首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plants synchronize developmental and metabolic processes with the earth's 24-h rotation through the integration of circadian rhythms and responses to light. We characterize the time for coffee (tic) mutant that disrupts circadian gating, photoperiodism, and multiple circadian rhythms, with differential effects among rhythms. TIC is distinct in physiological functions and genetic map position from other rhythm mutants and their homologous loci. Detailed rhythm analysis shows that the chlorophyll a/b-binding protein gene expression rhythm requires TIC function in the mid to late subjective night, when human activity may require coffee, in contrast to the function of EARLY-FLOWERING3 (ELF3) in the late day to early night. tic mutants misexpress genes that are thought to be critical for circadian timing, consistent with our functional analysis. Thus, we identify TIC as a regulator of the clock gene circuit. In contrast to tic and elf3 single mutants, tic elf3 double mutants are completely arrhythmic. Even the robust circadian clock of plants cannot function with defects at two different phases.  相似文献   

3.
The current scientific literature is replete with investigations providing information on the molecular mechanisms governing the regulation of circadian rhythms by neurons in the suprachiasmatic nucleus (SCN), the master circadian generator. Virtually every function in an organism changes in a highly regular manner during every 24-hour period. These rhythms are believed to be a consequence of the SCN, via neural and humoral means, regulating the intrinsic clocks that perhaps all cells in organisms possess. These rhythms optimize the functions of cells and thereby prevent or lower the incidence of pathologies. Since these cyclic events are essential for improved cellular physiology, it is imperative that the SCN provide the peripheral cellular oscillators with the appropriate time cues. Inasmuch as the 24-hour light:dark cycle is a primary input to the central circadian clock, it is obvious that disturbances in the photoperiodic environment, e.g., light exposure at night, would cause disruption in the function of the SCN which would then pass this inappropriate information to cells in the periphery. One circadian rhythm that transfers time of day information to the organism is the melatonin cycle which is always at low levels in the blood during the day and at high levels during darkness. With light exposure at night the amount of melatonin produced is compromised and this important rhythm is disturbed. Another important source of melatonin is the gastrointestinal tract (GIT) that also influences the circulating melatonin is the generation of this hormone by the entero-endocrine (EE) cells in the gut following ingestion of tryptophan-containing meal. The consequences of the altered melatonin cycle with the chronodisruption as well as the alterations of GIT melatonin that have been linked to a variety of pathologies, including those of the gastrointestinal tract.  相似文献   

4.
Circadian rhythms in acid-stimulated bioluminescence and cell division are observed for at least 16 days in bright continuous light (4.5 milliwatts per square centimeter or 20,000 lux). The photosynthesis rhythm also fails to stop immediately upon transfer of cell suspensions to bright light. After about 4 weeks under these conditions, all rhythms were observed to damp out. In cells transferred from bright light to continuous darkness, the rhythms were reset to about circadian hour 12 to 14, the phase of the beginning of a normal night.  相似文献   

5.
Night shift work and rapid transmeridian travel result in a misalignment between circadian rhythms and the new times for sleep, wake, and work, which has health and safety implications for both the individual involved and the general public. Entrainment to the new sleep/wake schedule requires circadian rhythms to be phase-shifted, but this is often slow or impeded. The authors show superimposed light and melatonin PRCs to explain how to appropriately time these zeitgebers to promote circadian adaptation. They review studies in which bright light and melatonin were administered to try to counteract jet lag or to produce circadian adaptation to night work. They demonstrate how jet lag could be prevented entirely if rhythms are shifted before the flight using their preflight plan and discuss the combination of interventions that they now recommend for night shift workers.  相似文献   

