbetaRII-positive SW-13 cells reduced tumor-forming activity. Reconstructing the TbetaRII can lead to reversion of the malignant phenotype of TbetaRII-negative human adrenocortical carcinoma, which contains SW-13 cells. Reduced TbetaRII expression may play a critical role in determining the malignant phenotype of human adrenocortical carcinoma.  相似文献   

5.
A human epithelial-derived cell line, SW-13, releases a soluble substance that functions as an autocrine growth factor. SW-13 cells, derived from a human adenocarcinoma of the adrenal cortex, form a few small colonies when suspended in soft agar at low densities. The number of colonies increased significantly when either viable SW-13 cells or serum-free medium conditioned by SW-13 cells (CM) was added to agar underlayers. CM increased colony formation in a dose-dependent fashion. Clonal growth at low cell densities was dependent on the presence of both horse serum and SW-13 CM. Neither activity alone was capable of sustaining growth. Even when cells were plated at high densities CM could not substitute for serum, but could reduce the threshold serum concentration. The results suggest that autocrine and serum-derived factors act in concert to maintain clonal growth of epithelial tumor cells in soft agar.  相似文献   

6.
Midkine (MDK) and Pleiotrophin (PTN) belong to a class of heparin-binding growth factors and are highly expressed in a number of cancers. Bioactive and recombinant MDK and PTN are critical reagent for cancer drug discovery studies. MDK and PTN belong to a newly evolving family of secreted neurotrophic and developmentally regulated heparin-binding molecules. PTN is related to MDK with 45% sequence identity and both proteins have been shown to be involved in promoting neurite outgrowth. MDK is a cysteine-rich 13kDa protein containing five disulfide bonds and PTN is 19kDa protein containing ten disulphide bonds. In this study, we expressed recombinant human MDK (rhMDK), mouse MDK (rmMDK) and human pleiotrophin (rhPTN) in Escherichia coli BL21(DE3)pLysS strain. Soluble rhMDK, rmMDK and rhPTN were expressed at a high-level in this strain and the protein was purified (~90%) by a one-step purification using heparin affinity chromatography. A total of 4mg purified MDK and 7mg of purified PTN were obtained with the overall yield from 1L of bacterial culture. Activity of purified rhMDK and rhPTN was confirmed by a cell proliferation assay using NIH3T3 cells.  相似文献   

7.
Pleiotrophin (PTN, Ptn) is a widely expressed, developmentally regulated 136 amino acid secreted heparin-binding cytokine. It signals through a unique signaling pathway; the PTN receptor is the transmembrane receptor protein tyrosine phosphatase (RPTP)β/ζ. RPTPβ/ζ is inactivated by PTN, which leads to increased tyrosine phosphorylation of the downstream targets of the PTN/RPTPβ/ζ signaling pathway. Pleiotrophin gene expression is found in cells in early differentiation during different developmental periods. It is upregulated in cells with an early differentiation phenotype in wound repair. The Ptn gene also is a proto-oncogene; PTN is expressed in human tumor cells, and, in cell lines derived from human tumors that express Ptn, Ptn expression is constitutive and thus "inappropriate". Importantly, properties of different cells induced by PTN in PTN-stimulated cells are strikingly similar to properties of highly malignant cells. Furthermore, transformed cells into which Ptn is introduced undergo "switches" to malignant cells of higher malignancy with properties that are strikingly similar to properties of PTN-stimulated cells. These unique features of PTN support the conclusion that constitutive PTN signaling in malignant cells that inappropriately express Ptn functions as a potent tumor promoter. Recently, in confirmation, Ptn targeted by the mouse mammary tumor virus (MMTV) promoter in a transgenic mouse model was found to promote breast cancers to a more aggressive breast cancer cell phenotype that morphologically closely resembles scirrhous carcinoma in human; in addition, it promoted a striking increase in tumor angiogenesis and a remarkable degree of remodeling of the micro-environment. Pleiotrophin thus regulates both different normal and pathological functions; collectively, the different studies have uncovered the unique ability of a single cytokine PTN, which signals through the unique PTN/RPTPβ/ζ signaling pathway, to induce the many properties associated with tumor promotion in the malignant cells that constitutively express Ptn and in their microenvironment.  相似文献   

