首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice were subjected to gastrectomy (GX) or sham operation (controls). Four to six weeks later the pancreatic islets were isolated and analysed for cAMP or alternatively incubated in a Krebs-Ringer based medium in an effort to study insulin secretion and cAMP accumulation in response to glucose or the adenylate cyclase activator forskolin. Freshly isolated islets from GX mice had higher cAMP content than islets from control mice, a difference that persisted after incubation for 1 h at a glucose concentration of 4 mmol/l. Addition of forskolin to this medium induced much greater cAMP and insulin responses in islets from GX mice than in islets from control mice. In contrast, the insulin response to high glucose (16.7 mmol/l) was much weaker in GX islets than in control islets. Glucose-induced insulin release was associated with a 2-fold rise in the cAMP content in control islets. Surprisingly no rise in cAMP was noted in GX islets incubated at high glucose. Capacitance measurements conducted on isolated insulin cells from GX mice revealed a much lower exocytotic response to a single 500 ms depolarisation (from -70 mV to zero) than in control insulin cells. Addition of cAMP to the cytosol enhanced the exocytotic response in insulin cells from control mice but not from GX mice. The depolarisation-triggered inward Ca(2+) current in insulin cells from GX mice did not differ from that in control mice, and hence the reduced exocytotic response following GX cannot be ascribed to a decreased Ca(2+) influx. Experiments involving a train of ten 500 ms depolarisations revealed that the exocytotic response was prominent in control insulin cells but modest in GX insulin cells. It seems that cAMP is capable of eliciting insulin release from insulin cells of GX mice only when cAMP is generated in a specific microdomain conceivably through the intervention of membrane-associated adenylate cyclases that can be activated by forskolin. The GX-evoked impairment of depolarisation-induced exocytosis and glucose-stimulated insulin release may reflect the lack of a gastric agent that serves to maintain an appropriate insulin response to glucose and an appropriate exocytotic response to depolarisation by raising cAMP in a special glucose-sensitive compartment possibly regulated by a soluble adenylate cyclase.  相似文献   

2.
1. We have examined the effects of guanine nucleotides on ACTH secretion from digitonin-permeabilized AtT-20 cells, with the aim of analyzing the involvement of GTP-binding proteins (G proteins) in the secretory process. 2. AtT-20 cells permeabilized with 20 microM digitonin displayed calcium-dependent secretion. The EC50 of calcium was approximately 2 microM and the maximal stimulation was 350% of basal release. 3. Nonhydrolyzable guanine nucleotides also stimulated ACTH release, in a virtually Ca2+-free medium. The EC50 of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) was approximately 15 microM and the maximal stimulation was approximately 230% of basal release. The effects of calcium and guanine nucleotides were not additive. 4. In the presence of the inhibitory hormone, somatostatin guanine nucleotides inhibited the calcium-stimulated secretion. 5. Both the stimulatory and the inhibitory effects on secretion of guanine nucleotides were independent of changes in cyclic AMP (cAMP) and calcium. It is suggested that G proteins influence an unknown step in the secretion process, which would be near or at the exocytotic site. 6. The results can be explained by assuming the existence of two types of G proteins, one with stimulatory effects on exocytotic release (GeS) and another with inhibitory effects (GeI).  相似文献   

3.
To investigate the effects of chronic exposure to ketone bodies on glucose-induced insulin secretion, we evaluated insulin release, intracellular Ca2+ and metabolism, and Ca2+ efficacy of the exocytotic system in rat pancreatic islets. Fifteen-hour exposure to 5 mM d-beta-hydroxybutyrate (HB) reduced high glucose-induced insulin secretion and augmented basal insulin secretion. Augmentation of basal release was derived from promoting the Ca2+-independent and ATP-independent component of insulin release, which was suppressed by the GDP analog. Chronic exposure to HB affected mostly the second phase of glucose-induced biphasic secretion. Dynamic experiments showed that insulin release and NAD(P)H fluorescence were lower, although the intracellular Ca2+ concentration ([Ca2+](i)) was not affected 10 min after exposure to high glucose. Additionally, [Ca2+](i) efficacy in exocytotic system at clamped concentrations of ATP was not affected. NADH content, ATP content, and ATP-to-ADP ratio in the HB-cultured islets in the presence of high glucose were lower, whereas glucose utilization and oxidation were not affected. Mitochondrial ATP production shows that the respiratory chain downstream of complex II is not affected by chronic exposure to HB, and that the decrease in ATP production is due to decreased NADH content in the mitochondrial matrix. Chronic exposure to HB suppresses glucose-induced insulin secretion by lowering the ATP level, at least partly by inhibiting ATP production by reducing the supply of NADH to the respiratory chain. Glucose-induced insulin release in the presence of aminooxyacetate was not reduced, which implies that chronic exposure to HB affects the malate/aspartate shuttle and thus reduces NADH supply to mitochondria.  相似文献   

