首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. Unlike apoptosis, necroptosis evokes inflammatory responses by releasing damage-associated molecular patterns. Recent studies suggest that tumor undergoes necroptosis in vivo and necroptosis has pro- or anti-tumoral effects in cancer development and progression. Furthermore, triggering necroptosis in tumor cells has been explored as a potential therapeutic strategy against cancer. Here, we will review the recent research progress of necroptosis in conferring anti- or pro-tumoral effects and its potential application in cancer therapy.  相似文献   

2.
The lab of Jürg Tschopp was the first to report on the crucial role of receptor-interacting protein kinase 1 (RIPK1) in caspase-independent cell death. Because of this pioneer finding, regulated necrosis and in particular RIPK1/RIPK3 kinase-mediated necrosis, referred to as necroptosis, has become an intensively studied form of regulated cell death. Although necrosis was identified initially as a backup cell death program when apoptosis is blocked, it is now recognized as a cellular defense mechanism against viral infections and as being critically involved in ischemia-reperfusion damage. The observation that RIPK3 ablation rescues embryonic lethality in mice deficient in caspase-8 or Fas-associated-protein-via-a-death-domain demonstrates the crucial role of this apoptotic platform in the negative control of necroptosis during development. Here, we review and discuss commonalities and differences of the increasing list of inducers of regulated necrosis ranging from cytokines, pathogen-associated molecular patterns, to several forms of physicochemical cellular stress. Since the discovery of the crucial role of RIPK1 and RIPK3 in necroptosis, these kinases have become potential therapeutic targets. The availability of new pharmacological inhibitors and transgenic models will allow us to further document the important role of this form of cell death in degenerative, inflammatory and infectious diseases.  相似文献   

3.
The mechanism of apoptosis has been extensively characterized over the past decade, but little is known about alternative forms of regulated cell death. Although stimulation of the Fas/TNFR receptor family triggers a canonical 'extrinsic' apoptosis pathway, we demonstrated that in the absence of intracellular apoptotic signaling it is capable of activating a common nonapoptotic death pathway, which we term necroptosis. We showed that necroptosis is characterized by necrotic cell death morphology and activation of autophagy. We identified a specific and potent small-molecule inhibitor of necroptosis, necrostatin-1, which blocks a critical step in necroptosis. We demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection. Our study identifies a previously undescribed basic cell-death pathway with potentially broad relevance to human pathologies.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons (MNs), resulting in paralysis and precocious death from respiratory failure. Although the causes of ALS are incompletely understood, the role of alterations in RNA metabolism seems central. MicroRNAs (miRNAs) are noncoding RNAs implicated in the regulation of gene expression of many relevant physiological processes, including cell death. The recent model of programmed cell death (PCD) encompasses different mechanisms, from apoptosis to regulated necrosis (RN), in particular necroptosis. Both apoptosis and necroptosis play a significant role in the progressive death of MNs in ALS. In this review, we present key research related to miRNAs that modulate apoptosis and RN pathways in ALS. We also discuss whether these miRNAs represent potential targets for therapeutic development in patients.  相似文献   

5.
For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3) and mixed lineage kinase domain-like protein (MLKL), as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribose)polymerase (PARP) is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme.  相似文献   

6.
Abstract We show that the plant quaternary benzo[c]phenanthridine alkaloid sanguilutine (SL) is a strong inducer of caspase-independent non-apoptotic death in human melanoma cells. Necrostatin-1, a specific inhibitor of necroptosis, completely reversed the cytotoxic effect of SL, suggesting that necroptosis was a predominant type of cell death induced by SL in these cells. In addition, we showed that SL can trigger an autophagic response, as confirmed by GFP-LC3 puncta formation and LC3-II accumulation. Interestingly, we observed a significant decrease in the viability of melanoma cells treated with combination of autophagy inhibitors (3-methyladenine, bafilomycin-A1 and LY294002) and SL. Our results further indicated that autophagy may serve as a pro-survival mechanism, delaying the induction of necroptosis in melanoma cells. The ability of SL to induce caspase-independent non-apoptotic cell death (necroptosis) suggests its possible therapeutic potential in the treatment of apoptosis-resistant melanoma tumours. Furthermore, SL might serve as a useful tool for studying the mechanisms of necroptosis and autophagy induction and the interplay between these two processes.  相似文献   

7.
Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti-inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin-induced AKI mouse model and a co-culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti-inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down-regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down-regulated the expression of the tubular injury molecule Tim-1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL-1β, IL-6 and TNF-α), protein levels of inflammatory signals (iNOS and NF-κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co-culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle-mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI.  相似文献   

