首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
掌叶木的花器官发生及其系统学意义   总被引:7,自引:0,他引:7  
利用扫描电子显微镜和光学显微镜观察了掌叶木的花器官发生过程。观察结果表明: 花序原基最先发生, 然后形成两个大小不一的花原基; 萼片原基的发生不同步, 螺旋状向心发生; 4-5枚花瓣原基以接近轮状方式近同时发生; 不存在花瓣-雄蕊复合原基; 7-8枚雄蕊原基为近同时发生, 其生长较花瓣原基快; 心皮原基最后发生, 3枚心皮原基为同时发生。花为单性花。在雌花中, 子房膨大而雄蕊退化。在雄花中, 雄蕊正常发育, 子房退化。讨论了掌叶木花器官发生和发育的系统学意义。  相似文献   

2.
通过扫描电镜观察了宽叶泽苔草Caldesia grandisSamuel.的花器官发生。宽叶泽苔草 的萼片3枚,逆时针螺旋向心发生 ;花瓣3枚,呈一轮近同时发生,未观察到花瓣_雄蕊复合原基;雄蕊、心皮原基皆轮状向心 发生,最先近同时发生的6枚原基全部发育成雄蕊,随后发生的6枚原基早期并无差别,在发 育过程中逐渐出现形态差异,直至其中1-4枚发育成心皮,其余的发育成雄蕊;而后的几轮 心皮原基,6枚一轮,陆续向心相间发生。本文揭示了3枚萼片螺旋状的发生方式,并推测这种螺旋方式是泽泻科植物进化过程中保留下来  相似文献   

3.
大戟科麻疯树属三种植物花器官发生   总被引:1,自引:0,他引:1  
利用扫描电子显微镜观察了大戟科Euphorbiaceae麻疯树属Jatropha麻疯树J. curcas L.、佛肚树J. podagrica Hook.和棉叶麻疯树J. gossypifolia L.花器官发生。结果表明: 麻疯树、佛肚树和棉叶麻疯树花萼原基均为2/5型螺旋发生。在同一个种不同的花蕾中, 花萼的发生有两种顺序: 逆时针方向和顺时针方向。远轴面非正中位的1枚先发生。5枚花瓣原基几乎同时发生。雄花中雄蕊两轮, 外轮对瓣, 内轮对萼。研究的3种麻疯树属植物雄蕊发生方式有两种类型: 麻疯树亚属麻疯树的5枚外轮雄蕊先同时发生, 5枚内轮雄蕊后同时发生, 佛肚树亚属佛肚树和棉叶麻疯树雄蕊8-9枚, 排成两轮, 内外轮雄蕊同时发生。雌花的3枚心皮原基为同时发生。麻疯树属单性花, 雌花的子房膨大而雄蕊退化, 雄花的雄蕊正常发育, 子房缺失。根据雄蕊发生方式, 支持将麻疯树属分为麻疯树亚属subgen. Jatropha和佛肚树亚属subgen. Curcas。  相似文献   

4.
以不同发育时期的长角凤仙花Impatiens longicornuta Y.L.Chen(凤仙花科Balsaminaceae)为材料,利用扫描电镜技术观察了其花器官的分化及其发育过程。长角凤仙花为两侧对称花,具2枚侧生萼片,唇瓣囊状,旗瓣具鸡冠状突起,雄蕊5枚,子房上位,5心皮5室。其花器官分化顺序为向心式,萼片—花瓣—雄蕊—雌蕊原基。2枚侧生萼片先发生,然后近轴萼片(即唇瓣)原基和2枚前外侧萼片原基近同时发生;但是这3枚萼片原基的发育不同步,远轴的2枚前外侧萼片原基的发育渐渐滞后,然后停止发育,最后渐渐为周围组织所吸收,直至消失不见。花瓣原基中,旗瓣原基最先发生,4个侧生花瓣原基相继成对发生,且之后在基部成对愈合形成翼瓣;5枚雄蕊原基几乎同时发生,5个心皮原基轮状同时发生。本文结果支持凤仙花属植物为5基数的花,并进一步证实了唇瓣的萼片来源;此外,研究结果表明花器官早期发育资料对植物系统与进化研究具有重要参考价值。  相似文献   