4.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) regulates several cellular functions, but its physiological role in pancreatic islet cells remains to be investigated. In this study, we confirmed the presence of PPAR-gamma in rat isolated islets and examined its role on insulin and glucagon secretion by using PPAR-gamma-overexpressed islets. PPAR-gamma overexpression significantly suppressed insulin secretion induced by stimulatory concentration of glucose (p<0.05). In addition, insulin secretion evoked by high potassium depolarization also was significantly decreased from PPAR-gamma-overexpressed islets (p<0.05). On the other hand, no significant change in glucagon release was observed after high potassium depolarization between PPAR-gamma-overexpressed and control islets. Insulin and glucagon content in islets was not statistically different between the two groups. In addition, the expression of uncoupling protein-2 (UCP-2) was found to be induced in PPAR-gamma-overexpressed islets. This result clearly indicates that the deteriorative effect of PPAR-gamma overexpression on the secretory machinery is selective for pancreatic beta-cells. And it is possible that its site of action can be located in the energy-consuming exocytotic process of insulin secretory granules, and that the reduction of ATP production through increased UCP-2 reduces insulin exocytosis.  相似文献   

5.
The use of islet DNA content to standardize insulin secretion rates from pancreatic islets of different sizes has been studied. Isolated intact islets were sorted into 4 size categories and perifused with 22 mM glucose, collecting effluent in 5 min fractions for insulin RIA. DNA content of perifused islets was measured by fluorometric assay, and insulin secretion expressed as pmoles/ug DNA/unit time. For islets with diameters less than 300 u (1) insulin secretion was proportional to islet size; (2) insulin release per islet and islet DNA content were strongly correlated; (3) when expressed as a function of DNA content, insulin secretion from different sized islets was not significantly different. These relationships did not continue for very large islets (above 300 u) suggesting a limiting islet size for insulin secretion in vitro. The data demonstrates that expression of insulin secretion from pancreatic islets with diameters less than 300 u, as a function of their DNA content standardizes secretion irrespective of islet size and number, and should allow direct comparison of secretory responses between different islet tissue preparations.  相似文献   

6.
The role of guanine nucleotides in insulin secretion was investigated in electrically permeabilized RINm5F cells. Ca2+ stimulated insulin release (EC50 approximately 2 microM Ca2+). The GTP stable analog, GTP gamma S, elicited insulin secretion at vanishingly low Ca2+ concentrations (less than 10(-11) M), slightly potentiated the response to intermediate Ca2+ levels, but exerted less than additive effects at maximal Ca2+ concentrations. The GDP analog, GDP beta S, inhibited both GTP gamma S- and Ca2+-stimulated secretion. The action of GTP gamma S was not mediated by cAMP, as the latter only enhanced Ca2+-induced secretion. In contrast, 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, promoted insulin release at nonstimulatory Ca2+ levels as well as potentiating the Ca2+ response. GTP analogs stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2), as assessed by inositol phosphate generation. However, this could not fully explain guanine nucleotide-induced secretion because: GTP gamma S-stimulated PtdInsP2 breakdown was totally dependent on Ca2+ and abolished at Ca2+ below 10(-11) M; at these Ca2+ levels, activators of protein kinase C were weak or ineffective secretagogues; the GTP analog Gpp(NH)p was much less effective than GTP gamma S in activating PtdInsP2 hydrolysis, while fully mimicking the effect on Ca2+-independent secretion. Both GTP gamma S-induced PtdInsP2 hydrolysis and insulin release were insensitive to pertussis toxin and cholera toxin. The findings point to a guanine nucleotide-regulated site in the activation of insulin secretion different from the known transmembrane signalling systems.  相似文献   

