首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
1. Inactivation of L-ornithine:2-oxoacid aminotransferase (OAT) by 5-fluoromethylornithine (5FMOrn), a specific inactivator of OAT, causes a great elevation of tissue ornithine (Orn) concentrations. 2. Inhibition of L-ornithine decarboxylase (ODC) by 2-difluoromethylornithine (DFMO) had no effect on Orn concentrations. 3. The combined administration of 5FMOrn and DFMO produced a 2- to 3-fold greater enhancement of tissue Orn concentrations than treatment with 5FMOrn alone. 4. The increase of tissue Orn concentrations had a long-lasting enhancing effect on polyamine metabolism. 5. In the brain this could be demonstrated by the elevation of putrescine and spermidine concentrations and the increase of spermidine turnover rate. 6. In visceral organs polyamine concentrations were not elevated because polyamines can be eliminated by transport. 7. In line with this notion is the fact that urinary polyamine excretion was increased for several days, even after a single dose of 5FMOrn. 8. Inhibitors of 4-aminobutyric acid:2-oxoglutarate aminotransferase which are also inactivators of OAT had the same effect on polyamine excretion as 5FMOrn.  相似文献   

2.
5-Fluoromethylornithine (5FMOrn) is an enzyme-activated irreversible inhibitor or ornithine aminotransferase (L-ornithine:2-oxo-acid 5-aminotransferase, OAT). For purified rat liver OAT, Ki(app.) was found to be 30 microM. and tau 1/2 = 4 min. Of the four stereomers of 5FMOrn only one reacts with OAT. The formation of a chromophore with an absorption maximum at 458 nm after inactivation of OAT by 5FMOrn suggests the formation of an enamine intermediate, which is slowly hydrolysed to release an unsaturated ketone. L-Canaline [(S)-2-amino-4-amino-oxybutyric acid] is a well-known irreversible inhibitor of OAT. Not only the natural L-enantiomer but also the D-enantiomer reacts by oxime formation with pyridoxal 5'-phosphate in the active site of the enzyme, although considerably more slowly. This demonstrates that the stereochemistry at C-2 of ornithine is not absolutely stringent. In vitro, canaline reacted faster than 5FMOrn with OAT. In vivo, however, only incomplete OAT inhibition was observed with canaline. Whereas intraperitoneal administration of 10 mg of 5FMOrn/kg body wt. to mice was sufficient to inactivate OAT in brain and liver by 90% for 24 h, 500 mg of DL-canaline/kg body wt. only produced a transient inhibition of 65-70%. The accumulation of ornithine in these tissues was considerably slower and the maximum concentrations lower than were achieved with 5FMOrn. It appears that DL-canaline, in contrast with 5FMOrn, is not useful as a tool in studies of biological consequences of OAT inhibition.  相似文献   

3.
N Seiler  C Grauffel  G Daune  F Gerhart 《Life sciences》1989,45(11):1009-1019
5-Fluoromethylornithine (5FMOrn) is a specific inactivator of L-ornithine:2-oxoacid aminotransferase (OAT). Inactivation of OAT causes the enhancement of L-ornithine (Orn) concentrations in all tissues. Intraperitoneal or oral administration of 10-50 mg/kg of 5FMOrn per day to albino mice rendered partial protection against lethal intoxication with 26 mmol/kg of ammonium acetate. The protective effect was maximal around 16 h after 5FMOrn administration, at the time when endogenous Orn concentrations were maximal. At this time protection by 5FMOrn against acute ammonia intoxication was comparable to that observed 1 h after the intraperitoneal administration of 10 mmol/kg of L-arginine. Pretreatment with 5FMOrn prevented the enhancement of excessive urinary excretion of orotic acid by ammonia intoxicated mice, and it enhanced urea formation in the liver. These biochemical effects demonstrate that 5FMOrn shifts Orn into the urea cycle, Orn which normally would be transaminated. Since even long-term treatment of mice with 5FMOrn did not reveal toxic effects, this compound may be considered for the treatment of certain conditional deficiencies of Orn or arginine.  相似文献   