8.
9.
The secreted growth factor pleiotrophin (PTN) can induce mitogenesis in cells that express the receptor for this growth factor, anaplastic lymphoma kinase (ALK). Here we examine the ability of PTN to produce anti-apoptotic signals. We demonstrate that PTN is a survival factor for SW-13 epithelial cells and show that ribozyme-mediated depletion of ALK from SW-13 cells abolishes this effect of PTN. Furthermore, in serum-starved NIH3T3 fibroblasts PTN prevents apoptosis (measured by annexin V staining) with an EC(50) of 0.2 ng/ml and induces cell growth at higher concentrations of PTN. A polyclonal antibody against the PTN ligand-binding domain of the ALK receptor (alpha-LBD) was a partial agonist for ALK in NIH3T3 cells. This alpha-LBD antibody showed high agonist activity for anti-apoptosis (56 +/- 9% relative to PTN), low agonist activity for cell growth (21 +/- 1% relative to PTN), and was an antagonist of PTN-induced cell growth (61 +/- 2% inhibition). Both MAP kinase and phosphatidylinositol (PI) 3-kinase cascades in NIH3T3 cells were activated by PTN, and this effect persisted for up to 3 h. Surprisingly, the anti-apoptotic effect of PTN was completely blocked by the MAP kinase inhibitor UO126, but was not affected by the PI 3-kinase inhibitor LY294002. In contrast, PTN-dependent cell growth required both MAPK and PI 3-kinase activity. We conclude that anti-apoptotic signaling of PTN through ALK in NIH3T3 fibroblasts is via the MAP kinase pathway.  相似文献   

10.
利用基因重组技术,hTRT基因反向插入真核表达载体pcDNA3.0,获得重组体pcDRTRT,通过脂质体法导入人结肠癌细胞株SW-111C,获得稳定转染细胞系,即反义细胞,该细胞易脱落,出现明显生长抑制现象;失去叠落生长能力;流式细胞仪(FCM)证实导入反义hTRT后,G0/1期细胞增加,G2M和S期细胞减少,增殖指数(PI)降低;且不能在软琼脂中形成集落;并发现反义细胞中hTRT表达水平明显下降。说明反义hTRT基因体外导入结肠在细胞株SW-111C可以明显降低端粒酶活性,抑制结肠癌细胞的生长、增殖且能使其恶性表型发生逆转。  相似文献   

11.
Growth of the normal and malignant prostate is known to be regulated by androgens. Part of their effect has been suggested to be mediated through coordinated regulation of secreted growth factors with autocrine function. We now examine the biological role of preferentially paracrine acting factors in growth control of prostate cancer, i.e. fibroblast growth factor(s) (FGF). Coculture experiments using the androgen-responsive human prostate carcinoma cell line LNCaP as feeder cells and the FGF-dependent human adrenal carcinoma SW-13 cell line as target cells show that (i) LNCaP cells induce growth of SW-13 cells, (ii) even higher stimulation of SW-13 cells is seen in the presence of androgen treated LNCaP cells and (iii) a specific anti-bFGF antibody inhibits growth of SW-13 cells induced by androgen treated LNCaP cells; no proliferation of SW-13 cells occurs in the absence of LNCaP cells. Partial purification of the secretory products of LNCaP cells was performed by affinity chromatography using a heparin sepharose column. Fractions were tested for biological activity in a soft agar assay with SW-13 cells. Several activities could be detected, the main activity was eluted with about 1.5 M NaCl. These data suggest that androgen treatment of LNCaP cells leads to enhanced secretion of proteins which belong to the FGF-family.  相似文献   

12.
Four mouse monoclonal antibodies (PTN63, PTN108, PTN124, PTN514) against the ecto-5'-nucleotidase purified from a human pancreatic adenocarcinoma cell line (PaTu II) have been raised and characterized. All four monoclonal antibodies recognize the protein moiety of the glycosylated ecto-5'-nucleotidase. In competition assays it was demonstrated that three of the antibodies (PTN63, PTN108, PTN514) recognize different epitopes within the protein moiety. Furthermore, PTN108, PTN124, and PTN514 reduced the 5'-nucleotidase AMPase activity in contrast to PTN63 having no inhibitory effect. The antibodies show no cross-reactivity with ecto-5'-nucleotidases from rat liver, bull seminal plasma, chicken gizzard and human peripheral blood cells. When assayed by indirect immunofluorescence the antibodies react with the plasma membrane of human pancreatic tumor cells with varying staining intensity. Immunocytochemistry on paraffin sections of normal human pancreas revealed a prominent staining of the pancreatic duct cells. No staining of the acinar and islet cells could be detected. Thus, 5'-nucleotidase is a marker enzyme for pancreatic duct cells and can be used to determine the origin of pancreatic tumor cells. PTN63 reduced the attachment to fibronectin substratum of a human pancreatic adenocarcinoma tumor cell line possessing a high amount of plasma membrane bound ecto-5'-nucleotidase, but had no effect on a cell line lacking the membrane bound AMPase. In contrast, PTN108 and PTN514, which inhibit the AMPase activity, exhibited no influence on the adhesion of human pancreatic tumor cells to fibronectin substratum.  相似文献   