7.
In RBL-2H3 rat basophilic leukemia cells, Ag that crosslink IgE-receptor complexes stimulate the turnover of inositol phospholipids, the mobilization of Ca2+ from intra- and extracellular sources, the release of serotonin and other substances from granules and the transformation of the cell surface from a microvillous to a lamellar architecture. This study explores the role of GTP-binding proteins (G proteins) in the control of these biochemical and functional responses. We report that incubating RBL-2H3 cells for 4 h with 10 microM mycophenolic acid (MPA), an inhibitor of de novo GTP synthesis, reduces GTP levels by over 60% and causes an average reduction of 50% in Ag-stimulated serotonin release. This inhibition of secretion is associated with a 50% decrease in the rate of 45Ca2+ influx in MPA-treated cells. In contrast, Ag-stimulated inositol trisphosphate production is only slightly reduced, indicating that the phosphatidylinositol-specific phospholipase C can be activated by Ag in GTP-depleted cells. The membrane responses to IgE receptor cross-linking are unaffected by incubating cells with MPA. Exogenous guanine or guanosine protects the GTP pools in MPA-treated cells and permits normal ion transport and secretory responses to Ag; adenine does not. These results implicate a guanine nucleotide-binding protein in the control of IgE receptor-dependent signal transduction in RBL-2H3 cells. This protein may particularly control the Ca2+ influx pathway that is essential for secretion.  相似文献   

8.
At physiological glucose concentrations, isolated pancreatic islets release a minor portion of their newly synthesized insulin and precursors in a phase of secretion which is largely complete by 4 h of chase. Discharge during this period can be amplified by secretagogues, yet is not abolished by conditions which fully suppress regulated release from dense core secretory granules. The ability to stimulate the secretion and the biochemical profile of released proinsulin-related peptides indicate that secretion during this period originates from immature granules. The stoichiometry of release of labeled C-peptide:insulin during this phase is 1:1 at high glucose concentrations. However, at physiologic or low concentrations, C-peptide is released in molar excess of insulin as if the exocytotic vesicles carrying this secretion were budding from a post-Golgi compartment in which the lumen was composed of condensing insulin and soluble C-peptide. These findings can be explained by a model for regulated secretory protein traffic in which direct exocytosis of young granules is stimulated by higher glucose concentrations and vesicle budding from immature granules occurs at lower concentrations. Thus, insulin targeting from immature granules exhibits both regulated and constitutive-like characteristics.  相似文献   

9.
Isolated islets from low-protein (LP) diet rats showed decreased insulin secretion in response to glucose and carbachol (Cch). Taurine (TAU) increases insulin secretion in rodent islets with a positive effect upon the cholinergic pathway. Here, we investigated the effect of TAU administration upon glucose tolerance and insulin release in rats fed on a normal protein diet (17%) without (NP) or with 2.5% of TAU in their drinking water (NPT), and LP diet fed rats (6%) without (LP) or with TAU (LPT). Glucose tolerance was found to be higher in LP, compared to NP rats. However, plasma glucose levels, during ipGTT, in LPT rats were similar to those of controls. Isolated islets from LP rats secreted less insulin in response to increasing glucose concentrations (2.8-22.2 mmol/L) and to 100 μmol/L Cch. This lower secretion was accompanied by a reduction in Cch-induced internal Ca(2+) mobilization. TAU supplementation prevents these alterations, as judged by the higher secretion induced by glucose or Cch in LPT islets. In addition, Ach-M3R, syntaxin 1 and synaptosomal associated protein of 25 kDa protein expressions in LP were lower than in NP islets. The expressions of these proteins in LPT were normalized. Finally, the sarcoendoplasmatic reticulum Ca(2+)-ATPase 3 protein expression was higher in LPT and NPT, compared with controls. In conclusion, TAU supplementation to LP rats prevented alterations in glucose tolerance as well as in insulin secretion from isolated islets. The latter effect involves the normalization of the cholinergic pathway, associated with the preservation of exocytotic proteins.  相似文献   

