共查询到20条相似文献,搜索用时 0 毫秒
1.
Survey of simple sequence repeats in completed fungal genomes 总被引:7,自引:0,他引:7
The use of simple sequence repeats or microsatellites as genetic markers has become very popular because of their abundance and length variation between different individuals. SSRs are tandem repeat units of 1 to 6 base pairs that are found abundantly in many prokaryotic and eukaryotic genomes. This is the first study examining and comparing SSRs in completely sequenced fungal genomes. We analyzed and compared the occurrences, relative abundance, relative density, most common, and longest SSRs in nine taxonomically different fungal species: Aspergillus nidulans, Cryptococcus neoformans, Encephalitozoon cuniculi, Fusarium graminearum, Magnaporthe grisea, Neurospora crassa, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Ustilago maydis. Our analysis revealed that, in all of the genomes studied, the occurrence, abundance, and relative density of SSRs varied and was not influenced by the genome sizes. No correlation between relative abundance and the genome sizes was observed, but it was shown that N. crassa, the largest genome analyzed had the highest relative abundance of SSRs. In most genomes, mononucleotide, dinucleotide, and trinucleotide repeats were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. Our analysis showed that the relative abundance of SSRs in fungi is low compared with the human genome and that longer SSRs in fungi are rare. In addition to providing new information concerning the abundance of SSRs for each of these fungi, the results provide a general source of molecular markers that could be useful for a variety of applications such as population genetics and strain identification of fungal organisms. 相似文献
2.
Simple sequence repeats (SSRs) are ubiquitous short tandem repeats, which are associated with various regulatory mechanisms and have been found in viral genomes. Herein, we develop MfSAT (Multi-functional SSRs Analytical Tool), a new powerful tool which can fast identify SSRs in multiple short viral genomes and then automatically calculate the numbers and proportions of various SSR types (mono-, di-, tri-, tetra-, penta- and hexanucleotide repeats). Furthermore, it also can detect codon repeats and report the corresponding amino acid. 相似文献
3.
A 371 base pair segment (bordered by Hind III and Eco RI cutting sites) of wheat embryo nuclear DNA has been cloned and sequenced. It is AT-rich (68%), shares some sequence features with autonomously replicating sequence (ARS) elements, and occurs in approximately 7600 copies per haploid genome. When used as probe for blot hybridization to Hind III-digested wheat DNA, it gives an irregular series of hybridization bands. Essentially the same hybridization pattern was observed for rye DNA. It is concluded that this segment is distributed irregularly but, apparently, according to the same rule in both wheat and rye genomes. 相似文献
4.
利用公共的真菌基因组数据库资源, 对核盘菌(Sclerotinia sclerotiorum)和灰葡萄孢(Botrytis cinerea)基因组中SSRs的结构类型、分布、丰度及最长序列等进行了系统分析, 并与已经研究过的禾谷镰孢菌(Fusarium graminearum), 稻瘟病菌(Magnaporthe grisea)和黑粉菌(Ustilago maydis)等几种植物病原真菌基因组中的SSRs进行了比较。结果表明: 核盘菌和灰葡萄孢基因组中的SSRs非常丰富, 分别为6 539和8 627个, 并且在结构类型和分布规律上具有一定的相似性; 与其他几种病原真菌相比, 核盘菌和灰葡萄孢基因组中长重复的四、五、六核苷酸基序更为丰富, 从而使得这两种真菌具有更高的变异性。同时, 我们发现真菌基因组中SSRs的丰度与基因组的大小及GC含量没有必然的关系。文章对核盘菌和灰葡萄孢基因组中SSRs的丰度、出现频率及最长基序的分析为快速、便捷地设计多态性丰富的SSRs引物提供了有益的信息。 相似文献
5.
An in-silico analysis of simple sequence repeats (SSRs) in genomes of 32 species of potexviruses was performed wherein a total of 691 SSRs and 33 cSSRs were observed. Though SSRs were present in all the studied genomes their incident frequency ranged from 11 to 30 per genome. Further, 10 potexvirus genomes possessed no cSSRs when extracted at a dMAX of 10 and wherein present, the highest frequency was 3. SSR and cSSR incidence, relative density and relative abundance were non-significantly correlated with genome size and GC content suggesting an ongoing evolutionary and adaptive phase of the virus species. SSRs present primarily ranged from mono- to tri-nucleotide repeat motifs with a greatly skewed distribution across the coding and non-coding regions. Present work is an effort for the undergoing compilation and analysis of incidence, distribution and variation of the viral repeat sequences to understand their evolutionary and functional relevance. 相似文献
6.
Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They
are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo
mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead
to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they
have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative
DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect
these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution
and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes,
Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed
throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few
regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes
distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe
scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable
sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled
out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome
plasticity in these genomes.
Supplementary Data pertaining to this article is available on the Journal of Biosciences Website at 相似文献
7.
Mrázek J 《Molecular biology and evolution》2006,23(7):1370-1385
Simple sequence repeats (SSRs) composed of extensive tandem iterations of a single nucleotide or a short oligonucleotide are rare in most bacterial genomes, but they are common among Mycoplasma. Some of these repeats act as contingency loci in association with families of surface antigens. By contraction or expansion during replication, these SSRs increase genetic variance of the population and facilitate avoidance of the immune response of the host. Occurrence and distribution of SSRs are analyzed in complete genomes of 11 Mycoplasma and 3 related Mollicutes in order to gain insights into functional and evolutionary diversity of the SSRs in Mycoplasma. The results revealed an unexpected variety of SSRs with respect to their distribution and composition and suggest that it is unlikely that all SSRs function as contingency loci or recombination hot spots. Various types of SSRs are most abundant in Mycoplasma hyopneumoniae, whereas Mycoplasma penetrans, Mycoplasma mobile, and Mycoplasma synoviae do not contain unusually long SSRs. Mycoplasma hyopneumoniae and Mycoplasma pulmonis feature abundant short adenine and thymine runs periodically spaced at 11 and 12 bp, respectively, which likely affect the supercoiling propensities of the DNA molecule. Physiological roles of long adenine and thymine runs in M. hyopneumoniae appear independent of location upstream or downstream of genes, unlike contingency loci that are typically located in protein-coding regions or upstream regulatory regions. Comparisons among 3 M. hyopneumoniae strains suggest that the adenine and thymine runs are rarely involved in genome rearrangements. The results indicate that the SSRs in the Mycoplasma genomes play diverse roles, including modulating gene expression as contingency loci, facilitating genome rearrangements via recombination, affecting protein structure and possibly protein-protein interactions, and contributing to the organization of the DNA molecule in the cell. 相似文献
8.
The abundance and inherent potential for extensive allelic variations in simple sequence repeats (SSRs) or microsatellites resulted in valuable source for genetic markers in eukaryotes. In this study, we analyzed and compared the abundance and organisation of SSR in the genome of two important fungal pathogens of wheat, brown or leaf rust (Puccinia triticina) and black or stem rust (Puccinia graminis f. sp. tritici). P. triticina genome with two fold genome size as compared to P. graminis tritici has lower relative abundance and SSR density. The distribution pattern of different SSR motifs provides the evidence of greater accumulation of dinucleotide followed by trinucleotide repeats. More than two-hundred different types of repeat motifs were observed in the genomes. The longest SSR motifs varied in both genomes and some of the repeat motifs are found in higher frequency. The information about survey of relative abundance, relative density, length and frequency of different repeat motifs in Puccinia sp. will be useful for developing SSR markers that could find several applications in analysis of fungal genome such as genetic diversity, population genetics, race identification and acquisition of new virulence. 相似文献
9.
C. Jung T. Lelley 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1985,70(4):422-426
Summary Six primary triticale lines were produced from two advanced breeding lines of Triticum durum and three inbred genotypes of Secale cereale. The wheat and rye parents and the triticale derivatives were crossed in all possible combinations within each species group. Chiasma and univalent frequency of parents and hybrids were determined. The primary triticale lines had more univalents and less chiasmata per pollen mother cell than the corresponding wheat and rye parents together. The parental wheat F1 exhibited negative heterosis for chiasma frequency whereas all rye hybrids had much higher chiasma frequencies than their inbred parents. Triticale F1s generally showed lower chiasma frequencies and more univalents than their parents, but the degree of pairing failure was dependent upon which of the parental species within the triticale, wheat or rye, was in the heterozygous state. F1s with heterozygous wheat genome only showed the least reduction in chiasma number (presumably caused by gene actions within the wheat genome), while F1s with heterozygous rye genome showed high reduction in chiasma frequency and an increase in pairing failure (induced by negative interactions between the heterozygous rye and the wheat genome in triticale). A high correlation was found between the frequency of undisturbed pollen mother cells and the frequency of aneuploids in the subsequent generation. A higher number of aneuploids occurred in those populations which were heterozygous for the rye genome. 相似文献
10.