5.
赵祥  苏雪  吴海燕  张辉  孙坤 《植物研究》2020,40(6):813-819
利用扫描电镜(SEM)观察了突脉金丝桃(Hypericum przewalskii)(金丝桃科)的花部器官发生发育过程。结果表明,突脉金丝桃2枚苞片原基首先发生,花原基在苞片原基的包裹中完成发育。在苞片原基发生后,5枚萼片原基沿2/5圆周依次发生。萼片原基发生近完成时,5枚雄蕊—花瓣共同原基在萼片原基之间的角隅处近同时发生,此后,雄蕊—花瓣共同原基下部向外伸展形成花瓣原基,上部向上凸起形成与花瓣原基相对的雄蕊原基,之后雄蕊原基由内向外依次分化发育产生次生雄蕊原基,随着次生雄蕊原基的发育和数目的增多,形成了5束雄蕊。次生雄蕊原基发生的同时,5枚心皮原基近同时发生。突脉金丝桃雄蕊束的发生方式表明,金丝桃属的雄蕊束可能起源于5基数的单轮雄蕊。金丝桃科与藤黄科植物花瓣及雄蕊原基发生方式的显著不同,支持了APG Ⅲ系统将金丝桃亚科从藤黄科中独立为金丝桃科的观点。  相似文献   

6.
马先蒿属花冠无喙类的花器官发生   总被引:4,自引:0,他引:4  
对花冠无喙类密穗马先蒿(Pedicularis densispica)和大王马先蒿(P.rex)的花器官电镜扫描发现,两种不同花冠型(无齿和具齿)的马先蒿花部器官发生和发育初期十分相似,表现为明显的单轴对称。2个萼片原基首先发生于花顶的近轴侧位,然后沿花顶边缘向远轴端发育形成--马蹄形结构。密穗马先蒿在近轴中部又出现1枚萼片原基,随后马蹄形结构分化出4枚萼片,并与近轴中部的原基愈合后构成5齿萼片;而大王马先蒿的2齿萼片直接由马蹄形结构发育而成。5枚独立的花瓣原基随后发生,但发育相对滞后;除近轴中部位置1枚空缺外,4枚雄蕊原基与花瓣原基位置呈交互发生;2个心皮原基同时在拱形花顶的近轴和远轴端发生,剩余的花顶形成中间的隔膜,并与2个心皮形成中轴胎座。对马先蒿与金鱼草(Antirrhinum majus)和毛地黄(Digitalis purpurea)花器官发生和发育初期的特征进行了比较,讨论了马先蒿属花冠对称性变化的意义。  相似文献   

7.
泽苔草的花器官发生   总被引:9,自引:2,他引:7  
本文用扫描电镜观察了泽苔草的花器官发生过程,观察结果表明:花萼以螺旋状方式向心发生,花瓣以接近轮状方式近同时发生,不存在花瓣雄蕊复合原基。雄蕊和心皮均以轮状向心方式发生,6枚雄蕊分两轮分别在对萼和对瓣的位置先后发生,至发育的后期排成一轮,但仍分别处于对萼和对瓣的位置;随后发生的第一轮3个心皮原基与3枚萼片相对,第二、三轮心皮原基分别为1~3个,与前一轮心皮相间排列向心发生。本文首次揭示了泽苔草花被的外轮3个萼片螺旋状发生方式,这种螺旋状方式很可能是泽泻科植物的花部结构在进化过程中适应环境而保留下来的一种较原始的叶性特征。  相似文献   

8.
The floral organogenesis of Phytolacca dodecandra L′Her. (Phytolaccaceae) has been observed under both scanning electron microscope (SEM) and light microscope. The primordia of the floral appendage are arranged according to a pentamerous pattern and acropetal succession. Five sepal primordia arise in a 2/5 sequence, and no petal primordia have been observed. The stamen primordia arise centrifugally. The first two pairs arise successively opposite sepal one and two. In the subsequent initiation of inner and outer stamens, P. dodecandra differs from other species in the genus Phytolacca. The four or five carpel primordia arise in rapid succession, usually equal in number and alternating with the inner stamens. The effects of temporal and spatial factors during the floral organogenesis of P. dodecandra are discussed. The data on the androecial ontogeny in P. dodecandra refute the existence of diplostemony in Phytolaccaceae, in which P. dodecandra occupies a pivotal systematic position. The androecial ontogeny in P. dodecandra supports the viewpoint that in the genus Phytolacca pentamerous flowers have been derived from trimerous flowers.  相似文献   