10.
In pancreatic islets of adult (three month) and old (24 month) rats the effect of glucose on glucose oxidation, pyridine nucleotides, glutathione and insulin secretion was studied. DNA content was similar in both groups of animals; however, islets of old rats exhibited 30% less insulin content. While glucose-induced (16.7 mM) insulin secretion in islets of old rats was approximately 50% less than in islets of adults, no significant difference was observed in the insulin releasing effect of theophylline (1 mM). Although islet production of 14CO2 in the presence of 16.7 mM glucose increased equally in both groups, elevation of glucose failed to increase the percentage of total glucose oxidation via the pentose phosphate shunt in islets of old rats. Elevation of glucose increased the NADPH/NADP and the NADH/NAD ratio in both groups of islets in a similar manner. The effect of glucose on the GSH/GSSG ratio revealed a dose-related increase in the islets of adult rats, whereas islets of old rats did not respond to elevation of glucose. Our data seem to indicate that the lower secretory response of islets of old rats is related to the failure of glucose to increase the GSH/GSSG ratio. In contrast the insulin release induced by theophylline does not appear to depend on islet thiols.  相似文献   

11.
The involvement of cyclic AMP-dependent protein kinase A (PKA) in the exocytotic release of insulin from rat pancreatic islets was investigated using the Rp isomer of adenosine 3',5'-cyclic phosphorothioate (Rp-cAMPS). Preincubation of electrically permeabilised islets with Rp-cAMPS (1 mM, 1 h, 4 degrees C) inhibited cAMP-induced phosphorylation of islet proteins of apparent molecular weights in the range 20-90 kDa, but did not affect basal (50 nM Ca2+) nor Ca2(+)-stimulated (10 microM) protein phosphorylation. Similarly, Rp-cAMPS (500 microM) inhibited both cAMP- (100 microM) and 8BrcAMP-induced (100 microM) insulin secretion from electrically permeabilised islets without affecting Ca2(+)-stimulated (10 microM) insulin release. In intact islets, Rp-cAMPS (500 microM) inhibited forskolin (1 microM, 10 microM) potentiation of insulin secretion, but did not significantly impair the insulin secretory response to a range of glucose concentrations (2-20 mM). These results suggest that cAMP-induced activation of PKA is not essential for either basal or glucose-stimulated insulin secretion from rat islets.  相似文献   

12.
Summary Exposure of isolated pancreatic islets (mouse or rat) to low temperature (2° C) evoked a threefold increase in insulin release irrespective of the glucose concentration in the incubation medium. Cold-induced release was transient and rewarming to 37° C restored the sensitivity of B-cells to glucose stimulation. In islets cooled to 2° C, exocytotic profiles could easily be detected both by thin-section and freeze-fracture electron microscopy. As revealed by the freeze-fracture technique, the number of exocytotic profiles per membrane area was increased three-to fourfold as compared to islet cells incubated at 20° C. This was paralleled by intracellular fusion of secretory vesicles. Cold-induced insulin release was not affected by theophylline, cytochalasin B, omission of extracellular Ca++ or D600. Replacement of extracellular Na+ with choline or sucrose suppressed the increase in insulin release and in frequency of exocytotic profiles recorded after exposure to 2° C. It is suggested that a redistribution of Ca++ from intracellular stores, possibly mediated by an increase in intracellular Na+, triggers exocytosis of insulin granules upon exposure to cold.  相似文献   

13.
We have found that preexposure to an elevated concentration of glucose reversibly induces an enhancement of basal insulin release from rat pancreatic islets dependent on glucose metabolism. This basal insulin release augmented by priming was not suppressed by reduction of the intracellular ATP or Ca(2+) concentration, because even in the absence of ATP at low Ca(2+), the augmentation was not abolished from primed electrically permeabilized islets. Moreover, it was not inhibited by an alpha-adrenergic antagonist, clonidine. A threshold level of GTP is required to induce these effects, because together with adenine, mycophenolic acid, a cytosolic GTP synthesis inhibitor, completely abolished the enhancement of basal insulin release due to the glucose-induced priming without affecting the glucose-induced increment in ATP content and ATP-to-ADP ratio. In addition, a GDP analog significantly suppressed the enhanced insulin release due to priming from permeabilized islets in the absence of ATP at low Ca(2+), suggesting that the GTP-sensitive site may play a role in the augmentation of basal insulin release due to the glucose-induced priming effect.  相似文献   

