首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Two enzymes were shown to be necessary for the production of ethylene from methional; they were separated from extracts of cauliflower florets by fractionation on Sephadex and other methods. 2. The first enzyme, generating hydrogen peroxide, appears to be similar to the fungal glucose oxidase, for like the latter it is highly specific for its substrate d-glucose. 3. The second enzyme, in the presence of cofactors and peroxide generated by the first enzyme, cleaves methional to ethylene. 4. It was also found that hydrogen peroxide in these reactions may be replaced by hydroperoxide generated from linolenic acid by lipoxidase enzymes. 5. Dihydroxyphenols were shown to have a marked inhibitory effect on these reactions and to account for the initial phase of low activity that is always observed in aqueous extracts prepared from the floret tissue.  相似文献   

2.
The enzyme responsible for the conversion of methionine into a precursor of ethylene in cauliflower florets is a transaminase. The formation of 4-methyl-mercapto-2-oxobutyric acid by this enzyme has been shown. The oxo acid stimulates the synthesis of ethylene when added to floret tissue, and tracer experiments have shown that (14)C is incorporated into ethylene from the labelled oxo acid. The evidence is consistent with the view that the oxo acid is an intermediate in the formation of ethylene from methionine.  相似文献   

3.
The second cofactor in the peroxidase-catalysed formation of ethylene from methional in cauliflower extracts was identified as methanesulphinic acid. The progress of the reaction is described and the activities of related sulphinic acids were determined.  相似文献   

4.
BIOGENESIS OF ETHYLENE   总被引:1,自引:0,他引:1  
1. The main characteristics of the biosynthetic system forming ethylene in plant tissues have been reviewed. The dependence of synthesis on a liberal supply of oxygen is clearly indicated by the fact that atmospheres containing 3–5% oxygen prevent the synthesis in fruits. There is no close connexion between respiratory activity and synthesis. Ripening of fruits and the changes associated with it may be initiated by ethylene; under such conditions the progress of formation of the hydrocarbon is autocatalytic. 2. Synthesis appears to be dependent on some degree of cell organization, since it responds acutely to changes in toxcity, tissue wounding and tissue destruction. Homogenates of many plant tissues do not produce ethylene in vitro, and the inability to use such extracts has imposed serious restrictions on biochemical studies which have in the past been mainly concerned with tracer studies and the use of tissue slices. 3. The chief difficulty associated with tracer studies aimed at determining the nature of the precursor stems from the fact that the synthesis of ethylene is only a minor pathway on the general metabolism of the cell. Thus the ratio of CO2 to ethylene production is of the order of 164 in the case of the apple and as high as 18,000 in the case of less vigorous producers of ethylene. The incorporation of label from labelled substrates which enter the general metabolism of the cell is thus usually very low, and this makes it difficult to determine whether the incorporation observed has any real physiological significance. In fact only where incorporation into ethylene relative to that into CO2 is high, as is the case with methionine, can one conclude that the substance can be considered to be an immediate precursor. 4. Because of the difficulty of obtaining clear-cut results with tracer techniques, attention has been devoted to the production of ethylene by model systems from substances of physiological interest. The studies have revealed that many substances found in plant tissue can be decomposed to yield ethylene in model systems functioning under physiological conditions. Two such substances, which have received most attention, are methionine and linolenic acid, and conditions under which ethylene is formed from them have been described. 5. Such developments have stimulated research to obtain evidence for or against the operation of such model systems in vivo. Using tissue-slice techniques, methionine and linolenic acid have both been found to stimulate ethylene formation in tissue slices. 6. The first demonstration of the synthesis of ethylene in vitro by enzymes isolated from the florets of the cauliflower has now been reported. The system involves the intermediate formation of methional from methionine by enzymes contained in the mitochondria, and the subsequent enzymic decomposition of methional into ethylene by non-particulate enzymes. These latter consist of a glucose oxidase and a peroxidase. The glucose oxidase in the presence of its substrate generates hydrogen peroxide, and peroxidase, in the presence of two co-factors, ^-coumaric acid esters and methane sulphinic acid, utilizes the peroxide to produce ethylene from methional. Although all components of this system have been isolated from extracts of floret tissue, proof that this is the actual or only process in vivo for this or other plant tissue has not as yet been achieved. The more recent demonstration of the possible involvement of linolenic acid underlines the necessity for further work. 7. Whilst much work still remains to be done to establish the mechanism of synthesis, which may not be identical in different plants, the related question of the nature of the events which stimulate the tissue to produce ethylene remains to be answered. Recent work has suggested that these events, induced by ageing of the tissue, are associated with the synthesis of new enzyme proteins, which are themselves the cause of the rapid onset of synthesis of ethylene, observed in most fruits, at the climacteric. 8. Much more information on the nature of events leading to and changes associated with the ripening syndrome in fruits and onset of senescence in vegetable tissues is needed before authoritative answers can be given to any of the questions raised in this review.  相似文献   