13.
Summary We previously demonstrated that macrophages isolated from human malignant effusions support colony formation of autologous tumor cells in soft agar. We now demonstrate that macrophages (derived from effusions of patients with ovarian, breast, colon, or lung adenocarcinomas) secrete a soluble factor(s) that enhances the ability of a human epithelial tumor cell line (SW-13) to clone in soft agar. Macrophages increased colony growth 5 to 10-fold in a concentration dependent manner, although inhibition of cell growth was observed in the presence of high concentrations of macrophages. We attempted to increase production of tumor colony stimulating factor by exposing macrophages to lipopolysaccharide, concanavalin A, or phytohemagglutinin. Exposure of macrophages to these agents failed to increase their ability to secrete stimulatory factors. Macrophages were cultured for 1 day to 6 weeks in the presence of GCT-CM, a source of granulocyte-macrophage colony stimulating factor and the ability of these cultured macrophages to support colony growth assessed. The ability of macrophages to support colony growth declined gradually with time in culture reaching 50% of control values at 14 days, but remained at this level until 5 weeks of culture. The results of this study indicate the SW-13 cells may provide a quantitative assay for studying monocyte-derived tumor colony stimulating factors.  相似文献   

14.
15.
Human breast tumorigenesis is promoted by the estrogen receptor pathway, and nuclear receptor coactivators are thought to participate in this process. Here we studied whether one of these coactivators, AIB1 (amplified in breast cancer 1), was rate-limiting for hormone-dependent growth of human MCF-7 breast cancer cells. We developed MCF-7 breast cancer cell lines in which the expression of AIB1 can be modulated by regulatable ribozymes directed against AIB1 mRNA. We found that depletion of endogenous AIB1 levels reduced steroid hormone signaling via the estrogen receptor alpha or progesterone receptor beta on transiently transfected reporter templates. Down-regulation of AIB1 levels in MCF-7 cells did not affect estrogen-stimulated cell cycle progression but reduced estrogen-mediated inhibition of apoptosis and cell growth. Finally, upon reduction of endogenous AIB1 expression, estrogen-dependent colony formation in soft agar and tumor growth of MCF-7 cells in nude mice was decreased. From these findings we conclude that, despite the presence of different estrogen receptor coactivators in breast cancer cells, AIB1 exerts a rate-limiting role for hormone-dependent human breast tumor growth.  相似文献   

16.
X Kong  G Li  Y Yuan  Y He  X Wu  W Zhang  Z Wu  T Chen  W Wu  PE Lobie  T Zhu 《PloS one》2012,7(8):e41523
Focal adhesion kinase (FAK) is an important mediator of extracellular matrix integrin signaling, cell motility, cell proliferation and cell survival. Increased FAK expression is observed in a variety of solid human tumors and increased FAK expression and activity frequently correlate with metastatic disease and poor prognosis. Herein we identify miR-7 as a direct regulator of FAK expression. miR-7 expression is decreased in malignant versus normal breast tissue and its expression correlates inversely with metastasis in human breast cancer patients. Forced expression of miR-7 produced increased E-CADHERIN and decreased FIBRONECTIN and VIMENTIN expression in breast cancer cells. The levels of miR-7 expression was positively correlated with E-CADHERIN mRNA and negatively correlated with VIMENTIN mRNA levels in breast cancer samples. Forced expression of miR-7 in aggressive breast cancer cell lines suppressed tumor cell monolayer proliferation, anchorage independent growth, three-dimensional growth in Matrigel, migration and invasion. Conversely, inhibition of miR-7 in the HBL-100 mammary epithelial cell line promoted cell proliferation and anchorage independent growth. Rescue of FAK expression reversed miR-7 suppression of migration and invasion. miR-7 also inhibited primary breast tumor development, local invasion and metastatic colonization of breast cancer xenografts. Thus, miR-7 expression is decreased in metastatic breast cancer, correlates with the level of epithelial differentiation of the tumor and inhibits metastatic progression.  相似文献   