14.
Long-term total parenteral nutrition (TPN) is associated with elevated plasma lipids and a marked decrease of glucose-stimulated insulin release. Since nitric oxide (NO) has been shown to modulate negatively the insulin response to glucose, we investigated the influence of TPN-treatment on isoforms of islet NO-synthase (NOS) activities in relation to the effect of glucagon-like peptide-1 (GLP-1), a known activator of glucose-stimulated insulin release. Isolated islets from TPN rats incubated at basal glucose (1 mmol/l) showed a modestly increased insulin secretion accompanied by an enhanced accumulation of islet cAMP and cGMP. In contrast, TPN islets incubated at high glucose (16.7 mmol/l) displayed an impaired insulin secretion and a strong suppression of islet cAMP content. Moreover, islet inducible NOS (iNOS) as well as islet cGMP content were greatly increased in these TPN islets. A dose-response study of GLP-1 with glucose-stimulated islets showed that GLP-1 could overcome and completely restore the impaired insulin release in TPN islets, bringing about a marked increase in islet cAMP accumulation concomitant with heavy suppression of both glucose-stimulated increase in islet cGMP content and the activities of constitutive NOS (cNOS) and iNOS. These effects of GLP-1 were mimicked by dibutyryl-cAMP. The present results show that the impaired insulin response of glucose-stimulated insulin release seen after TPN treatment is normalized by GLP-1. This beneficial effect of GLP-1 is most probably exerted by a cAMP-induced suppression of both iNOS and cNOS activities in these TPN islets.  相似文献   

15.
Strong, albeit indirect, evidence suggests that a GTP-binding (G) protein(s) can act directly on the secretory machinery by a post-second messenger mechanism. The type and function of this putative Ge (exocytosis) protein were investigated in streptolysin-O-permeabilized rat basophilic leukemia (RBL) cells. The exocytotic response to calcium was first characterized both morphologically and biochemically using the release of preloaded [3H]serotonin as an index of exocytosis. Calcium-induced secretion (EC50 about 3 microM) in RBL cells requires ATP (EC50 about 2.5 mM) and is modulated by pH, the optimal value being 7.2. Another requirement for calcium-induced secretion is an activated G protein, since inactivators of G proteins such as GDP beta S (EC50 about 800 microM) inhibit the secretagogue effect of 10 microM free calcium. Conversely, GTP gamma S (EC50 about 1 microM) and other nonhydrolyzable analogs of GTP, which keep G proteins in a permanently active conformation, potentiate the effect of calcium. GTP gamma S alone is without effect. The effect of GTP gamma S on exocytosis is apparently not mediated by known second messengers, suggesting that a Ge protein is involved. Electron microscopic images show that in resting cells, secretory granules are clustered in the perinuclear area, whereas they become scattered upon calcium stimulation. A paradoxical effect of GTP gamma S is observed when applied during permeabilization; under these conditions, in fact, the nucleotide inhibits the subsequent secretory response to calcium. The scattering of granules is also inhibited. This effect of GTP gamma S is counteracted by coadministration of GTP. These responses to guanine nucleotides are typical of vectorially acting G proteins involved in protein synthesis and in intracellular vesicle transport. Taken together, the data presented suggest that calcium-dependent release requires a vectorially acting G protein controlling the movement of secretory granules. This and alternative models are discussed.  相似文献   

16.
Although exogenous phosphatidic acid (PA) has been shown to promote insulin release, the effects of endogenous PA on endocrine function are largely unexplored. In order to generate PA in situ, intact adult-rat islets were treated with exogenous phospholipases of the D type (PLD), and their effects on phospholipid metabolism and on insulin release were studied in parallel. Chromatographically purified PLD from Streptomyces chromofuscus stimulated the accumulation of PA in [14C]arachidonate- or [14C]myristate-prelabelled islets, and also promoted insulin secretion over an identical concentration range. During 30 min incubations, insulin release correlated closely with the accumulation of [14C]arachidonate-labelled PA (r2 = 0.98; P less than 0.01) or [14C]myristate-labelled PA (r2 = 0.97; P less than 0.01). Similar effects were seen both in freshly isolated and in overnight-cultured intact islets. In contrast, PLDs (from cabbage or peanut) which do not support phospholipid hydrolysis at the pH of the extracellular medium also did not promote insulin release. The effects on secretion of the active PLD preparation were inhibited by modest cooling (to 30 degrees C); dantrolene or Co2+ also inhibited PLD-induced secretion without decreasing PLD-induced PA formation. Additionally, the removal of PLD left the subsequent islet responsiveness to glucose intact, further supporting an exocytotic non-toxic mechanism. PLD-induced insulin release did not appear to require influx of extracellular Ca2+, nor could the activation of protein kinase C clearly be implicated. During incubations of 30 min, PLD selectively generated PA; however, more prolonged incubations (60 min) also led to production of some diacyglycerol and free arachidonic acid concomitant with progressive insulin release. These data suggest that PLD activation has both rapid and direct effects (via PA) and more delayed, secondary, effects (via other effects of PA or the generation of other lipid signals). Taken in conjunction with our demonstration that pancreatic islets contain an endogenous PLD which generates PA [Dunlop & Metz (1989) Biochem. Biophys. Res. Commun. 163, 922-928], these studies provide evidence suggesting that PLD activation (and possibly other pathways leading to PA formation) could play a role in stimulus-secretion coupling in pancreatic islets.  相似文献   