6.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

7.
The photo-responsiveness of 2 groups of interneurons responding to light in the protocerebrum was investigated at 2 developmental stages, the last instar nymphs and adults, in the cricket Gryllus bimaculatus. The cricket is diurnally active during the nymphal stage but becomes nocturnal as an adult. In both adults and nymphs, light-induced responses of optic lobe light-responding interneurons that conduct light information from the optic medulla to the lobula and the cerebral lobe showed a circadian rhythm peaking during the subjective night. Amplitudes of the rhythms were not significantly different between adults and nymphs, but adults showed more stable day and night states than did nymphs. The medulla bilateral neurons that interconnect the bilateral medulla areas of the optic lobe also showed circadian rhythms in their light-induced responses in both adults and nymphs. The rhythm had a clear peak and a trough in adults, and its amplitude was significantly greater than that of nymphs. These results suggest that the 2 classes of interneurons are differentially controlled by the circadian clock. The difference might be related to their functional roles in the animal's circadian behavioral organization.  相似文献   

8.
In the laboratory, horseshoe crabs express a circadian rhythm of visual sensitivity as well as daily and circatidal rhythms of locomotion. The major goal of this investigation was to determine whether the circadian clock underlying changes in visual sensitivity also modulates locomotion. To address this question, we developed a method for simultaneously recording changes in visual sensitivity and locomotion. Although every animal (24) expressed consistent circadian rhythms of visual sensitivity, rhythms of locomotion were more variable: 44% expressed a tidal rhythm, 28% were most active at night, and the rest lacked statistically significant rhythms. When exposed to artificial tides, 8 of 16 animals expressed circatidal rhythms of locomotion that continued after tidal cycles were stopped. However, rhythms of visual sensitivity remained stable and showed no tendency to be influenced by the imposed tides or locomotor activity. These results indicate that horseshoe crabs possess at least two biological clocks: one circadian clock primarily used for modulating visual sensitivity, and one or more clocks that control patterns of locomotion. This arrangement allows horseshoe crabs to see quite well while mating during both daytime and nighttime high tides.  相似文献   

9.
Melatonin is of great importance to the investigation of human biological rhythms. Its rhythm in plasma or saliva provides the best available measure of the timing of the internal circadian clock. Its major metabolite 6-sulphatoxymelatonin is robust and easily measured in urine. It thus enables long-term monitoring of human rhythms in real-life situations where rhythms may be disturbed, and in clinical situations where invasive procedures are difficult. Melatonin is not only a "hand of the clock"; endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. Most is known about its relationship to sleep and the decline in core body temperature and alertness at night. Current perspectives also include a possible influence on major disease risk, arising from circadian rhythm disruption. Melatonin clearly has the ability to induce sleepiness and lower core body temperature during "biological day" and to change the timing of human rhythms when treatment is appropriately timed. It can entrain free-running rhythms and maintain entrainment in most blind and some sighted people. Used therapeutically it has proved a successful treatment for circadian rhythm disorder, particularly the non-24-h sleep wake disorder of the blind. Numerous other clinical applications are under investigation. There are, however, areas of controversy, large gaps in knowledge, and insufficient standardization of experimental conditions and analysis for general conclusions to be drawn with regard to most situations. The future holds much promise for melatonin as a therapeutic treatment. Most interesting, however, will be the dissection of its effects on human genes.  相似文献   

10.
内源褪黑素对人类和其他哺乳动物的节律行为具有调控功能。生物节律是自然进化赋予生命的基本特征之一,生物体的生命活动受到生物节律的控制与影响。在哺乳动物中,节律调控中心是松果体,其主要功能是合成和分泌褪黑素。褪黑素广泛参与生物体节律行为的调节,本文从褪黑素的产生和作用机制,分别阐述褪黑素对昼夜节律行为和多种年节律行为的调控作用,同时明确褪黑素与生物钟及神经内分泌系统的直接作用和反馈互动的复杂集合,进一步揭示褪黑素调控生物节律的重要作用,以期为褪黑素的基础研究以及未来探究生物体的生物钟内源性发生机制提供参考。  相似文献   

11.
12.
Night shift work is associated with a myriad of health and safety risks. Phase‐shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a “snapshot” of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (~3500 lux; ~1100 µW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths—especially short wavelengths (“blue‐blockers”)—while traveling home after the shifts, and sleep in the dark (08:30–15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24±0.8 h (mean±SD) at baseline and 7:36±1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00±1.2 h at baseline and drifted to 4:36±1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