17.
Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway.   总被引:23,自引:0,他引:23  
Pleiotrophin (PTN the protein, Ptn the gene) is a 136 amino acid secreted heparin-binding cytokine that signals diverse functions, including lineage-specific differentiation of glial progenitor cells, neurite outgrowth, and angiogenesis. Pleiotrophin gene expression is found in cells in early differentiation during different development periods and upregulated in cells with an early differentiation phenotype in wound repair. The Ptn gene is a protooncogene. It is strongly expressed in different human tumor cells and expression of the Ptn gene in tumor cells in vivo accelerates growth and stimulates tumor angiogenesis. Separate independent domains have been identified in PTN to signal transformation and tumor angiogenesis. Pleiotrophin is the first ligand of any of the known transmembrane tyrosine phosphatases. Pleiotrophin inactivates the receptor protein tyrosine phosphatase (RPTP) beta/zeta. The interaction of PTN and RPTP beta/zeta increases steady-state tyrosine phosphorylation of beta-catenin. Pleiotrophin thus regulates both normal cell functions and different pathological conditions at many levels. It signals these functions through a transmembrane tyrosine phosphatase.  相似文献   

18.
We have studied the estrogenic regulation and the potential autocrine role of transforming growth factor alpha (TGF alpha) in the human breast cancer cell line MCF-7. A biologically active apparent mol wt 30 k TGF alpha was identified by gel filtration chromatography in medium conditioned by MCF-7 breast cancer cells. We previously reported induction of TGF alpha levels in medium by 17 beta-estradiol. We now report correlated increases in TGF alpha mRNA, by Northern and slot blot analysis, after estrogen treatment of MCF-7 cells in vitro. In vivo experiments confirmed these data: estrogen withdrawal from MCF-7 tumor-bearing nude mice resulted in a decline in tumor size and TGF alpha mRNA levels. To explore the functional significance of TGF alpha in MCF-7 cells, anti-TGF alpha antibody was added to MCF-7 soft agar cloning assays. Inhibition of MCF-7 growth resulted, supporting an autocrine role for TGF alpha. Further experiments using an anti-EGF receptor antibody expanded this data, demonstrating inhibition of estrogen-stimulated monolayer MCF-7 cell growth. Examining the generality of TGF alpha expression, 4.8 kilobase TGF alpha mRNAs were seen in three other human breast cancer cell lines, MDA-MB-231, ZR 75B, and T47D. Expression of TGF alpha mRNA was detected in 70% of estrogen receptor positive and negative primary human breast tumors from 40 patients when examined by slot blot and Northern analysis. Thus, we have demonstrated broad expression of TGF alpha in human breast cancer, its hormonal regulation in an estrogen-responsive cell line, and its possible functional significance in MCF-7 cell growth.  相似文献   

19.
20.
Pituitary gland development is controlled by numerous signaling molecules, which are produced in the oral ectoderm and diencephalon. A newly described family of heparin-binding growth factors, namely midkine (MK)/pleiotrophin (PTN), is involved in regulating the growth and differentiation of many tissues and organs. Using in situ hybridization with digoxigenin-labeled cRNA probes, we detected cells expressing MK and PTN in the developing rat pituitary gland. At embryonic day 12.5 (E12.5), MK expression was localized in Rathke’s pouch (derived from the oral ectoderm) and in the neurohypophyseal bud (derived from the diencephalon). From E12.5 to E19.5, MK mRNA was expressed in the developing neurohypophysis, and expression gradually decreased in the developing adenohypophysis. To characterize MK-expressing cells, we performed double-staining of MK mRNA and anterior pituitary hormones. At E19.5, no MK-expressing cells were stained with any hormone. In contrast, PTN was expressed only in the neurohypophysis primordium during all embryonic stages. In situ hybridization clearly showed that MK was expressed in primitive (immature/undifferentiated) adenohypophyseal cells and neurohypophyseal cells, whereas PTN was expressed only in neurohypophyseal cells. Thus, MK and PTN might play roles as signaling molecules during pituitary development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号