9.
The initiation and development of the floral organs of Brassica napus L. (cv. Westar) were examined using the scanning electron microscope. After transition of the vegetative apex into an inflorescence apex, flower primordia were initiated in a helical phyllotactic pattern. The sequence of initiation of the floral organs in a flower bud was that of sepals, stamens, petals and gynoecium. Of the four sepal primordia, the abaxial was initiated first, followed by the two lateral and finally the adaxial primordium. The four long stamens were initiated simultaneously in positions alternating with the sepals. The two short stamens were initiated basipetal to and outside the long stamens, and opposite the lateral sepals. The petals arose on either side of the two short stamens and the gynoecium was produced from the remainder of the apex. During development, the sepal primordia curved sharply at the tips and tightly enclosed the other organs. Stamen primordia developed tetralobed anthers at an early stage while filament elongation occurred just prior to anthesis. A unique pattern of bulbous cells was present on the abaxial surface of the anther. Growth of petal primordia lagged relative to the other floral organs but expansion was rapid prior to anthesis. The gynoecium primordium was characterized by an invagination early in development. At maturity, there was differentiation of a papillate stigma, an elongated style and a long ovary marked externally by sutures and divided internally by a septum. Distinct patterns of cuticular thickenings were observed on the abaxial and adaxial surfaces of the petals and stamens and on the surface of the style. The patterns were less obvious on the sepals and ovary. Stomata were present on both surfaces of the mature sepals, on the style and restricted areas on the abaxial surface of the anthers and nectaries but were absent from the petals, the adaxial surface of the stamens and the ovary. No hairs were present on any of the floral organs.  相似文献   

10.
Floral development and anatomy ofMoringahave been investigatedin the context of the disputed view of a capparalean affinity.Flowers arise in terminal or axillary panicles. Sepals arisesequentially and petals simultaneously. Antepetalous stamensarise simultaneously and precede the antesepalous staminodes,which emerge sequentially. Within their respective whorls, thepetals and stamens become twisted along different orientations.The gynoecium develops as a ring primordium on which three carpellarylobes become demarcated simultaneously. A saccate ovary bearsnumerous ovules on a parietal placentation and is topped bya hollow style. The interpretation of laminal placentation isdenied. Monothecal anthers are formed by the failure of onehalf to initiate. The flowers present a peculiar form of zygomorphyrunning transversally from the petal between sepals 3 and 5to sepal 4. The shape and position of petals and stamens isrelated to a pollen presentation mechanism with bowl-shapedanthers on different levels. The floral anatomy also reflectsthe zygomorphy of the flower. AlthoughMoringashares importantmorphological features with certain members of the Sapindalesand Capparales, differences in ontogeny make a close relationshipwith either Capparales or certain Sapindales appear uncertain.Copyright1998 Annals of Botany Company Moringa,Moringaceae, Capparales, Sapindales, floral ontogeny, floral anatomy.  相似文献   

11.
为进一步研究商陆科的系统位置提供花器官发生和发育的证据,在扫描电子显微镜下观察了商陆Phytolacca acinosa、多雄蕊商陆P. polyandra和垂序商陆P. americana的花器官发生.结果表明: 商陆属植物花被的发生均为2/5型螺旋发生.在同一个种不同的花蕾中,花被的发生有两种顺序:逆时针方向和顺时针方向.远轴侧非正中位的1枚先发生.雄蕊发生于环状分生组织.在单轮雄蕊的种中8-10枚雄蕊为近同时发生;两轮雄蕊的种8枚内轮雄蕊先发生,6-8枚外轮雄蕊随后发生,内轮雄蕊为同时发生,外轮雄蕊发生次序不规则.心皮原基也发生于环状分生组织,8-10枚心皮原基为同时发生.在后来的发育过程中,商陆的心皮发育成近离生心皮雌蕊;其他2种心皮侧壁联合发育成合生心皮雌蕊.对商陆属植物花器官发生的类型及发育形态学做了分析,结果支持商陆科在石竹目系统发育中处于原始地位的观点.  相似文献   

12.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

13.
马桑绣球(绣球科)的花器官发生和发育   总被引:3,自引:0,他引:3  
在扫描电镜下观察了马桑绣球Hydrangea aspera孕性花的发生及发育过程。马桑绣球的花器官向心轮状发生:花萼原基以2/5螺旋式相继发生,花瓣原基几乎同步发生。花瓣开始发育时,与花萼相对的雄蕊发生。与花瓣相对的雄蕊原基与心皮原基几乎同时出现。初始心皮向上扩展,分化出花柱和柱头,向下延伸,嵌入花托,发育为下位子房。花发育成熟时,隔膜于子房的下部连续,而中部和上部不连续,即子房为不完全2室。经过与绣球属已观察过的另外5种1亚种花器官发生和发育比较,发现马桑绣球与藤绣球H. ano mala subs  相似文献   

