首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The tryptophanyl emission decay of the mesophilic beta-galactosidase from Aspergillus oryzae free in buffer and entrapped in agarose gel is investigated as a function of temperature and compared to that of the hyperthermophilic enzyme from Sulfolobus solfataricus. Both enzymes are tetrameric proteins with a large number of tryptophanyl residues, so the fluorescence emission can provide information on the conformational dynamics of the overall protein structure rather than that of the local environment. The tryptophanyl emission decays are best fitted by bimodal Lorentzian distributions. The long-lived component is ascribed to close, deeply buried tryptophanyl residues with reduced mobility; the short-lived one arises from tryptophanyl residues located in more flexible external regions of each subunit, some of which are involved in forming the catalytic site. The center of both lifetime distribution components at each temperature increases when going from the free in solution mesophilic enzyme to the gel-entrapped and hyperthermophilic enzyme, thus indicating that confinement of the mesophilic enzyme in the agarose gel limits the freedom of the polypeptide chain. A more complex dependence is observed for the distribution widths. Computer modeling techniques are used to recognize that the catalytic sites are similar for the mesophilic and hyperthermophilic beta-galactosidases. The effect due to gel entrapment is considered in dynamic simulations by imposing harmonic restraints to solvent-exposed atoms of the protein with the exclusion of those around the active site. The temperature dependence of the tryptophanyl fluorescence emission decay and the dynamic simulation confirm that more rigid structures, as in the case of the immobilized and/or hyperthermophilic enzyme, require higher temperatures to achieve the requisite conformational dynamics for an effective catalytic action and strongly suggest a link between conformational rigidity and enhanced thermal stability.  相似文献   

2.
Mammalian myoglobins contain two tryptophanyl residues at the invariant positions 7 (A-5) and 14 (A-12) in the N-terminal region (A helix) of the protein molecule. The simultaneous substitution of both tryptophanyl residues causes an incorrect folding with subsequent loss of heme binding. The introduction of a indolic residue in different molecular regions, i.e. G, E, and C helix resulted in a not correctly folded protein, suggesting that the tryptophanyl residues are strong structural determinants.  相似文献   

3.
The SH groups of glutamine synthetase [EC 6.3.1.2] from Bacillus stearothermophilus were modified with 5, 5'-dithiobis(2-nitrobenzoic acid) in order to determine the number of SH groups in the molecule as well as the effect of the modification on the enzyme activity. Three SH groups per subunit were detected after complete denaturation of the enzyme with 6 M urea, one of which was essential for the enzyme activity in view of its reactivity with 5, 5'-dithiobis(2-nitrobenzoic acid) on addition of MgCl2 with loss of the activity. The CD spectra of the modified enzyme in the near ultraviolet region changed from that of the native enzyme, indicating that aromatic amino acid residues were affected by modification of the SH group. The fluorescence derived from tryptophanyl residue(s) was quenched depending on the extent of modification of the SH group, suggesting that the tryptophanyl residue(s) was located in the proximity of the SH group. The thermostability of the enzyme was remarkably decreased by modification of the SH group.  相似文献   

4.
Chemical modification of tryptophanyl residues of NADPH - adrenodoxin reductase by N - bromosuccinimide and trichloroethanol prevents the interaction of the enzyme with adrenodoxin. The modification does not touch other amino acid residues besides tryptophan (tyrosine, lysine and cysteine) or disturb the structure of protein. The presence of adrenodoxin suppresses the modification. The data obtained indicate the participation of adrenodoxin reductase tryptophan residues in the interaction with adrenodoxin.  相似文献   

5.
Evidence of conformational changes in rabbit muscle aldolase upon binding to phosphatidylinositol liposomes and the effect of the interaction on the thermal conformational transition are reported. Interaction with phosphatidylinositol liposomes significantly decreases the aldolase tryptophanyl fluorescence and shifts the maximum wavelength to higher values. The dynamic quenching constant for the aldolase fluorescence quenching by acrylamide in the presence of liposomes is much higher than that for unmodified enzyme; this signifies an increase in accessibility of some tryptophanyl residues to small polar molecules. Indirect interaction between single phospholipid molecules, small micelles or any soluble impurities able to penetrate into the protein molecule interior does not seem to be involved in the conformational rearrangement. Native and liposome-interaction-induced conformational states reveal different temperature dependences of the tryptophan residues exposure. The implications of the modification of the conformational state of the enzyme for its function in vivo are discussed.  相似文献   