4.
Gabaculine, a potent suicide inhibitor of ornithine aminotransferase (OAT), at a dose of 50 mg/kg inhibited this enzyme in mouse tissues and dramatically increased tissue ornithine concentrations, whether or not arginine was present in the diet. Thus even under arginine deprivation there is catabolism of ornithine which involves OAT. This was confirmed by administration of [14C]ornithine to arginine-deprived mice. Gabaculine (3-amino-2,3-dihydrobenzoic acid) drastically decreased the release of 14CO2 and increased the radioactivity in the basic amino acids in the tissues. When [1-14C]glutamate was injected into mice deprived of arginine, a significant amount of radioactivity was recovered in tissue ornithine and arginine, and gabaculine decreased this labelling by about two-thirds, indicating that ornithine was synthesized in vivo from glutamate via OAT. In addition, we failed to detect in liver and small intestine alpha-N-acetylornithine, N-acetylglutamate kinase or N-acetylornithine aminotransferase, which are obligatory components of a potential route of ornithine synthesis from N-acetylglutamate. Our results indicate that at least 45 mumol of ornithine was synthesized and catabolized daily via OAT in the mouse deprived of arginine.  相似文献   

5.
Cocaine (COCA)-induced neurobehavioral symptoms, which can be observed simultaneously with exacerbation in biochemical markers, were evaluated in mice, and compared with the changes observed in a representative hepatic failure model induced by thioacetamide (TAA). The effects of pretreatment with buprenorphine (BUP) (0.25, 0.5 or 1 mg/kg i.p.), a mixed opioid agonist-antagonist and an antidote against fatal COCA toxicity, were also examined. At 5 min after the COCA administration (65 mg/kg i.p.), the liver ATP levels were attenuated, and an exacerbation of the CNS-stimulating effects of COCA could be characteristically observed for hepatotoxicity-related neurobehavioral symptoms (changes in alertness, interest, body tension, head movement and walking). At 24 h, the ALT (alanine aminotransferase) activity was elevated, and hepatotoxic attenuation was observed for all of the scores on the neurobehavioral symptoms; this was almost identical to the symptoms observed in the TAA-treated group of mice. Recovery was observed by 72 h for all of the morbid changes. The hepatotoxic biochemical changes and the sum score for all five neurobehavioral symptoms were significantly ameliorated by low doses (0.25 and 0.5 mg/kg) of BUP, both at 5 min and 24 h.  相似文献   

6.
Bulk-isolated astrocytes from rats with early hepatogenic encephalopathy (HE) induced with thioacetamide responded to the increase of potassium in the incubation medium from 5 mM to 75 mM with a markedly enhanced release of previously taken up [14C]gamma-aminobutyric acid ([14C]GABA). The process was not affected by omission of calcium and/or addition of EGTA to the incubation medium. Only a slight stimulation of GABA release by high potassium was observed in astrocytes from control rats. In contrast, histamine and histidine were vigorously released from control astrocytes in high-potassium medium, and their release was not enhanced by HE, indicating that the observed phenomenon is specific for GABA.  相似文献   

7.
We previously showed that ornithine was mainly transported via cationic amino acid transporter (CAT)-1 in human retinal pigment epithelial (RPE) cell line, human telomerase RT (hTERT)-RPE, and that CAT-1 was involved in ornithine cytotoxicity in ornithine--aminotransferase (OAT)-deficient cell produced by a OAT specific inhibitor, 5-fluoromethylornithine (5-FMO). We showed here that CAT-1 mRNA expression was increased by ornithne in OAT-deficient RPE cells, which was reversed by an inhibitor of ornithine decarboxylase (ODC), -difluoromethylornithine (DFMO). Polyamines, especially spermine, one of the metabolites of ODC, also enhanced the expression of CAT-1 mRNA. ODC mRNA expression was also increased by ornithine and polyamines, and gene silencing of ODC by siRNA decreased ornithine transport activity and its cytotoxicity. In addition, the mRNA of nuclear protein c-myc was also increased in 5-FMO- and ornithine-treated hTERT-RPE cells, and gene silencing of c-myc prevented the induction of CAT-1 and ODC. Increases in expression of CAT-1, ODC, and c-myc, and the inhibition of these stimulated expression by DFMO were also observed in primary porcine RPE cells. These results suggest that spermine plays an important role in stimulation of mRNA expression of CAT-1, which is a crucial role in ornithine cytotoxicity in OAT-deficient hTERT-RPE cells. ornithine transport; ornithine decarboxylase; c-myc  相似文献   