5.
The heat-stable cofactor in cauliflower florets, which has been shown to be necessary for the enzymic production of ethylene from methional, consists of two components. The first is of a phenolic nature and appears to be an ester of p-coumaric acid. The second component is acidic in character, but has not as yet been identified.  相似文献   

6.
Ethylene formation from methional   总被引:18,自引:0,他引:18  
The biosynthetic precursor of ethylene is 3-methylthiopropanal (methional). It has been claimed that hydroxyl (HO·) radicals are involved in this biosynthetic sequence, and that the production of ethylene from methional can be used as a specific probe for the presence of the HO· radical. We have now shown, however, that a variety of organic radicals lead to the production of ethylene from methional. Clearly this reaction cannot be used to test for the presence of HO· radicals, and the mechanism for the conversion of methional to ethylene will have to be reexamined.  相似文献   

7.
Stimulation of ethylene production by cauliflower (Brassica oleracea var. botrytis L.) tissue in buffer solution containing 4-S-methyl-2-keto-butyric acid is not due to activation of the natural in vivo system. Increased ethylene production derives from an extra-cellular ethylene-forming system, catalyzed by peroxidase and other factors, which leak from the cauliflower tissue and cause the degradation of 4-S-methyl-2-keto-butyric acid. This exogenous ethylene-forming system is similar to the ethylene-forming horseradish peroxidase system which utilizes methional or 4-S-methyl-2-keto-butyric acid as substrate. We conclude that 4-S-methyl-2-keto-butyric acid is probably not an intermediate in the biosynthetic pathway between methionine and ethylene.  相似文献   

8.
During growth of Escherichia coli strain SPA O in the presence of methionine, an intermediate accumulates in the medium. This intermediate reacts with 2,4-dinitrophenylhydrazine, and can be degraded to ethylene either enzymically or photochemically, the latter being stimulated by the addition of a flavin. The pH optimum for the photochemical degradation of this intermediate and 2-keto-4-methylthiobutyric acid (KMBA) is pH 3 whereas the optimum for methional is pH 6. The enzyme which converts the intermediate to ethylene also converts KMBA to ethylene and has many of the properties of a peroxidase including inhibition by catalase, cyanide, azide and anaerobiosis. The enzyme which synthesizes the intermediate is not known but requires oxygen and pyridoxal phosphate. A pathway for ethylene biosynthesis is proposed in which methionine is converted to KMBA which can be degraded either by peroxidase or in a flavin-mediated photochemical reaction. Its relevance to the properties of other ethylene-producing bacteria and to the proposed pathway of ethylene release by higher plants is discussed.  相似文献   

9.
The ability of selected bacterial cultures to synthesize ethylene during growth in nutrient broth supplemented with methionine or 2-oxo-4-methylthiobutyric acid (KMBA) was examined. Although most cultures transformed KMBA into ethylene, only those of Escherichia coli SPAO and Chromobacterium violaceum were able to convert exogenously added methionine to ethylene. In chemically defined media, E. coli SPAO produced the highest amounts of ethylene from methionine and KMBA. This capability was affected by the nature of the carbon source and the type and amount of nitrogen source used for growth. When glutamate was used as sole source of carbon and nitrogen for growth, the activity of the ethylenogenic enzymes was reduced to 25% of that observed with cultures grown with glucose and NH4Cl. Neither methionine nor KMBA significantly affected the ethylenogenic capacity of E. coli SPAO. Menadione and paraquat, compounds that generate superoxide radicals, stimulated ethylene synthesis by harvested cells, but not by cell-free extracts of E. coli SPAO. In addition, cells of Pseudomonas aeruginosa, which produced no ethylene in culture in the presence of exogenously added KMBA, yet possessed the necessary enzymes in an active form, were able to synthesize ethylene from KMBA when incubated with menadione or paraquat.  相似文献   