Alkhimova OG Mazurok NA Potapova TA Zakian SM Heslop-Harrison JS Vershinin AV 《Chromosoma》2004,113(1):42-52
Although the monomer size, nucleotide sequence, abundance and species distribution of tandemly organized DNA families are well characterized, little is known about the internal structure of tandem arrays, including total arrays size and the pattern of monomers distribution. Using our rye specific probes, pSc200 and pSc250, we addressed these issues for telomere associated rye heterochromatin where these families are very abundant. Fluorescence in situ hybridization (FISH) on meiotic chromosomes revealed a specific mosaic arrangement of domains for each chromosome arm where either pSc200 or pSc250 predominates without any obvious tendency in order and size of domains. DNA of rye-wheat monosomic additions studied by pulse field gel electrophoresis produced a unique overall blot hybridization display for each of the rye chromosomes. The FISH signals on DNA fibres showed multiple monomer arrangement patterns of both repetitive families as well as of the Arabidopsis-type telomere repeat. The majority of the arrays consisted of the monomers of both families in different patterns separated by spacers. The primary structure of some spacer sequences revealed scrambled regions of similarity to various known repetitive elements. This level of complexity in the long-range organization of tandem arrays has not been previously reported for any plant species. The various patterns of internal structure of the tandem arrays are likely to have resulted from evolutionary interplay, array homogenization and the generation of heterogeneity mediated by double-strand breaks and associated repair mechanisms. 相似文献
11.
Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. 总被引:8,自引:0,他引:8
Jong-Min Ko Geum-Sook Do Duck-Yong Suh Bong-Bo Seo Doo-Chull Shin Huhn-Pal Moon 《Génome》2002,45(1):157-164
Two rye genome-specific random amplified polymorphic DNA (RAPD) markers were identified for detection of rye introgression in wheat. Both markers were amplified in all of the tested materials that contained rye chromatin such as rye, hexaploid triticale, wheat-rye addition lines, and wheat varieties with 1BL.1RS translocation. Two cloned markers, designated pSc10C and pSc20H, were 1012 bp and 1494 bp, respectively. Sequence analysis showed that both pSc10C and pSc20H fragments were related to retrotransposons, ubiquitously distributed in plant genomes. Using fluorescence in situ hybridization (FISH), probe pSc10C was shown to hybridize predominantly to the pericentromeric regions of all rye chromosomes, whereas probe pSc20H was dispersed throughout the rye genome except at telomeric regions and nucleolar organizing regions. The FISH patterns showed that the two markers should be useful to select or track all wheat-rye translocation lines derived from the whole arms of rye chromosomes, as well as to characterize the positions of the translocation breakpoints generated in the proximal and distal regions of rye arms. 相似文献
12.
13.
14.
J. M. Guerra‐Sanz 《Molecular ecology resources》2002,2(3):223-225
Publically available cDNA sequence data of Citrullus lanatus were searched for simple sequence repeats (SSRs). Nineteen microsatellites were identified and primer pairs were designed to amplify those loci. Primers were evaluated for their ability to detect polymorphisms within a set of several watermelon varieties and local landraces, C. colocynthis, and interspecific hybrids. Eighteen polymorphic SSR loci were identified. These polymorphic loci can be used for varietal identification and other uses. 相似文献
15.
The chromosomal locations of leaf peroxidase genes in hexaploid wheat,rye and barley 总被引:2,自引:0,他引:2
C. C. Ainsworth H. M. Johnson E. A. Jackson T. E. Miller M. D. Gale 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1984,69(2):205-210
Summary Eight leaf peroxidase isozymes were distinguished by IEF in Chinese Spring. Two genes which control the production of three of these isozymes were located on chromosome arms 1BS and 1DS by nullisomic analysis. These loci probably form part of a homoeoallelic series and have been designated Per-B1 and Per-D1 respectively. Analysis of chromosome 1B short arm terminal deletion stocks indicated that the Per-B1 locus is located between the nucleolar organiser region and another isozyme marker, Hk-B1. Two variant leaf peroxidase phenotypes were distinguished in a small sample of hexaploid wheat varieties. Analysis of wheat-alien addition and substitution lines identified homoeologous loci in rye (Per-R1) and barley (Per-H1). 相似文献
16.