14.
Pedicularis shows high diversity in its corolla form, however, its floral ontogeny has been rarely investigated. In particular, the development of the highly variable upper lip (galea), three broad morphological types of which (beakless and toothless, beakless and toothed, beaked) can be discriminated, remains unknown. We used scanning electron microscopy to investigate the early stages of floral ontogeny in two beaked species, Pedicularis gruina and P. siphonantha. To compare the developmental processes of the three galea types, three species for each type were investigated. Initiations of floral organs in Pedicularis are consistent. Sepal initiations are successive from the lateral-adaxial primordia, followed by the lateral-abaxial ones (these sometimes missing), then the mid-adaxial one (again sometimes missing). The stamens are initiated prior to the petals, or development of petal primordia may be retarded at the early stages in comparison with that of stamen primordia. Four stamen primordia are initiated simultaneously. The five petal primordia are initiated almost simultaneously. Development processes of the upper lip among the three galea types differ in the expansion rates and directions of the cells of the two lobes and these differences govern whether or not a beak and/or teeth are formed on the upper lip. The floral ontogeny of Pedicularis is close to that of Agalinis, which supports the molecular assignment. Floral monosymmetry of Pedicularis is established at the beginning of sepal initiation and is maintained until flowering. The development of the upper lip provides some clues to the evolution of beaked and/or toothed galeas in Pedicularis.  相似文献   

15.
The floral organogenesis and anatomy of Koelreuteria bipinnata and its variety K. bipinnata var. integrifolia (Sapindaceae) has been investigated to clarify the identity of the two taxa in relation to other species of Koelreuteria, and to understand the shift to monosymmetry in the genus. Although the floral development is highly similar, we found a number of striking differences. Flowers arise in thyrses, with lateral branches forming cincinni of 5–9 flowers. Sepals initiate in a spiral sequence. Five petals arise unidirectionally alternating to the sepals. The last formed petal and one stamen between sepals 3 and 5 are strongly delayed, appearing as a common primordium, while this petal is completely suppressed in var. integrifoliola. Eight stamens initiate sequentially, differ in size and partly precede the development of petals. The gynoecium develops as a triangular primordium on which three carpellary lobes become demarcated simultaneously. Placentation is axile. Septal slits occurring within the style are interpreted as a deep-reaching non-nectariferous extension of the stigma. The massive, oblique disk with crenate apex develops in an extrastaminal position, but is interrupted on the radius of the lost petal. Floral developmental evidence supports variety K. bipinnata var. integrifolia rather than being synonym of K. bipinnata. Floral development is compared with K. paniculata and is discussed in the context of floral evolution of Sapindaceae. Our study demonstrates the importance of developmental shifts on floral evolution. The triangular gynoecium has a strong spatial impact in obliquely reorganizing the symmetry of the flower. It is demonstrated that spatial constraints of calyx and ovary are responsible for the reduction in one of the petals, two stamens and a shift in symmetry of the flower.  相似文献   

16.
The early floral ontogeny of three subfamilies, viz. Verbenoideae, Viticoideae and Caryopteridoideae of Verbenaceae (s.l.), was compared. Two differently initiated patterns were found. In the present species of Verbenoideae, there is a unidirectional sequence of organogenesis, from abaxial to adaxial side of the floral apex. While the abaxial paired sepal, petal and stamen arise sequentially, the adaxial paired sepal, petal and stamen do not appear or appear in a much earlier stage. The centripetal whorled sequence of organogenesis appears in Viticoideae and Caryopteridoideae, where sepal primordia arise simultaneously or successively (from adaxial to abaxial). After completion of sepal initiation a plastochron is indicated, during which time a change to the induction of petal takes place, and five petals appear simultaneously, followed by initiation of four stamens. Events of floral organogenesis support the phylogeny inferred from morphological data and rbcL sequence analysis, i.e. the subfamily Verbenoideae does not form a monophyletic group with the subfamilies Viticoideae and Caryopteridoideae.  相似文献   