10.
The pathway leading to the formation of ethylene as a secondary metabolite from methionine by Escherichia coli strain B SPAO has been investigated. Methionine was converted to 2-oxo-4-methylthiobutyric acid (KMBA) by a soluble transaminase enzyme. 2-Hydroxy-4-methylthiobutyric acid (HMBA) was also a product, but is probably not an intermediate in the ethylene-forming pathway. KMBA was converted to ethylene, methanethiol and probably carbon dioxide by a soluble enzyme system requiring the presence of NAD(P)H, Fe3+ chelated to EDTA, and oxygen. In the absence of added NAD(P)H, ethylene formation by cell-free extracts from KMBA was stimulated by glucose. The transaminase enzyme may allow the amino group to be salvaged from methionine as a source of nitrogen for growth. As in the plant system, ethylene produced by E. coli was derived from the C-3 and C-4 atoms of methionine, but the pathway of formation was different. It seems possible that ethylene production by bacteria might generally occur via the route seen in E. coli.Abbreviations EDTA ethylenediaminetetraacetic acid - HMBA 2-hydroxy-4-methylthiobutyric acid (methionine hydroxy analogue) - HSS high speed supernatant - KMBA 2-oxo-4-methylthiobutyric acid - PCS phase combining system  相似文献   

11.
This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [(14)C] ethylene production from [(14)C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [(14)C]ethylene production from [(14)C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [(14)C]ethylene production from [(14)C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [(14)C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [(14)C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC, and stimulation of total ethylene production by ACC provide evidence for the methionine --> SAM --> ACC --> ethylene pathway in avocado and do not suggest the operation of an alternate pathway.  相似文献   

12.
A comparison of the rate of ethylene production by apple fruit to the methionine content of the tissue suggests that the sulfur of methionine has to be recycled during its continuous synthesis of ethylene. The metabolism of the sulfur of methionine in apple tissue in relation to ethylene biosynthesis was investigated. The results showed that in the conversion of methionine to ethylene the CH3S-group of methionine is first incorporated as a unit into S-methylcysteine. By demethylation, S-methylcysteine is metabolized to cysteine. Cysteine then donates its sulfur to form methionine, presumably through cystathionine and homocysteine. This view is consistent with the observation that cysteine, homoserine and homocysteine were all converted to methionine, in an order of efficiency from least to greatest. For the conversion to ethylene, methionine was the most efficient precursor, followed by homocysteine and homoserine. Based on these results, a methionine-sulfur cycle in relation to ethylene biosynthesis is presented.  相似文献   

13.
A comparative study has been made of the ability of three plant tissues to incorporate (14)C into ethylene from (14)C-labelled methionine and derivatives and from (14)C-labelled linolenic acid. Incorporation of label occurs readily from methionine and its derivative 4-methylmercapto-2-oxobutyric acid with apple, tomato or cauliflower floret tissue. No incorporation of label occurred, however, from uniformly (14)C-labelled linolenate.  相似文献   

14.
Escherichia coli strain SPA O converts methionine to ethylene by an inducible enzyme system. L-Cysteine, L-homocysteine, methionine derivatives and the sulphur-containing analogues of L-methionine also act as precursors of ethylene. Ethylene is produced by cell suspensions only in the presence of air; cell-free preparations can produce ethylene aerobically and anaerobically, but the extent to which they do so depends on the mode of culture growth. Light stimulates ethylene production by cell suspensions and its presence is essential for production by cell-free preparations. The kinetics of ethylene biogenesis and its pH and temperature optima suggest that ethylene is a secondary metabolite.  相似文献   