Polymorphic simple GATA/GACA repeats in plant genomes. 总被引:5,自引:1,他引:5
K Weising F Weigand A J Driesel G Kahl H Zischler J T Epplen 《Nucleic acids research》1989,17(23):10128
17.
Simple sequence repeats (SSRs) have been used to examine the genomic diversity of wheat (Triticum aestivum L.) germplasm. Thirteen wheat genotypes of diverse origin were analyzed with 43 selected SSRs to provide uniform and maximum genome coverage. A total of 156 allelic variants were detected at 43 SSR loci, ranging from two to eight per locus with an average of 3.6. The polymorphic information content (PIC) values of the loci ranged from 0.10 (Xgwm264) to 0.89 (Xgwm471 and Xgwm577). Genetic similarities calculated from SSR data ranged from 30.1 ('Era' and 'Klasic') to 90.1 ('Neepawa' and 'Thatcher') between genotypes. UPGMA analysis based on genetic distance estimates produced three loose groupings that were generally consistent with available pedigree information. Cultivars 'Neepawa' and 'Thatcher' are closely related. Their genetic relationship was confirmed by the facts that they share a common ancestor and are clustered together. There were two different 'Era' genotypes, one used in the 'Otane' pedigree and one used in this study. None of the other genotypes had a close common ancestor indicating any close genetic relationships. Principal coordinate analysis also confirmed this pattern of genetic diversity. A wide range of genomic diversity was observed among all the genotypes, proving them to be prime candidates for selective breeding for specific traits and broadening the genetic base. 相似文献
18.
Trivedi S 《Genetics and molecular research : GMR》2006,5(4):741-772
All organisms that have been studied until now have been found to have differential distribution of simple sequence repeats (SSRs), with more SSRs in intergenic than in coding sequences. SSR distribution was investigated in Archaea genomes where complete chromosome sequences of 19 Archaea were analyzed with the program SPUTNIK to find di- to penta-nucleotide repeats. The number of repeats was determined for the complete chromosome sequences and for the coding and non-coding sequences. Different from what has been found for other groups of organisms, there is an abundance of SSRs in coding regions of the genome of some Archaea. Dinucleotide repeats were rare and CG repeats were found in only two Archaea. In general, trinucleotide repeats are the most abundant SSR motifs; however, pentanucleotide repeats are abundant in some Archaea. Some of the tetranucleotide and pentanucleotide repeat motifs are organism specific. In general, repeats are short and CG-rich repeats are present in Archaea having a CG-rich genome. Among the 19 Archaea, SSR density was not correlated with genome size or with optimum growth temperature. Pentanucleotide density had an inverse correlation with the CG content of the genome. 相似文献
19.
Rosa Sánchez-Monge Angeles Delibes C. Hernandéz-Lucas Pilan Carbonero F. García-Olmedo 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1979,54(2):61-63
Summary Thionins are high sulphur basic polypeptides present in the endosperm of Gramineae. In wheat there are three thionins encoded by genes located in the long arms of chromosomes 1A, 1B and 1D. Rye has one thionin encoded by a gene which has been assigned to chromosome 1R after analysis of the Imperial-Chinese Spring rye-wheat disomic addition lines. Commercial varieties and experimental stocks with a 1B/1R substitution carry the thionin from rye (
R) instead of the
B thionin from wheat. The
R thionin gene is not located in the large chromosomal segment representing most of the short arm of chromosome 1R. 相似文献
20.
The survey of simple sequence repeats (SSRs) has been extensively made in eukaryotes and prokaryotes. However, its still rare in viruses. Thus, we undertook a survey of SSRs in Human Immunodeficiency Virus Type 1 (HIV-1) which is an excellent system to study evolution and roles of SSRs in viruses. Distribution of SSRs was examined in 81 completed HIV-1 genome sequences which come from 34 different countries or districts over 6 continents. In these surveyed sequences, although relative abundance and relative density exhibit very high similarity, some of these sequences show different preference for most common SSRs and longest SSRs. Our results suggest proportion of various repeat types might be related to genome stability. 相似文献