8.
Ornithine aminotransferase and 4-aminobutyrate aminotransferase are related pyridoxal phosphate-dependent enzymes having different substrate specificities. The atomic structures of these enzymes have shown (i) that active site differences are limited to the steric positions occupied by two tyrosine residues in ornithine aminotransferase and (ii) that, uniquely among related, structurally characterized aminotransferases, the conserved arginine that binds the alpha-carboxylate of alpha-amino acids interacts tightly with a glutamate residue. To determine the contribution of these residues to the specificities of the enzymes, we analyzed site-directed mutants of ornithine aminotransferase by rapid reaction kinetics, x-ray crystallography, and 13C NMR spectroscopy. Mutation of one tyrosine (Tyr-85) to isoleucine, as found in aminobutyrate aminotransferase, decreased the rate of the reaction of the enzyme with ornithine 1000-fold and increased that with 4-aminobutyrate 16-fold, indicating that Tyr-85 is a major determinant of specificity toward ornithine. Unexpectedly, the limiting rate of the second half of the reaction, conversion of ketoglutarate to glutamate, was greatly increased, although the kinetics of the reverse reaction were unaffected. A mutant in which the glutamate (Glu-235) that interacts with the conserved arginine was replaced by alanine retained its regiospecificity for the delta-amino group of ornithine, but the glutamate reaction was enhanced 650-fold, whereas only a 5-fold enhancement of the ketoglutarate reaction rate resulted. A model is proposed in which conversion of the enzyme to its pyridoxamine phosphate form disrupts the internal glutamate-arginine interaction, thus enabling ketoglutarate but not glutamate to be a good substrate.  相似文献   

9.
The free proline levels and activities of ornithine aminotransferase (EC 2.6.1.13) and proline oxidase (EC 1.5.2.2), two of the enzymes involved in proline metabolism were studied during the induction of water stress in a drought susceptible (M-4) and a drought tolerant (S-1315) cultivar of cassava ( Manihot esculenta Crantz). Water stress induced by polyethylene glycol (MW 6000, osmotic potential — 1.65 MPa) caused a ca 25-fold increase in proline in young excised leaves of the susceptible cultivar (M-4) while the increase was about 9-fold in the tolerant cultivar (S-1315). The activity of ornithine aminotransferase (OAT), a key enzyme involved in the biosynthesis of proline, was found to increase 3-fold in water stressed leaves of M-4 and about 2-fold in those of S-1315. The activity of proline oxidase, which is involved in the degradation of proline to pyrroline-5-carboxylate, was reduced by 50% in M-4 and nearly 25% in S-1315 on water stress. Comparison of the kinetic properties of OAT showed that the enzyme from water-stressed leaves is more stable to heat inactivation compared to that of control. These results indicate that during water stress there are alterations in the metabolism of proline in cassava, and the extent of alteration varies between drought-susceptible and -tolerant cultivars.  相似文献   

10.
11.
The incidence and mortality of lung cancer ranked the first among all types of cancer in China, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer accounting for 85% of all lung cancers. Given that the survival rate of patients with advanced NSCLC is still poor nowadays, identification of novel therapeutic targets and the development of effective therapies are desired for the treatment of NSCLC in clinics. In this study, we reported the upregulation of ornithine aminotransferase (OAT) in NSCLC cells and clinical tumor samples as well as its association with the advanced TNM stage, metastasis, and poor tumor differentiation of lung cancer. Using different NSCLC cell lines, we demonstrated that OAT promoted the proliferation, invasion, and migration, inhibited the apoptosis, and altered cell cycle of NSCLC cells; besides, the involvement of OAT-miR-21-glycogen synthase kinase-3β signaling in the functional role of OAT in NSCLC was also revealed. Importantly, in the absence of OAT, the growth and metastasis of tumor lung cancer xenograft was significantly suppressed in the nude mice. Based on our findings, OAT may be a potential novel biomarker for the diagnosis and therapeutic outcome monitoring of NSCLC. Inhibition of OAT may also represent a new therapeutic strategy of NSCLC.  相似文献   

12.
5-Fluoromethylornithine (5-FMOrn) is the first specific irreversible inhibitor of L-ornithine:2-oxoacid aminotransferase (OAT) found. Single doses (greater than 10 mg/kg) of this compound inactivate OAT to a residual OAT-like activity. This activity (10-20% of total activity) is resistant to further inactivation by higher or repeated doses of 5-FMOrn, or incubation with the inactivator in vitro. Ornithine concentrations are greatly enhanced in various tissues, and urinary ornithine is dramatically increased, but no other amino acid is affected after acute treatment with 5-FMOrn. Repeated administration decreases carnosine and homocarnosine concentrations in brain. Toxic effects were not observed. The new inactivator is considered as a tool in the establishment of functions of OAT under physiological and pathological conditions.  相似文献   