15.
Adams DO  Yang SF 《Plant physiology》1977,60(6):892-896
If S-adenosylmethionine (SAM) is the direct precursor of ethylene as previously proposed, it is expected that 5′-S-methyl-5′-thioadenosine (MTA) would be the fragment nucleoside. When [Me-14C] or [35S]methionine was fed to climacteric apple (Malus sylvestris Mill) tissue, radioactive 5-S-methyl-5-thioribose (MTR) was identified as the predominant product and MTA as a minor one. When the conversion of methionine into ethylene was inhibited by l-2-amino-4-(2′-aminoethoxy)-trans-3-butenoic acid, the conversion of [35S] or [Me14C]methionine into MTR was similarly inhibited. Furthermore, the formation of MTA and MTR from [35S]methionine was observed only in climacteric tissue which produced ethylene and actively converted methionine to ethylene but not in preclimacteric tissue which did not produce ethylene or convert methionine to ethylene. These observations suggest that the conversion of methionine into MTA and MTR is closely related to ethylene biosynthesis and provide indirect evidence that SAM may be an intermediate in the conversion of methionine to ethylene.  相似文献   

16.
Stimulation of ethylene production in apple tissue slices by methionine   总被引:36,自引:26,他引:10       下载免费PDF全文
Methionine can induce more than a 100% increase in ethylene production by apple tissue slices. The increased amount of ethylene derives from carbons 3 and 4 of methionine. Only post-climacteric fruit tissues are stimulated by methionine, and stimulation is optimum after 8 months' storage. Copper chelators such as sodium diethyl dithiocarbamate and cuprizone very markedly inhibit ethylene production by tissue slices. Carbon monoxide does not effect ethylene production by the slices. These data suggest that the mechanism for the conversion of methionine to ethylene, in apple tissues, is similar to the previously described model system for producing ethylene from methionine and reduced copper. Therefore, it is suggested that one of the ethylene-forming systems in tissues derives from methionine and proceeds to ethylene via a copper enzyme system which may be a peroxidase.  相似文献   

17.
Methods are described for identifying the 2,4-dinitrophenylhydrazones of 4-methylthio-2-oxobutanoate by means of t.l.c., n.m.r. and mass spectroscopy. By using these methods 4-methylthio-2-oxobutanoate, a putative intermediate in the biosynthesis of ethylene from methionine, has been identified in culture fluids of Aeromonas hydrophila B12E and a coryneform bacterium D7F grown in the presence of methionine. Relative to 4-methylthio-2-oxobutanoate, the yield of 3-(methylthio)propanal (methional) from the same cultures was less than 1%. Because 4-[2H]methylthio-2-oxobutanoate was obtained from cultures grown on [Me-2H]methionine, the 4-methylthio-2-oxobutanoate must be derived from methionine. By means of t.l.c. alone, 4-methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum. A photochemical assay developed for 4-methylthio-2-oxobutanoate shows it to be a product of the metabolism of methionine by Escherichia, Pseudomonas, Bacillus, Acinetobacter, Aeromonas, Rhizobium and Corynebacterium species.  相似文献   

18.
The synthesis of ethylene by cauliflower floret tissue was increased when the tissue was inoculated with the soft-rot bacterium Erwinia carotovora. This effect was clearly associated with the production of pectic enzymes by the micro-organism. These enzymes, acting together with the plant enzymes, stimulated the production of ethylene from methionine. The increased synthetic activity was due to the release and increased activity of a glucose oxidase enzyme apparently attached to plant cell-wall material and liberated by the action of pectic enzymes of the bacterium.  相似文献   

19.
Hyodo H 《Plant physiology》1977,59(1):111-113
Isolated albedo tissue of Satsuma mandarin (Citrus unshiu Marcovitch, cv. Owari) fruit produced a large quantity of ethylene during incubation at 26 C in the dark. When sliced, albedo tissue began producing ethylene at an increasing rate until a maximum was reached after incubation for about 30 hours. Aged albedo discs which were capable of producing ethylene, actively converted l-[U-(14)C]methionine into both ethylene and carbon dioxide. In fresh tissue, almost no measurable conversion of radioactive methionine into ethylene took place. Conversion of labeled l-methionine into ethylene was totally inhibited by the addition of nonradioactive l-methionine or l-ethionine. It appears possible, from these findings, that methionine is a precursor of ethylene in the aged albedo discs. Ethylene synthesis in the aged albedo tissue was markedly reduced in the presence of cycloheximide, suggesting that there may be a rapid turnover of the ethylene-producing system, and that its formation involves protein synthesis. Actinomycin D exerted no effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号