8.
No real therapeutic modality is currently available for Acute kidney injury (AKI) and if any, they are mainly supportive in nature. Therefore, developing a new therapeutic strategy is crucial. Mitochondrial dysfunction proved to be a key contributor to renal tubular cell death during AKI. Thus, replacement or augmentation of damaged mitochondria could be a proper target in AKI treatment. Here, in an animal model of AKI, we auto-transplanted normal mitochondria isolated from healthy muscle cells to injured kidney cells through injection to renal artery. The mitochondria transplantation prevented renal tubular cell death, restored renal function, ameliorated kidney damage, improved regenerative potential of renal tubules, and decreased ischemia/reperfusion-induced apoptosis. Although further studies including clinical trials are required in this regard, our findings suggest a novel therapeutic strategy for treatment of AKI. Improved quality of life of patients suffering from renal failure and decreased morbidity and mortality rates would be the potential advantages of this therapeutic strategy.  相似文献   

9.
BackgroundAcute kidney injury (AKI), characterised by excessive inflammatory cell recruitment and programmed cell death, has a high morbidity and mortality; however, effective and specific therapies for AKI are still lacking.ObjectiveThis study aimed to evaluate the renoprotective effects of gypenoside XLIX (Gyp XLIX) in AKI.MethodsThe protective effects of Gyp XLIX were tested in two AKI mouse models established using male C57BL/6 mice (aged 6–8 weeks) by a single intraperitoneal injection of cisplatin (20 mg/kg) or renal ischemia-reperfusion for 40 min. Gyp XLIX was administered intraperitoneally before cisplatin administration or renal ischemia-reperfusion. Renal function, tubular injury, renal inflammation and programmed cell death were evaluated. In addition, the renoprotective effects of Gyp XLIX were also evaluated in cisplatin- or hypoxia-treated tubular epithelial cells. The mechanisms underlying these effects were then explored using RNA sequencing.ResultsIn vivo, Gyp XLIX substantially suppressed the increase in serum creatinine and blood urea nitrogen levels. Moreover, tubular damage was alleviated by Gyp XLIX as shown by periodic acid-Schiff staining, electron microscopy and molecular analysis of KIM-1. Consistently, we found that Gyp XLIX suppressed renal necroptosis though the RIPK1/RIPK3/MLKL pathway. The anti-inflammatory and antinecroptotic effects were further confirmed in vitro. Mechanistically, RNA sequencing showed that Gyp XLIX markedly suppressed the levels of IGF binding protein 7 (IGFBP7). Co-immunoprecipitation and western blot analysis further showed that Gyp XLIX reduced the binding of IGFBP7 to IGF1 receptor (IGF1R). Additionally, picropodophyllin, an inhibitor of IGF1R, abrogated the therapeutic effects of Gyp XLIX on cisplatin-induced renal cell injury; this finding indicated that Gyp XLIX may function by activating IGF1R-mediated downstream signalling Additionally, we also detected the metabolic distribution of Gyp XLIX after injection; Gyp XLIX had a high concentration in the kidney and exhibited a long retention time. These findings may shed light on the application of Gyp XLIX for AKI treatment clinically.ConclusionGyp XLIX may serve as a potential therapeutic agent for AKI treatment via IGFBP7/ IGF1R-dependent mechanisms.  相似文献   

10.
Eliciting regulated cell death, like necroptosis, is a potential cancer treatment. However, pathways eliciting necroptosis are poorly understood. It has been reported that prolonged activation of acid-sensing ion channel 1a (ASIC1a) induces necroptosis in mouse neurons. Glioblastoma stem cells (GSCs) also express functional ASIC1a, but whether prolonged activation of ASIC1a induces necroptosis in GSCs is unknown. Here we used a tumorsphere formation assay to show that slight acidosis (pH 6.6) induces necrotic cell death in a manner that was sensitive to the necroptosis inhibitor Nec-1 and to the ASIC1a antagonist PcTx1. In addition, genetic knockout of ASIC1a rendered GSCs resistant to acid-induced reduction in tumorsphere formation, while the ASIC1 agonist MitTx1 reduced tumorsphere formation also at neutral pH. Finally, a 20 amino acid fragment of the ASIC1 C-terminus, thought to interact with the necroptosis kinase RIPK1, was sufficient to reduce the formation of tumorspheres. Meanwhile, the genetic knockout of MLKL, the executive protein in the necroptosis cascade, did not prevent a reduction in tumor sphere formation, suggesting that ASIC1a induced an alternative cell death pathway. These findings demonstrate that ASIC1a is a death receptor on GSCs that induces cell death during prolonged acidosis. We propose that this pathway shapes the evolution of a tumor in its acidic microenvironment and that pharmacological activation of ASIC1a might be a potential new strategy in tumor therapy.Subject terms: Cancer stem cells, Cancer microenvironment, CNS cancer  相似文献   