17.
The inflorescence and floral development of Caldesia grandis Samuel is reported for the first time in this paper. The basic units of the large cymo‐thyrsus inflorescence are short panicles that are arranged in a pseudowhorl. Each panicle gives rise spirally to three bract primordia also arranged in a pseudowhorl. The branch primordia arise at the axils of the bracts. Each panicle produces spirally three bract primordia with triradiate symmetry (or in a pseudowhorl) and three floral primordia in the axils of the bract primordia. The apex of the panicle becomes a terminal floral primordium after the initiations of lateral bract primordia and floral primordia. Three sepal primordia are initiated approximately in a single whorl from the floral primordium. Three petal primordia are initiated alternate to the sepal primordia, but their subsequent development is much delayed. The first six stamen primordia are initiated as three pairs in a single whorl and each pair appears to be antipetalous as in other genera of the Alismataceae. The stamen primordia of the second whorl are initiated trimerously and opposite to the petals. Usually, 9–12 stamens are initiated in a flower. There is successive transition between the initiation of stamen and carpel primordia. The six first‐initiated carpel primordia rise simultaneously in a whorl and alternate with the trimerous stamens, but the succeeding ones are initiated in irregular spirals, and there are 15–21 carpels developed in a flower. Petals begin to enlarge and expand when anthers of stamens have differentiated microsporangia. Such features do not occur in C. parnassifolia. In the latter, six stamen primordia are initiated in two whorls of three, carpel primordia are initiated in 1–3 whorls, and there is no delay in the development of petals. C. grandis is thus considered more primitive and C. parnassifolia more derived. C. grandis shares more similarities in features of floral development with Alsma, Echinodorus, Luronium and Sagittaria. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 39–47.  相似文献   

18.
The floral ontogeny and anatomy ofKoelreuteria paniculata have been investigated to understand the developmental basis for the occurring monosymmetry and the origin of the septal cavities. Petals arise sequentially and one petal is missing between sepals 3 and 5, or rarely between sepals 2 and 5. The eight stamens arise sequentially before petal initiation is completed. The last formed petal and one stamen arise on a common primordium. Two stamen positions are empty (opposite the petal between the sepals 2 and 5, and the petal between sepal 1 and 3); consequently two antesepalous stamens have become displaced. The derivation of octandry from a diplostemonous ancestry, and reduction of the petal are discussed. The triangular gynoecium has a strong impact in obliquely reorganizing the symmetry of the flower, loss of organs, and shifts of stamens. The so-called septal slits occurring within the style are a deepreaching non-nectariferous extension of the stigma. Alternating locular furrows are present which could play a role as pollen transmitting tissue and in the loculicid dehiscence of the capsule.  相似文献   

19.
InMazus pumilus, all the floral appendages are initiated in acropetal sequence in the second cell layer (except stamens) of the floral primordium by periclinal divisions. The actinomorphic calyx tube is formed due to zonal growth. The zygomorphy in corolla is evident from the inception of petal primordia which arise sequentially as independent units in order of one anterior, a pair of anterio-lateral followed by a pair of posterio-lateral. Later these primordia exhibit differential growth because of which zygomorphy becomes more pronounced. The upper corolla tube is formed by interprimordial growth and lower corolla tube by zonal growth. Stamens are initiated in the third layer of the floral apex. Unlike sepals and petals, in the development of stamens (4) underlying cells of corpus also contribute. Posterior stamen is absent. The stamens become epipetalous because of interprimordial and zonal growth in the common region below the bases of petals as well as stamens. The two carpel primordia arise as crescent shaped structures which become continuous due to interprimordial growth. The ovary is formed by a ring of zonal meristem. The style develops later between stigma and ovary because of intercalary growth. The residual apex grows vertically along with the ovary and forms the septum of the ovary. All the floral appendages exhibit similar pattern of histogenesis and early growth suggesting thereby the appendicular nature of these appendages.  相似文献   

20.
The floral organogenesis of Potamogeton distinctus A. Benn. was observed under the scanning electron microscope (SEM). The floral buds are first initiated on the lower portion of inflorescence in alternating whorls of three. Each of the floral buds is subtended by a bract primordium during the early stages. The primordia of the floral appendages arise on the floral bud acropetally. Two lateral tepals are first initiated and then two median ones soon after. Stamens are normally initiated as elongate primordia opposite the tepals, with the two lateral stamens preceding the median ones. The two carpel primordia arise alternating with the stamens. In some flowers, one of the two gynoecial primordia becomes inactive soon after they are initiated, or only one carpel primordium is initiated. The present observation of the gynoecial development supports the viewpoint that the evolution of flower in Potamogeton involves a reduction in number of parts. The existence of bract primordium during the early stages in many species of Potamogeton indicates that the absence of bractin mature flowers should be the result of reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号