17.
Adenylate cyclase activity was estimated inhomogenates of rat islets of Langerhans. by measurement of the conversion of [α-32P]ATP to adenosine cyclic 3′,5′-[32P]monophosphate. Islet cell adenyulate cyclase activity was stimulated by the addition to the homogenates of glucagon, fluoride, prostaglandins E1 or E2 GTP or CTP although not by UTP, TTP, GDP, or GMP. Adrenaline, noradrenaline and isoproterenol were each found to inhibit the activity, the order of potency at a concentration of 10?4 M being adrenaline > noradrenaline > isoproterenol. The effects of these agents were not altered by β-blackade with propanolol but could be preventived by α-blockade with phenoxybenzamine. The following agents, present at concentrations previously shown to increase rates of insulin secretion from rat islets of Langerhans, were ineffective in altering adenylate cyclase activity when tested in the presence or absence of 0.1 mM GTP: glucose, glibenclamide, xylitol leucine, arginine, or potassium. These results suggest that the activity of adenylate cyclase in the B cells of rat islets of Langerhans may play an important role in mediating the direct effects of hormones and adrenergic agents on insulin release, although the short term effects of substrates such as glucose or amino acids on the release process do not appear to be mediated through alterations in the activity of this enzyme.  相似文献   

18.
The possible involvement of chemiosmotic lysis of secretory granules in the exocytosis of insulin from pancreatic beta cells was investigated by comparing insulin release from isolated secretory granules, from intact islets of Langerhans, and from electrically permeabilised islets. Lysis of isolated granules was stimulated by ATP in the presence of Mg2+. ATP-induced granule lysis was pH and temperature dependent and was inhibited by collapsing the pH gradient across the granule membrane by removal of permeant anions, or by increasing the extragranular osmolarity. However, insulin secretion from intact islets in response to glucose, a phosphodiesterase inhibitor or a Ca2+ ionophore was only partially inhibited by anion replacement, while Ca2+ -induced insulin release from electrically permeabilised islets was not affected by altering the extragranular or intragranular pH. These results suggest that studies of the stability of isolated granules in vitro do not necessarily relate to insulin release from whole cells, and do not support a major role for chemiosmotic lysis of secretory granules in the exocytotic release of insulin.  相似文献   

19.
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.  相似文献   

20.
Hexamminecobalt(III) (HAC) chloride was found to have a potent inhibitory effect on glucose-induced insulin secretion from pancreatic islets. HAC at 2 mm inhibited the secretion in response to 22.2 mm glucose by 90% in mouse islets. Perifusion experiments revealed that the first phase of insulin secretion was severely suppressed and that the second phase of secretion was completely abrogated. Removal of HAC from the perifusate immediately restored insulin secretion with a transient overshooting above the normal level. However, HAC failed to affect glucose-induced changes in d-[6-(14)C]glucose oxidation, levels of reduced forms of NAD and NADP, mitochondrial membrane potential, ATP content, cytosolic calcium concentration, or calcium influx into mitochondria. Furthermore, HAC inhibited 50 mm potassium-stimulated insulin secretion by 77% and 10 microm mastoparan-stimulated insulin secretion in the absence of extracellular Ca(2+) by 80%. The results of a co-immunoprecipitation study of lysates from insulin-secreting betaHC9 cells using anti-syntaxin and anti-vesicle-associated membrane protein antibodies for immunoprecipitation or Western blotting suggested that HAC inhibited disruption of the SNARE complex, which is normally observed upon glucose challenge. These results suggest that the inhibitory effect of HAC on glucose-induced insulin secretion is exerted at a site(s) distal to the elevation of cytosolic [Ca(2+)], possibly in the exocytotic machinery per se; and thus, HAC may serve as a useful tool for dissecting the molecular mechanism of insulin exocytotic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号