6.
Synthetic 2',3'-epoxypropyl-1-thio-beta-D-glucopyranoside selectively modifies a catalytically essential nucleophylic group in the active site of beta-1,3-glucanase LIV from the marine mollusc Spisula sachalinensis, the inactivation being as high as 95%. The properties of native and epoxypropylthioglucopyranoside-inhibited glucanase LIV were compared, using UV-spectroscopy, SDS polyacrylamide gel electrophoresis and isoelectrofocusing. It was found that the addition of laminarine and laminarioligosaccharides to a solution of the inhibited enzyme induces UV-differential spectra typical for the tryptophanyl residue involved in the formation of the enzyme-inhibitor-substrate complex. The glucone-1,5-lactone does not produce such spectrum. It was shown that epoxypropylthioglucopyranoside protects the accessible tryptophanyl residues in the enzyme active center against the oxidation by N-bromosuccinimide.  相似文献   

7.
The denaturation of pantetheinase (pantetheine hydrolase, EC 3.5.1.-) was followed in guanidinium chloride using tyrosyl and tryptophanyl residues as probes in connection with change in enzymatic activity. Movements of tryptophanyl and tyrosyl residues during denaturation were studied by second-derivative and fluorescence spectroscopy and the number of these amino acids present in the protein was calculated from spectroscopic data. Pantetheinase shows a very high resistance to denaturation, being completely unfolded at guanidinium chloride concentration higher than 6.5 M. Monitoring enzymatic activity shows that inactivation of the enzyme occurred before noticeable conformational changes were detected and it is suggested that the conformation of the active site is flexible and easily perturbable compared to the protein as a whole. This inactivation is reversible, as shown by renaturation experiments. Second-derivative and fluorescence spectra showed also that tyrosyl and tryptophanyl residues are largely exposed in the native protein, confirming its hydrophobic behavior.  相似文献   

8.
The pH-dependence of the photo-oxidation of L-tryptophan, in the presence of Rose Bengal and Methylene Blue, has been investigated. True, initial rate constants were determined in order to circumvent errors due to secondary processes. Photo-oxidation of glycoamylase I from A. niger in the presence of Methylene Blue or Rose Bengal resulted in a pH-dependent loss of enzymic activity, which was analogous to the destruction of free L-tryptophan during photo-oxidation. The loss of enzymic activity was closely associated with the destruction of tryptophan residues in the enzyme. Significant protection of both enzymic activity and tryptophanyl residues in the enzyme molecule was achieved by performing the photo-oxidation in the presence of maltose, which is a substrate for the enzyme. The tryptophanyl residues of glucoamylase I, which had been inactivated by reaction of its carboxylic acid residues with glycine methyl ester in the presence of a water-soluble carbodi-imide, were also substantially protected by maltose. It is concluded that the active centre of glucoamylase I is a cleft lined with tryptophanyl residues that participate in the binding of the substrate. One or more carboxylic acid residues are involved in bond cleavage.  相似文献   

9.
Lobster arginine kinase [EC 2.7.3.3] contains 2 tryptophanyl residues and 9 methionyl residues. The whole carboxymethylated protein was first subjected to CNBr cleavage and the resulting fragments were isolated by gel filtration and other experimental approaches. One fragment, CB5, which contains 60 residues including the two tryptophanyl residues and two of the five cysteinyl residues of the protein, was characterized and the results are reported inthis paper. The overall strategy for the establishment of the complete sequence of this fragment was based on the use of three types of peptides: (a) whole cyanogen bromide peptide CB5 which was partially characterized by automatic Edman degradation using a sequencer: 42 steps were performed out of 60 residues, (b) tryptic peptides of CB5, (c) peptides formed by cleavage of S-carboxymethylated arginine kinase (whole protein) at the two tryptophanyl residues with BNPS-skatole. The complete amino acid sequence of the CNBr polypeptide (CB5) which contains the two tryptophanyl residues of the whole protein was established.  相似文献   

