共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Seyhan AA 《Human genetics》2011,130(5):583-605
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal
copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving
pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of
the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide
polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional
drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these
previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry
for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their
promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders,
genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases.
Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic
for genetic diseases including amyotrophic lateral sclerosis, Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s
disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in
developing RNAi therapeutics for genetic diseases will be discussed. 相似文献
5.
Little AC Jones BC Debruine LM Caldwell CA 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1563):366-375
Inspired by studies demonstrating mate-choice copying effects in non-human species, recent studies of attractiveness judgements suggest that social learning also influences human preferences. In the first part of our article, we review evidence for social learning effects on preferences in humans and other animals. In the second part, we present new empirical evidence that social learning not only influences the attractiveness of specific individuals, but can also generalize to judgements of previously unseen individuals possessing similar physical traits. The different conditions represent different populations and, once a preference arises in a population, social learning can lead to the spread of preferences within that population. In the final part of our article, we discuss the theoretical basis for, and possible impact of, biases in social learning whereby individuals may preferentially copy the choices of those with high status or better access to critical information about potential mates. Such biases could mean that the choices of a select few individuals carry the greatest weight, rapidly generating agreement in preferences within a population. Collectively, these issues suggest that social learning mechanisms encourage the spread of preferences for certain traits once they arise within a population and so may explain certain cross-cultural differences. 相似文献
6.
The rapidly growing understanding of human genetic pathways, including those that mediate cancer biology and drug response, leads to an increasing need for extensive and reliable mutation screening on a population or on a single patient basis. Here we describe s-RT-MELT, a novel technology that enables highly expanded enzymatic mutation scanning in human samples for germline or low-level somatic mutations, or for SNP discovery. GC-clamp-containing PCR products from interrogated and wild-type samples are hybridized to generate mismatches at the positions of mutations over one or multiple sequences in-parallel. Mismatches are converted to double-strand breaks using a DNA endonuclease (Surveyor™) and oligonucleotide tails are enzymatically attached at the position of mutations. A novel application of PCR enables selective amplification of mutation-containing DNA fragments. Subsequently, melting curve analysis, on conventional or nano-technology real-time PCR platforms, detects the samples that contain mutations in a high-throughput and closed-tube manner. We apply s-RT-MELT in the screening of p53 and EGFR mutations in cell lines and clinical samples and demonstrate its advantages for rapid, multiplexed mutation scanning in cancer and for genetic variation screening in biology and medicine. 相似文献
7.
M Smith J R Escamilla P Filipek M E Bocian C Modahl P Flodman M A Spence 《Cytogenetics and cell genetics》2001,94(1-2):15-22
We recently studied a patient who meets criteria for autistic disorder and has a 2q37 deletion. Molecular cytogenetic studies were carried out using DNA isolated from 22 different 2q37 mapped BACs to more precisely define the extent of the chromosome deletion. We also analyzed 2q37 mapped polymorphic markers. In addition DNA sequences of BACs in the deletion region were scanned to identify microsatellite repeats. We describe four new polymorphic microsatellite repeat markers in the 2q37.3 region. These markers enabled us to determine the parental origin of the deletion in our patient. DNA from 8-13 unrelated individuals was used to determine heterozygosity estimates for these markers. We review four genes deleted in our patient - genes whose known functions and sites of expression in the brain and/or bone make them candidates for involvement in autism and/or the osteodystrophy observed in patients with 2q37.3 deletions. 相似文献
8.
J B Saunders 《BMJ (Clinical research ed.)》1982,284(6323):1137-1138
9.
Genomic analysis I: inheritance units and genetic selection in the rapid discovery of locus linked DNA markers. 总被引:2,自引:1,他引:1 下载免费PDF全文
We propose, and test using a Monte-Carlo analysis (a computer-based numerical analysis using a random number generator), a novel and efficient method to obtain sets of DNA markers linked to any inherited genetic locus. The method consists of a targeted search that is based on the common inheritance among members of an outbred pedigree, of discrete chromosome lengths, which we call inheritance units, to obtain DNA markers linked to the locus. In cases where two individuals inherit the same trait through two different lines of descent from a common ancestor, the set of inheritance units in each of the two genomes includes an inheritance unit that is identical in both individuals for a substantial distance on both sides of the DNA sequence which confers the trait. The power of the technique derives from the genetic selection that reduces the size and number of the inheritance units as the generational distance between the two individuals being compared increases. 相似文献
10.