11.
Cell death has been initially divided into apoptosis, in which the cell plays an active role, and necrosis, which is considered a passive cell death program. Intense research performed in the last decades has concluded that "programmed" cell death (PCD) is a more complex physiological process than initially thought. Indeed, although in most cases the PCD process is achieved via a family of Cys proteases known as caspases, an important number of regulated PCD pathways do not involve this family of proteases. As a consequence, active forms of PCD are initially referred to as caspase-dependent and caspase-independent. More recent data has revealed that there are also active caspase-independent necrotic pathways defined as necroptosis (programmed necrosis). The existence of necroptotic forms of death was corroborated by the discovery of key executioners such as the kinase RIP1 or the mitochondrial protein apoptosis-inducing factor (AIF). AIF is a Janus protein with a redox activity in the mitochondria and a pro-apoptotic function in the nucleus. We have recently described a particular form of AIF-mediated caspase-independent necroptosis that also implicates other molecules such as PARP-1, calpains, Bax, Bcl-2, histone H2AX, and cyclophilin A. From a therapeutic point of view, the unraveling of this new form of PCD poses a question: is it possible to modulate this necroptotic pathway independently of the classical apoptotic paths? Because the answer is yes, a wider understanding of AIF-mediated necroptosis could theoretically pave the way for the development of new drugs that modulate PCD. To this end, we present here an overview of the current knowledge of AIF and AIF-mediated necroptosis. We also summarize the state of the art in some of the most interesting therapeutic strategies that could target AIF or the AIF-mediated necroptotic pathway.  相似文献   

12.
Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO. FADD was found to mediate formation of the TNF-α-induced pronecrotic RIP1-RIP3 kinase complex, whereas the IκB Kinase (IKK) subunit NEMO appears to function downstream of RIP1-RIP3. Interestingly, loss of RelA potentiated TNF-α-dependent necroptosis, indicating that NEMO regulates necroptosis independently of NF-κB. Using both pharmacologic and genetic approaches, we demonstrate that the overexpression of antioxidants alleviates ROS elevation and necroptosis. Finally, elimination of BAX and BAK or overexpression of Bcl-x(L) protects cells from necroptosis at a later step. These findings provide evidence that mitochondria play an amplifying role in inflammation-induced necroptosis.  相似文献   

13.
Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.  相似文献   

14.
Cell death is critical to the normal functioning of multi-cellular organisms, playing a central role in development, immunity, inflammation, and cancer progression. Two cell death mechanisms, apoptosis and necroptosis, are dependent on the formation of distinct multi-protein complexes including the DISC, Apoptosome, Piddosome and Necrosome following the induction of cell death by specific stimuli. The role of several of these key multi-protein signalling platforms, namely the DISC, TNFR1 complex I/II, the Necrosome and Ripoptosome, in mediating these pathways will be discussed, as well as the open questions and potential therapeutic benefits of understanding their underlying mechanisms.  相似文献   

15.
Acute kidney injury (AKI), caused by various stimuli including ischemia reperfusion, nephrotoxic insult, and sepsis, is characterized by abrupt decline of kidney function. Till now, the molecular mechanisms for AKI have not been fully explored and the effective therapies are still lacking. Noncoding RNAs (ncRNAs), a group of biomolecules function at RNA level, are involved in a wide range of physiopathological processes including AKI. MicroRNAs (miRNAs) are the most extensively studied ncRNAs in AKI. Evidence indicated that miRNAs are altered significantly in various types of AKI. Gain-and-loss-of-function studies demonstrated that miRNAs, such as miR-24, miR-126, miR-494, and miR-687, may bind to the 3′-untranslated region of their target genes to regulate inflammation, programmed cell death, and cell cycle in the injury and repair stages of AKI, indicating their therapeutic potential in AKI. In contrast, functions of long noncoding RNAs and circular RNAs in AKI are hot topics but still largely unknown. Additionally, ncRNAs packaged in exosome can be detected in circulation and urine, they may serve as specific biomarkers for AKI. This review summarized the alteration and functional role of ncRNAs and their therapeutic potential in AKI.  相似文献   