13.
Ornithine aminotransferase (l-ornithine 2-oxoacid aminotransferase, OAT) is widely expressed in organs, but studies in mice have focused primarily on the intestine, kidney and liver because of the high OAT-specific activity in these tissues. This study aimed to investigate OAT activity in adult mouse tissues to assess the potential contribution to ornithine metabolism and to determine OAT control during postnatal development. OAT activity was widely distributed in mouse tissues. Sexual dimorphism was observed for most tissues in adults, with greater activity in females than in males. The contribution of skeletal muscles to total OAT activity (34 % in males and 27 % in females) was the greatest (50 %) of the investigated tissues in pre-weaned mice and was similar to that of the liver in adults. OAT activity was found to be regulated in a tissue-specific manner during postnatal development in parallel with large changes in the plasma testosterone and corticosterone levels. After weaning, OAT activity markedly increased in the liver but dropped in the skeletal muscle and adipose tissue. Anticipating weaning for 3 days led to an earlier reduction of OAT activity in skeletal muscles. Orchidectomy in adults decreased OAT activity in the liver but increased it in skeletal muscle and adipose tissue. We concluded that the contribution of skeletal muscle to mouse ornithine metabolism may have been underestimated. The regulation of OAT in skeletal muscles differs from that in the liver. The present findings suggest important and tissue-specific metabolic roles for OAT during postnatal development in mice.  相似文献   

14.
In this work new methods for the determination of ornithine (Orn) and l-ornithine:2-oxoacid aminotransferase (OAT) activity are described. These methods were used to demonstrate linear interrelationships between brain GABA and Orn concentrations. Brain GABA levels were modulated by administration of vigabatrin (4-aminohex-5-enoic acid), a specific inactivator of GABA-T, which is not an inhibitor of OAT. The results suggest feed-back inhibition of OAT by GABA, a mechanism which is compatible with the assumption that Orn may serve in certain neurons as a precursor of glutamate and GABA.  相似文献   

15.
The objective of the present study was to compare the effects of elevation of GABA concentration and those of inactivation ofl-ornithine: 2-oxoacid aminotransferase (OAT) on the in vivo metabolism ofl-ornithine (Orn) in brain. Vigabatrin (4-aminohex-5-enoic acid) and gabaculine (5-amino-1,3-cyclohexadienyl carboxylic acid), two well known inactivators of GABA-T, were used to elevate brain GABA concentrations. The latter inactivates OAT also. Transamination of Orn is, from a quantitative point of view, a significant reaction in mouse brain. GABA is a feed-back regulator of OAT. Within GABAergic neurons Orn concentration may be regulated by endogenous GABA. Extensive inactivation of OAT causes a considerable increase of Orn concentration, both in synaptosomes and in non-synaptosomal compartments. The results are compatible with a role of Orn as precursor of glutamate and/or GABA in certain neurons.  相似文献   

16.
Summary Gyrate atrophy (GA), a degenerative disease of the human chorioretina, is associated with a deficiency of ornithine aminotransferase (OAT) activity, hyperornithinemia, and ornithinuria. We have characterized a cDNA clone for OAT (HLOAT) that was isolated from a cDNA library constructed from mRNA prepared from Hep G2, cells, a human hepatoma cell line. We have used HLOAT and a nearly full length OAT cDNA clone isolated from, a rat liver library (RLOAT) to examine in cultured fibroblasts from individuals with GA and control individuals, the expression of OAT mRNA and the gross structure of the OAT gene. Northern blot analyses of total cellular RNA indicated that 3 of 3 control cell lines and 5 of 6 GA cell lines are capable of expressing an OAT related mRNA of approximately 2100 bases, the size of OAT mRNA. To date, this is the only case of GA in which a complete lack of OAT mRNA has been observed. Southern blot analyses of DNA isolated from these cell lines indicated that the gross structure of the OAT gene is usually not detectably altered in individuals with GA. However, a unique pattern, of restriction fragments was observed upon digestion with Eco RI or Hind III of DNA from the GA cell line that does not express OAT mRNA. These unique Eco RI and Hind III fragments arise from the OAT structural gene and will serve as useful molecular markers that allow this particular defective OAT allele to be identified. When the cellular DNAs were digested with Hinf I and examined with a probe that corresponds to at least a portion of the active site of the enzyme, i. e., the pyridoxal phosphate binding site, identical patterns of fragments were detected in all samples. Therefore, it appears unlikely that the loss of OAT activity associated with these GA cases, 4 of which are pyridoxal phosphate responders, is the result of insertions or deletions in this region of the OAT gene. This study indicates that the lack of OAT enzyme activity associated with GA is the result of a variety of different molecular defects within the OAT gene. This project was initiated in the laboratory of H. C. P. and was supported by grants CA07175, CA22484, and 5 T32 CA09020 from the National Cancer Institute and Postdoctoral Fellowship PF-2414 from the American Cancer Society. The continuing work in the laboratory of J. D. S. was supported by grants CA36727 and HD24189 from the National, Institutes of Health, grants SIG-16, ACS-IN165A, and a Junior Faculty Research Award (JFRA-227) from the American Cancer Society, and by University of Nebraska Medical Center Seed Research Grant 88-10.  相似文献   