10.
3-Amino-1-chloro-indolwbutan-2-one (Trp-CH2Cl) was synthesized to be used for labeling the active site of tryptophanyl-tRNA-synthetase. Trp-CH2Cl irreversibly inhibits the beef pancreas tryptophanyl-tRNA synthetase activity. The inhibition rate was found to exhibit saturation concentration dependence typical for an affinity reagent. L-tryptophan and L-tryptophanyl adenylate protect the enzyme from inhibition. To determine the stoichiometry of inhibitor--protein binding 3H-label from NaB3H4 was incorporated into the modified enzyme. The molar ratio of inhibitor residues incorporated into the modified enzyme (dimeric molecule) is approximately 2. When one of the subunits of the enzyme was reversibly protected with relatively stable tryptophanyl adenylate, the modification of this enzyme led to the blocking of the other subunit (so called "one-site" enzyme). Some properties of the "one-site" enzyme obtained were studied.  相似文献   

11.
The time dependence of the fluorescence of tryptophanyl and flavin residues in lipoamide dehydrogenase has been investigated with single-photon decay spectroscopy. When the two FAD molecules in the enzyme were directly excited the decay could only be analyzed in a sum of two exponentials with equal amplitudes. This phenomenon was observed at 4 degrees C (tau-1 = 0.8 ns, tau-2 = 4.7 ns) and at 20 degrees C (tau-1 = 0.8 ns, tau-2 = 3.4 ns) irrespective of the emission and excitation wavelengths. This result reveals a difference in the nature of the two FAD centers. By excitation at 290 nm the fluorescence decay curves of tryptophan and FAD were obtained. The decays are analyzed in terms of energy transfer from tryptophanyl to flavin residues. The results, which are in good agreement with those obtained previously with static fluorescence methods, show that one of the two tryptophanyl residues within the subunit transfers its excitation energy to the flavin located at a distance of 1.5 nm.  相似文献   

12.
The reactive intermediates formed in the catalase-peroxidase from Synechocystis PCC6803 upon reaction with peroxyacetic acid, and in the absence of peroxidase substrates, are the oxoferryl-porphyrin radical and two subsequent protein-based radicals that we have previously assigned to a tyrosyl (Tyr()) and tryptophanyl (Trp()) radicals by using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with deuterium labeling and site-directed mutagenesis. In this work, we have further investigated the Trp() in order to identify the site for the tryptophanyl radical formation, among the 26 Trp residues of the enzyme and to possibly understand the protein constraints that determine the selective formation of this radical. Based on our previous findings about the absence of the Trp() intermediate in four of the Synechocystis catalase-peroxidase variants on the heme distal side (W122F, W106A, H123Q, and R119A) we constructed new variants on Trp122 and Trp106 positions. Trp122 is very close to the iron on the heme distal side while Trp106 belongs to a short stretch (11 amino acid residues on the enzyme surface) that is highly conserved in catalase-peroxidases. We have used EPR spectroscopy to characterize the changes on the heme microenvironment induced by these mutations as well as the chemical nature of the radicals formed in each variant. Our findings identify Trp106 as the tryptophanyl radical site in Synechocystis catalase-peroxidase. The W122H and W106Y variants were specially designed to mimic the hydrogen-bond interactions of the naturally occurring Trp residues. These variants clearly demonstrated the important role of the extensive hydrogen-bonding network of the heme distal side, in the formation of the tryptophanyl radical. Moreover, the fact that W106Y is the only Synechocystis catalase-peroxidase variant of the distal heme side that recovers a catalase activity comparable to the WT enzyme, strongly indicates that the integrity of the extensive hydrogen-bonding network is also essential for the catalatic activity of the enzyme.  相似文献   

13.
In the presence of ornithine and arginine, ornithine carbamoyltransferase (OTCase) and arginase form a one-to-one enzyme complex in which the activity of OTCase is inhibited whereas arginase remains catalytically active. The mechanism by which these nonallosteric enzymes form a stable complex triggered by the binding of their respective substrates raises the question of how such a cooperative association is induced. Analyses of mutations in both enzymes identify residues that are required for their association, some of them being important for catalysis. In arginase, two cysteines at the C terminus of the protein are crucial for its epiarginase function but not for its catalytic activity and trimeric structure. In OTCase, mutations of putative ornithine binding residues, Asp-182, Asn-184, Asn-185, Cys-289, and Glu-256 greatly reduced the affinity for ornithine and impaired the interaction with arginase. The four lysine residues located in the SMG loop, Lys-260, Lys-263, Lys-265, and Lys-268, also play an important role in mediating the sensitivity of OTCase to ornithine and to arginase and appear to be involved in transducing and enhancing the signal given by ornithine for the closure of the catalytic domain.  相似文献   