11.
12.
13.
Genomic analysis of a cardinalfish with larval homing potential reveals genetic admixture in the Okinawa Islands 下载免费PDF全文
Discrepancies between potential and observed dispersal distances of reef fish indicate the need for a better understanding of the influence of larval behaviour on recruitment and dispersal. Population genetic studies can provide insight on the degree to which populations are connected, and the development of restriction site‐associated sequencing (RAD‐Seq) methods has made such studies of nonmodel organisms more accessible. We applied double‐digest RAD‐Seq methods to test for population differentiation in the coral reef‐dwelling cardinalfish, Siphamia tubifer, which based on behavioural studies, have the potential to use navigational cues to return to natal reefs. Analysis of 11,836 SNPs from fish collected at coral reefs in Okinawa, Japan, from eleven locations over 3 years reveals little genetic differentiation between groups of S. tubifer at spatial scales from 2 to 140 km and between years at one location: pairwise FST values were between 0.0116 and 0.0214. These results suggest that the Kuroshio Current largely influences larval dispersal in the region, and in contrast to expectations based on studies of other cardinalfishes, there is no evidence of population structure for S. tubifer at the spatial scales examined. However, analyses of outlier loci putatively under selection reveal patterns of temporal differentiation that indicate high population turnover and variable larval supply from divergent source populations between years. These findings highlight the need for more studies of fishes across various geographic regions that also examine temporal patterns of genetic differentiation to better understand the potential connections between early life‐history traits and connectivity of reef fish populations. 相似文献
14.
The results of a genetic epidemiological study of hereditary deafness (HD) in ten raions (districts) of Kirov oblast (administrative region), Russia, are presented. A total of 122 075 people have been examined. Segregation analysis of all families with diagnosed HD has demonstrated a good fit to either the autosomal dominant (AD) or autosomal recessive (AR) mode of inheritance. The total prevalence rates of AD and AR HDs, as well as the specific prevalence rates of nonsyndromic and syndromic forms of HD, have been calculated for the population often raions. The HD prevalence rate in Kirov oblast has been found to be 1 : 1043 people (1 : 1453 and 1 : 3699 for the nonsyndromic and syndromic forms, respectively). This value has been found to vary in different raions, which is explained by differences in the genetic subdivision levels of the populations studied; the correlation coefficient between the HD load and random inbreeding (F(ST)) in district populations is r = 0.81 +/- 0.22. The diversity of syndromic hearing disorders is described. 相似文献
15.
E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18 degrees C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis. 相似文献
16.
Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. 总被引:6,自引:0,他引:6
dUTP pyrophosphatase catalyses hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and inorganic pyrophosphate (PPi). Elimination of dUTP is vital since its misincorporation into DNA by DNA polymerases can initiate a damaging iterative repair and misincorporation cycle, resulting in DNA fragmentation and cell death. The anti-tumour activity of folate agonists and thymidylate synthase inhibitors is thought to rely on dUTP misincorporation. Furthermore, retroviral cDNA production may be particularly susceptible to the effects of dUTP misincorporation by virtue of the error-prone nature of reverse trans criptase. Consequently, dUTPase activity is an ideal point of intervention in both chemotherapy and anti-retroviral therapy. In particular, the dUTPase encoded by a human endogenous retrovirus (HERV-K) has been suggested to complement HIV infection and so is an attractive target for specific inhibition. Hence, we used site photoaffinity labelling, site-directed mutagenesis and molecular modelling to assign catalytic roles to the conserved amino acid residues in the active site of the HERV-K dUTPase and to identify structural differences with other dUTPase enzymes. We found that dUTP photoaffinity labelling was specific for a beta-hairpin motif in HERV-K dUTPase. Mutagenesis of aspartate residues Asp84 and 86 to asparagine within this beta-hairpin showed the carboxylate moiety of both residues was required for catalysis but not for dUTP binding. An increase in the pKa of both aspartate residues brought about by substitution of a serine residue with a glutamate residue adjacent to the aspartate residues increased activity by a factor of 1.67 at pH 8.0, implicating general base catalysis as the enzyme's catalytic mechanism. Conservative mutagenesis of Tyr87 to Phe resulted in a sevenfold reduction of dUTPase activity and a 3.3-fold reduction in binding activity, whilst substitution with an isoleucine residue totally abolished both catalytic activity and dUTP binding, suggesting that binding/activity is dependent on an aromatic side-chain at the base of the hairpin. Comparison of a homology-based three-dimensional model structure of HERV-K dUTPase with a crystallographic structure of the human dUTPase revealed displacement of a conserved alpha-helix in the HERV-K enzyme causing expansion of the HERV-K active site. This expansion may be responsible for the ability of the HERV-K enzyme to hydrolyse dTTP and bind the bulkier dNTPs in contrast to the majority of dUTPases which are highly specific for dUTP. Knowledge of the dUTPase catalytic mechanism and the distinctive topography of the HERV-K active site provides a molecular basis for the design of HERV-K dUTPase-specific inhibitors. 相似文献
17.
18.
The development and spread of highly drug-resistant parasites pose a central problem in the control of malaria.Understanding mechanisms that regulate genomic stability, such as DNA repair, in drug-resistant parasites and during drug treatment may help determine whether this rapid onset of resistance is due to an increase in the rate at which resistance-causing mutations are generated. This is the first report to demonstrate DNA repair activities from the malaria-causing parasite Plasmodium falciparum that are specific for ultraviolet light-induced DNA damage. The efficiency of DNA repair differs dramatically among P. falciparum strains with varying drug sensitivities. Most notable is the markedly reduced level of repair in the highly drug-resistant W2 isolate, which has been shown to develop resistance to novel drugs at an increased rate when compared to drug-sensitive strains. Additionally, the antimalarial drug chloroquine and other quinoline-like compounds interfered with the DNA synthesis step of the repair process, most likely a result of direct binding to repair substrates. We propose that altered DNA repair, either through defective repair mechanisms or drug-mediated inhibition, may contribute to the accelerated development of drug resistance in the parasite. 相似文献
19.
Chromosome breakage: a possible mechanism for diverse genetic events in outbred populations. 总被引:1,自引:0,他引:1
Evidence is summarised to support the hypothesis that genetic characteristics frequently assayed in natural populations, including mutator activity, sterility, male recombination, and distortion of segregation, may often be expressions of the same general event--chromosome breakage in outbred populations. 相似文献
20.
The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. 总被引:9,自引:4,他引:9 下载免费PDF全文
Recent advances in in vitrosystems and identification of putative enzymatic activities have led to the acceptance of a modified 'enzyme cascade' model for U insertion/deletion RNA editing in kinetoplastid mitochondria. Models involving the transfer of uridines (Us) from the 3'-end of gRNA to the editing site appear to be untenable. Two types of in vitrosystems have been reported: (i) a gRNA-independent U insertion activity that is dependent on the secondary structure of the mRNA; (ii) a gRNA-dependent U insertion activity that requires addition of a gRNA that can form an anchor duplex with the pre-edited mRNA and which contains guiding A and G nucleotides to base pair with the added Us. In the case of the gRNA-mediated reaction, the precise site of cleavage is at the end of the gRNA-mRNA anchor duplex, as predicted by the original model. The model has been modified to include the addition of multiple Us to the 3'-end of the 5'-cleavage fragment, followed by the formation of base pairs with the guiding nucleotides and trimming back of the single-stranded oligo(U) 3'-overhang. The two fragments, which are held together by the gRNA 'splint', are then ligated. Circumstantial in vitroevidence for involvement of an RNA ligase and an endoribonuclease, which are components of a 20S complex, was obtained. Efforts are underway in several laboratories to isolate and characterize specific components of the editing machinery. 相似文献