13.
Mammalian circadian rhythms are generated by a hypothalamic suprachiasmatic nuclei (SCN) clock. Light pulses synchronize body rhythms by inducing phase delays during the early night and phase advances during the late night. Phosphorylation events are known to be involved in circadian phase shifting, both for delays and advances. Pharmacological inhibition of the cGMP-dependent kinase (cGK) or Ca2+/calmodulin-dependent kinase (CaMK), or of neuronal nitric oxide synthase (nNOS) blocks the circadian responses to light in vivo. Light pulses administered during the subjective night, but not during the day, induce rapid phosphorylation of both p-CAMKII and p-nNOS (specifically phosphorylated by CaMKII). CaMKII inhibitors block light-induced nNOS activity and phosphorylation, suggesting a direct pathway between both enzymes. Furthermore, SCN cGMP exhibits diurnal and circadian rhythms with maximal values during the day or subjective day. This variation of cGMP levels appears to be related to temporal changes in phosphodiesterase (PDE) activity and not to guanylyl cyclase (GC) activity. Light pulses increase SCN cGMP levels at circadian time (CT) 18 (when light causes phase advances of rhythms) but not at CT 14 (the time for light-induced phase delays). cGK II is expressed in the hamster SCN and also exhibits circadian changes in its levels, peaking during the day. Light pulses increase cGK activity at CT 18 but not at CT 14. In addition, cGK and GC inhibition by KT-5823 and ODQ significantly attenuated light-induced phase shifts at CT 18. This inhibition did not change c-Fos expression SCN but affected the expression of the clock gene per in the SCN. These results suggest a signal transduction pathway responsible for light-induced phase advances of the circadian clock which could be summarized as follows: Glu-Ca2+-CaMKII-nNOS-GC-cGMP-cGK-->-->clock genes. This pathway offers a signaling window that allows peering into the circadian clock machinery in order to decipher its temporal cogs and wheels.  相似文献   

14.
Masuda T  Iigo M  Mizusawa K  Aida K 《Zoological science》2003,20(11):1405-1410
Effects of macromolecule synthesis inhibitors on the light-induced phase shift of the circadian clock in the photoreceptive pineal organ of a teleost, ayu (Plecoglosus altivelis) were investigated using melatonin release as an indicator. A single light pulse during the early- and late-subjective night delayed and advanced the phase of the circadian rhythm in melatonin release, respectively. During the late subjective-night, protein synthesis inhibitor cycloheximide (CHX) delayed the rhythm while RNA synthesis inhibitor 5,6-dichlorobenzimidazole riboside (DRB) had little effect. Light-induced phase advance was diminished by the treatment of CHX but not by DRB. During the early subjective-night, DRB, CHX, light and combination of these (DRB+light, CHX+light) all phase-delayed the rhythm. There were no additive effects of light and DRB or CHX. These results indicate that macromolecule synthesis is somehow involved in generation of circadian oscillation, and that de novo protein synthesis is required for light-induced phase shift of the circadian clock in the ayu pineal organ.  相似文献   

15.
During resetting of the mammalian circadian clock, not only phase of the clock is shifted, but amplitude of overt rhythms driven by the clock may be temporarily reduced or even abolished. The present paper is aimed to elucidate the mechanism of amplitude reduction of the overt circadian rhythm in the rat pineal N-acetyltransferase (NAT). The rhythm has two phase markers, namely the time of the evening NAT rise and that of the morning decline. When the phase relationship between both markers is compressed drastically, the NAT rise may occur just close to or at the time of the decline and consequently the NAT rhythm with a full amplitude cannot be expressed. Such a compression may occur in two ways: either animals are subjected to a considerable advance in the light onset which phase advances the morning NAT decline and at the same time phase delays the evening NAT rise, or they are subjected to a considerable delay in the light offset, which primarily phase delays more the NAT rise than the decline. While in the former case the phase markers move in opposite directions, in the latter case they move in the same direction, but to a different extent. The data suggest a complex structure of the underlying clock.  相似文献   