14.
The primary structure of sheep brain pyridoxal kinase has been determined by direct chemical and physical methods. The enzyme contains 312 amino acid residues with an acetylated methionine at the N-terminus, yielding a molecular mass of 34,861 Da. The functional role played by the two tryptophanyl residues in positions 52 and 244 of the polypeptide chain has been investigated by fluorescence spectroscopy. The tryptophanyl residues are not completely exposed to the rapidly relaxing solvent and they are poorly accessible to collisional quenchers. Chemical modification with NBS abolishes the catalytic activity of the kinase. The amino acid sequence of the sheep brain enzyme shows high similarity (86.2% identity) with the human pyridoxal kinase recently reported [Hanna, Turner, and Kirkness, (1997), J. Biol. Chem. 272, 10756–10760]. Comparison of the mammalian proteins with bacterial and yeast putative pyridoxal kinases retrieved from the Swiss-Prot data bank shows a low degree of overall similarity. In particular, the putative ATP-binding domain is conserved, whereas the region that appears to be crucial in the binding of the pyridoxal substrate is not. Thus, the assignment of the bacterial and yeast cDNA-deduced proteins as pyridoxal kinases should be taken with caution.  相似文献   

15.
豆壳过氧化物酶的盐酸胍变性与化学修饰研究   总被引:2,自引:0,他引:2  
研究了盐酸胍对豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC1.11.1.7)构象与活力的影响,发现去辅基SHP的盐酸胍变(复)性及荧光变化关系与SHP全酶分子的盐酸胍变(复)性及荧光变化关系明显不同。应用过碘酸氧化法去除SHP分子表面糖链,研究糖链去除对酶性质的影响,则证实了SHP分子表面的糖链去除导致酶热稳定性下降。应用不同的蛋白质侧链修饰剂对SHP进行化学修饰则表明,巯基、酪氨酸和色氨酸残基为酶活力非必需,而羧基、组氨酸和精氨酸残基为酶活力所必需。  相似文献   

16.
The tryptophanyl fluorescence of Escherichia coli B L-asparaginase is partially quenched by the protonated form of a base with pKa 6.0 at 25 degrees C, mu = 0.1. This base has been identified as a histidyl residue through the effect of ionic strength and solvent polarity on the pKa. In addition diethylpyrocarbonate which modifies two histidyl residues in the enzyme abolishes the fluorescenc titration and reduces enzymic activity by 90%. The temperature dependence of the histidine pKa is unusual, showing a minimum at 25 degrees C, a thermodynamic analysis of the data shows this to be due to a large negative delta Cp term associated with the ionisation. This is interpreted in terms of the movement of hydrophobic residues into the enzyme on deprotonation of the histidyl residue. The quantum yield of L-asparaginase and its temperature dependence have been measured. The quantum yield is high and there is a low activation energy for radiationless deactivation of the excited state both of which are consistent with a tryptophanyl environment remote from the solvent.  相似文献   

17.
Stone EM  Chantranupong L  Georgiou G 《Biochemistry》2010,49(49):10582-10588
The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.  相似文献   

18.
Mammalian myoglobins contain two tryptophanyl residues at the invariant positions A-5 (W7) and A-12 (W14) in the N-terminal region (A helix) of the protein molecule. To determine the contribution of each tryptophanyl residue to the structure and stability of myoglobin, recombinant proteins with single indole residue, i.e., W7 or W14, were obtained by site-directed mutagenesis. The mutant proteins, expressed in Escherichia coli, were found correctly folded, the far ultraviolet circular dichroism of both mutants as well as the Soret absorption being superimposed to that of wild type protein. The removal of the prosthetic group from mutant proteins determined a loss of helical content much larger than that observed in the case of wild type myoglobin. These results suggest that tryptophanyl residues can play a crucial role on globin folding and structure.  相似文献   