16.
Melanoma as the most major skin malignancy has attracted much attention, so far. Although a successful therapeutic strategy requires an accurate understanding of the precise mechanisms for the initiation and progression of the melanoma. Several types of cell death mechanisms have recently been identified along with conventional cell death mechanisms such as apoptosis and necrosis. Among those mechanisms, necroptosis, anoikis, ferroptosis, and autophagy may be considered to have remarkable modulatory impacts on melanoma. In the present review, we explain the mechanisms of cell death signaling pathways related to autophagy, ferroptosis, anoikis, necroptosis, and reticulum endoplasmic stress in cells and describe how those mechanisms transduce signals in melanoma cells. Meanwhile, we describe how we can modulate those mechanisms to eliminate melanoma.  相似文献   

17.
Necroptosis is a form of caspase-independent programmed cell death that arises from disruption of cell membranes by the mixed lineage kinase domain-like (MLKL) pseudokinase after its activation by the upstream kinases, receptor interacting protein kinase (RIPK)-1 and RIPK3, within a complex known as the necrosome. Dysregulated necroptosis has been implicated in numerous inflammatory pathologies. As such, new small molecule necroptosis inhibitors are of great interest, particularly ones that operate downstream of MLKL activation, where the pathway is less well defined. To better understand the mechanisms involved in necroptosis downstream of MLKL activation, and potentially uncover new targets for inhibition, we screened known kinase inhibitors against an activated mouse MLKL mutant, leading us to identify the lymphocyte-specific protein tyrosine kinase (Lck) inhibitor AMG-47a as an inhibitor of necroptosis. We show that AMG-47a interacts with both RIPK1 and RIPK3, that its ability to protect from cell death is dependent on the strength of the necroptotic stimulus, and that it blocks necroptosis most effectively in human cells. Moreover, in human cell lines, we demonstrate that AMG-47a can protect against cell death caused by forced dimerisation of MLKL truncation mutants in the absence of any upstream signalling, validating that it targets a process downstream of MLKL activation. Surprisingly, however, we also found that the cell death driven by activated MLKL in this model was completely dependent on the presence of RIPK1, and to a lesser extent RIPK3, although it was not affected by known inhibitors of these kinases. Together, these results suggest an additional role for RIPK1, or the necrosome, in mediating human necroptosis after MLKL is phosphorylated by RIPK3 and provide further insight into reported differences in the progression of necroptosis between mouse and human cells.Subject terms: Kinases, Necroptosis  相似文献   

18.
In the last several decades, apoptosis interference has been considered clinically irrelevant in the context of renal injury. Recent discovery of programmed necrotic cell death, including necroptosis, ferroptosis, and pyroptosis refreshed our understanding of the role of cell death in kidney disease. Pyroptosis is characterized by a lytic pro- inflammatory type of cell death resulting from gasdermin-induced membrane permeabilization via activation of inflammatory caspases and inflammasomes. The danger-associated molecular patterns (DAMPs), alarmins and pro-inflammatory cytokines are released from pyroptotic cells in an uncontrolled manner, which provoke inflammation, resulting in secondary organ or tissue injuries. The caspases and inflammasome activation-related proteins and pore-forming effector proteins known as GSDMD and GSDME have been implicated in a variety of acute and chronic microbial and non-microbial kidney diseases. Here, we review the recent advances in pathological mechanisms of pyroptosis in kidney disease and highlight the potential therapeutic strategies in future.  相似文献   

19.
Necroptosis is a unique programmed death mechanism of necrotic cells. However, its role and specific mechanism in cancer remain unclear, and a systematic pan-cancer analysis of necroptosis is yet to be conducted. Thus, we performed a specific pan-cancer analysis using The Cancer Genome Atlas and Genotype-Tissue Expression databases to analyse necroptosis expression in terms of cancer prognosis, DNA methylation status, tumour mutative burden, microsatellite instability, immune cell infiltration in different types of cancer and molecular mechanisms. For the first time, we explored the correlation between necroptosis and immunotherapy prognosis. Thus, our study provides a relatively comprehensive understanding of the carcinogenicity of necroptosis in different types of cancer. It is suggested that necroptosis can be used to evaluate the sensitivity of different patients to immunotherapy and may become a potential target for tumour immunotherapy.  相似文献   

20.
传统上,细胞死亡分为凋亡和坏死两类。而近年来越来越多的研究表明坏死性凋亡是一种不同于凋亡和坏死的新型细胞死亡途径,在多种疾病模型中发挥着重要作用。本文对坏死性凋亡的产生机制、坏死性凋亡同凋亡和坏死的区别及其在疾病和药物靶点发现中的作用进行综述,以利于加深对不同细胞死亡方式的认识并促进相关新药的研发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号