16.
Mangrove crickets have a circatidal activity rhythm (~12.6 h cycles) with a circadian modulation under constant darkness (DD), whereby activity levels are higher during subjective night low tides than subjective day low tides. This study explored the locomotor activity rhythm of mangrove crickets under constant light (LL). Under LL, the crickets also exhibited a clear circatidal activity rhythm with a free-running period of 12.6 ± 0.26 h (mean ± SD, n = 6), which was not significantly different from that observed under DD. In contrast, activity levels were almost the same between subjective day and night, unlike those under DD, which were greater during subjective night. The loss of circadian modulation under LL may be explained by the suspension of the circadian clock in these conditions. These results strongly suggest that the circatidal activity rhythm is driven by its own clock system, distinct from the circadian clock.  相似文献   

17.
In humans, activity rhythms become fragmented and attenuated in the elderly. This suggests an alteration of the circadian system per se that could in turn affect the expression of biological rhythms. In primates, very few studies have analyzed the effect of aging on the circadian system. The mouse lemur provides a unique model of aging in non-human primates. To assess the effect of aging on the circadian system of this primate, we recorded the circadian and daily rhythms of locomotor activity of mouse lemurs of various ages. We also examined age-related changes in the daily rhythm of immunoreactivities for vasoactive intestinal polypeptide (VIP) and arginine-vasopressin (AVP) in suprachiasmatic nucleus neurons (SCN), two major peptides of the biological clock. Compared to adult animals, aged mouse lemurs showed a significant increase in daytime activity and an advanced activity onset. Moreover, when maintained in constant dim red light, aged animals exhibited a shortening of the free-running period compared to adult animals. In adults, AVP immunoreactivity (ir) peaked during the second part of the day, and VIP ir peaked during the night. In aged mouse lemurs, the peaks of AVP ir and VIP ir were significantly shifted with no change in amplitude. AVP ir was most intense at the beginning of the night; whereas, VIP ir peaked at the beginning of the daytime. A weakened oscillator could account for the rhythmic disorders often observed in the elderly. Changes in the daily rhythms of AVP ir and VIP ir may affect the ability of the SCN to transmit rhythmic information to other neural target sites, and thereby modify the expression of some biological rhythms.  相似文献   

18.
The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (T(b)) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and T(b) rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and T(b) rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep.  相似文献   

19.
The internal circadian clock and sleep-wake homeostasis regulate the timing of human brain function, physiology, and behavior so that wakefulness and its associated functions are optimal during the solar day and that sleep and its related functions are optimal at night. The maintenance of a normal phase relationship between the internal circadian clock, sleep-wake homeostasis, and the light-dark cycle is crucial for optimal neurobehavioral and physiological function. Here, the authors show that the phase relationship between these factors-the phase angle of entrainment (psi)-is strongly determined by the intrinsic period (tau) of the master circadian clock and the strength of the circadian synchronizer. Melatonin was used as a marker of internal biological time, and circadian period was estimated during a forced desynchrony protocol. The authors observed relationships between the phase angle of entrainment and intrinsic period after exposure to scheduled habitual wakefulness-sleep light-dark cycle conditions inside and outside of the laboratory. Individuals with shorter circadian periods initiated sleep and awakened at a later biological time than did individuals with longer circadian periods. The authors also observed that light exposure history influenced the phase angle of entrainment such that phase angle was shorter following exposure to a moderate bright light (approximately 450 lux)-dark/wakefulness-sleep schedule for 5 days than exposure to the equivalent of an indoor daytime light (approximately 150 lux)-dark/wakefulness-sleep schedule for 2 days. These findings demonstrate that neurobiological and environmental factors interact to regulate the phase angle of entrainment in humans. This finding has important implications for understanding physiological organization by the brain's master circadian clock and may have implications for understanding mechanisms underlying circadian sleep disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号