19.
Bismuto E  Nucci R  Rossi M  Irace G 《Proteins》1999,35(2):163-172
The tryptophanyl emission decay of beta-glycosidase from the extremophilic archaeon Sulfolobus solfataricus (Sbetagly) has been investigated by frequency domain fluorometry. The data were analyzed in terms of sum of discrete lifetimes as well as in terms of quasi- continuous lifetime distributions of different shape. At neutral pH the emission decay is characterized by two components: a long-lived component, centered at 7.4 ns, and a short one at 2.7 ns, irrespective of the decay scheme used for the interpretation of the experimental results. The effects of an irreversible inhibitor, that is, cyclophellitol, and that of a powerful denaturant such as guanidinium hydrochloride on the dynamics of Sbetagly has been investigated by observing the changes induced in the two components of the tryptophanyl emission decay. The addition of cyclophellitol to native Sbetagly reduces the contribution of the short-lived component but does not affect the long-lived one. Increasing concentrations of guanidinium hydrochloride differently affect the contributions of the two emission components. Higher concentrations were required to unfold the molecular regions containing the long-lived indolic fluorophores. These results indicate that the long-lived contribution arises from tryptophanyl residues deeply clustered in the interior of the protein matrix, whereas the short-lived one includes residues located in less rigid and more solvent accessible regions, some of which might be located in functionally important parts of protein. The knowledge of the crystallographic structure of Sbetagly allowed us to evaluate some average parameters for each tryptophanyl microenvironment in the Sbetagly such as hydrophobicity, structural flexibility, and ability of side chains to act as fluorescence quenchers. These results permitted to divide the tryptophanyl fluorescence of Sbetagly in the contribution of two emitting groups: one consisting of eight closely clustered tryptophans, that is, Trp 33, 36, 60, 84, 151 174, 425, and 433, responsible for the long-lived emission component and the other one, composed of nine tryptophans nearer to the subunit surface, that is, Trp 12, 156, 192, 287, 288, 316, 361, 376, 455, associable to the short-lived emission component. Finally, the examination of the tryptophanyl emission decay of the mesophilic beta-galactosidase from Escherichia coli (Cbetagal) and the Arrhenius analysis of its dependence on temperature indicated that the tryptophanyl environments of the mesophilic enzyme are rather homogeneous in consequence of a larger protein dynamics.  相似文献   

20.
A temperature-sensitive, 5-fluorotryptophan (5FT)-resistant mutant of Bacillus subtilis was isolated which forms an altered tryptophanyl transfer ribonucleic acid synthetase [l-tryptophan: sRNA ligase (AMP), EC 6.1.1.2]. The mutant grows well at 30 C but not at 42 C. At the latter temperature, protein and ribonucleic acid (RNA) synthesis are abolished while deoxyribonucleic acid (DNA) synthesis proceeds for a considerable time. Tryptophanyl-transfer RNA (tRNA) synthetase activity is not detectable in the extracts of the mutant grown at 30 C whether this activity is measured by the attachment of l-tryptophan to tRNA or the l-tryptophan-dependent exchange of (32)P-pyrophosphate with adenosine triphosphate. Mixing experiments with extracts from the wild type and the mutant have ruled out the presence of an inhibitor or the absence of an activator as possible causes. Attempts to retrieve enzyme activity in vitro by various means (different conditions for cell disruption, addition of l-tryptophan, and adenosine triphosphate to the extraction buffer containing glycerol) were unsuccessful. The mutation in the locus of the tryptophanyl tRNA synthetase (trpS) was mapped on the bacterial chromosome by transformation and transduction. It is located between argC and metA. All temperature-resistant transformants recover wild-type levels of tryptophanyl tRNA synthetase activity and sensitivity to 5FT. Spontaneous revertants to temperature resistance are 5FT sensitive, but their levels of tryptophanyl tRNA synthetase activity and the thermolability of this enzyme in cell-free extracts varies. These revertants do not support the growth of a presumed nonsense mutant of phase SPO-1. Transduction experiments with phage PBS-1 indicated that reversion must be the result of an event at the site of the original mutation or at a site extremely close to it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号