首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
Controller proteins play a key role in the temporal regulation of gene expression in bacterial restriction-modification (R-M) systems and are important mediators of horizontal gene transfer. They form the basis of a highly cooperative, concentration-dependent genetic switch involved in both activation and repression of R-M genes. Here we present biophysical, biochemical, and high-resolution structural analysis of a novel class of controller proteins, exemplified by C.Csp231I. In contrast to all previously solved C-protein structures, each protein subunit has two extra helices at the C-terminus, which play a large part in maintaining the dimer interface. The DNA binding site of the protein is also novel, having largely AAAA tracts between the palindromic recognition half-sites, suggesting tight bending of the DNA. The protein structure shows an unusual positively charged surface that could form the basis for wrapping the DNA completely around the C-protein dimer.  相似文献   

7.
8.
9.
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.  相似文献   

10.
Mycoplasma pulmonis possesses a cassette of genes that are predicted to code for type III restriction and modification (R-M) enzymes. Transposon disruption of a gene predicted to code for the endonuclease subunit of the enzyme resulted in loss of R-M activity. Genomic data indicate that the cassette was acquired by horizontal gene transfer and possibly located on a mobile element.  相似文献   

11.
12.
The roles of restriction-modification (R-M) systems in providing immunity against horizontal gene transfer (HGT) and in stabilizing mobile genetic elements (MGEs) have been much debated. However, few studies have precisely addressed the distribution of these systems in light of HGT, its mechanisms and its vectors. We analyzed the distribution of R-M systems in 2261 prokaryote genomes and found their frequency to be strongly dependent on the presence of MGEs, CRISPR-Cas systems, integrons and natural transformation. Yet R-M systems are rare in plasmids, in prophages and nearly absent from other phages. Their abundance depends on genome size for small genomes where it relates with HGT but saturates at two occurrences per genome. Chromosomal R-M systems might evolve under cycles of purifying and relaxed selection, where sequence conservation depends on the biochemical activity and complexity of the system and total gene loss is frequent. Surprisingly, analysis of 43 pan-genomes suggests that solitary R-M genes rarely arise from the degradation of R-M systems. Solitary genes are transferred by large MGEs, whereas complete systems are more frequently transferred autonomously or in small MGEs. Our results suggest means of testing the roles for R-M systems and their associations with MGEs.  相似文献   

13.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

14.
Phase variable restriction-modification (R-M) systems are widespread in Eubacteria. Haemophilus influenzae encodes a phase variable homolog of Type III R-M systems. Sequence analysis of this system in 22 non-typeable H.influenzae isolates revealed a hypervariable region in the central portion of the mod gene whereas the res gene was conserved. Maximum likelihood (ML) analysis indicated that most sites outside this hypervariable region experienced strong negative selection but evidence of positive selection for a few sites in adjacent regions. A phylogenetic analysis of 61 Type III mod genes revealed clustering of these H.influenzae mod alleles with mod genes from pathogenic Neisseriae and, based on sequence analysis, horizontal transfer of the mod–res complex between these species. Neisserial mod alleles also contained a hypervariable region and all mod alleles exhibited variability in the repeat tract. We propose that this hypervariable region encodes the target recognition domain (TRD) of the Mod protein and that variability results in alterations to the recognition sequence of this R-M system. We argue that the high allelic diversity and phase variable nature of this R-M system have arisen due to selective pressures exerted by diversity in bacteriophage populations but also have implications for other fitness attributes of these bacterial species.  相似文献   

15.
Plasmid pAMI7 of the methylotrophic bacterium Paracoccus aminophilus JCM 7686 (Alphaproteobacteria) encodes a functional type II restriction-modification (R-M) system designated PamI. Homologous systems were identified in the genomes of distinct taxonomic groups of Bacteria and Archaea, which provides evidence that horizontal gene transfer has contributed to the wide dissemination of R-M modules - even between domains. Analysis of the cleavage specificity of the R.PamI endonuclease revealed that this protein is an isoschizomer of restriction enzyme NcoI. Interestingly, bioinformatic analyses suggest that R.PamI and NcoI are accompanied by methyltransferases of different methylation specificities (C5-methylcytosine and N4-methylcytosine methyltransferases, respectively), which possibly exemplifies recombinational shuffling of genes coding for individual components of R-M systems. The PamI system can stabilize plasmid pAMI7 in a bacterial population, most probably at the postsegregational level. Therefore, it functions in an analogous manner to plasmid-encoded toxin-antitoxin (TA) systems. Since the TA system of pAMI7 is nonfunctional, it is highly probable that this lack is compensated by the stabilizing activity of PamI. This indicates the crucial role of the analyzed R-M system in the stable maintenance of pAMI7, which is, to our knowledge, the first report of 'symbiosis' between a R-M system and a plasmid in the Alphaproteobacteria.  相似文献   

16.
Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction–modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.  相似文献   

17.
18.
19.
Using transposon shuttle mutagenesis, we identified six Helicobacter pylori mutants from the NTUH-C1 strain that exhibited decreased adherence and cell elongation. Inverse polymerase chain reaction and DNA sequencing revealed that the same locus was interrupted in these six mutants. Nucleotide and amino acid sequences showed no homologies with H. pylori 26695 and J99 strains. This novel open reading frame contained 1617 base pairs. The amino acid sequence shared 24% identity with a putative nicking enzyme in Bacillus halodurans and 23 and 20% identity with type IIS restriction endonucleases PleI and MlyI, respectively. The purified protein, HpyC1I, showed endonuclease activity with the recognition and cleavage site 5'-CCATC(4/5)-3'. Two open reading frames were located upstream of the gene encoding HpyC1I. Together, HpyC1I and these two putative methyltransferases (M1.HpyC1I and M2.HpyC1I) function as a restriction-modification (R-M) system. The HpyC1I R-M genes were found in 9 of the 15 H. pylori strains tested. When compared with the full genome, significantly lower G + C content of HpyC1I R-M genes implied that these genes might have been acquired by horizontal gene transfer. Plasmid DNA transformation efficiencies and chromosomal DNA digestion assays demonstrated protection from HpyC1I digestion by the R-M system. In conclusion, we have identified a novel R-M system present in approximately 60% of H. pylori strains. Disruption of this R-M system results in cell elongation and susceptibility to HpyC1I digestion.  相似文献   

20.
A DNA fragment carrying the genes coding for EcoO109I endonuclease and EcoO109I methylase, which recognize the nucleotide sequence 5'-(A/G)GGNCC(C/T)-3', was cloned from the chromosomal DNA of Escherichia coli H709c. The EcoO109I restriction-modification (R-M) system was found to be inserted between the int and psu genes from satellite bacteriophage P4, which were lysogenized in the chromosome at the P4 phage attachment site of the corresponding leuX gene observed in E. coli K-12 chromosomal DNA. The sid gene of the prophage was inactivated by insertion of one copy of IS21. These findings may shed light on the horizontal transfer and stable maintenance of the R-M system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号