17.
Cerebrocortical minislices derived from control rats ("control slices") and from rats with thioacetamide (TAA)-induced hepatic failure showing moderate hyperammonemia and symptoms of hepatic encephalopathy (HE) ("HE slices"), were incubated with physiological saline in the absence or presence of 5 mM ammonium acetate ("ammonia"), at potassium ion (K+) concentrations ranging from 5 to 15 mM. The efflux of endogenous aspartate (Asp), glutamate (Glu) and taurine (Tau) to the incubation medium was assayed by HPLC. At 5 mM K+, perfusion of control slices with ammonia did not affect Glu and slightly depressed Asp efflux. Raising K+ concentrations in the incubation medium to 7.5 led to inhibition of Glu and Asp efflux by ammonia and the inhibitory effect was further potentiated at 10 mM K+. The inhibition was also significant at 15 mM K+. This suggests that, depression of excitatory neurotransmission associated with acute hyperammonemia is more pronounced under conditions of intense neuronal activity than in the resting state. HE moderately increased the efflux of Glu and Asp, and the stimulatory effect of HE on Glu and Asp efflux showed virtually no variation upon changing K+ concentration up to 15 mM. Ammonia strongly, and HE moderately, increased Tau efflux at 5 mM K+. However, both the ammonia- and HE-dependent Tau efflux decreased with increasing K+ concentration in the medium and was no longer significant at 10 mM concentration, indicating that intense neuronal activity obliterates the neuroprotective functions of this amino acid triggered by hyperammonemia.  相似文献   

18.
The cDNA encoding ornithine aminotransferase (EC 2.6.1.13; OAT) was isolated from a human kidney cDNA library. The isolated cDNA contained the entire protein coding region and partial 3'- and 5'-untranslated regions. The nucleotide sequences of human kidney OAT cDNA were absolutely homologous with those of human liver OAT cDNA, and human kidney and liver OAT fused completely against the antibody to human kidney OAT in an Ouchterlony double diffusion test. These findings settled the controversy as to which characteristics of liver and kidney OAT isozymes are different. An N-terminal sequence analysis of purified mature human kidney OAT clarified that the leader peptide was cleaved between Gln-35 and Gly-36.  相似文献   

19.
A variant of ornithine aminotransferase (OAT, EC 2.6.1.13) has been detected in an offspring of a male mouse treated with ethylnitrosourea. The evidence presented to support the identification of the protein variant (ENU 2) as altered OAT includes (a) a corresponding 50% decrease in the abundance of a protein, located one charge unit basic to the variant, which comigrates on two-dimensional gel patterns with purified mouse liver OAT; (b) the binding of anti-rat-OAT antibody to the variant; (c) the increased abundance of the variant protein in the livers of mice fed a high protein diet (85% casein); and (d) purification of the variant through an OAT purification protocol.  相似文献   

20.
Effect of L-cycloserine on brain GABA metabolism   总被引:6,自引:0,他引:6  
The administration of L-cycloserine to mice resulted in a dramatic decrease in the activities of 4-aminobutyrate:2-oxoglutarate aminotransferase (GABA-T) and L-alanine:2-oxoglutarate aminotransferase (ALA-T) in both brain and liver. L-Aspartate:2-oxoglutarate aminotransferase was inhibited only slightly, and brain glutamic acid decarboxylase not at all. Liver ALA-T activity returned to near normal levels within 24 h of L-cycloserine administration whereas liver GABA-T and brain ALA-T activities had returned only halfway to normal levels in the same time period. The recovery in the activity of brain GABA-T was even slower. A consequence of the inhibition of brain GABA-T activity was an elevation in the GABA content of the tissue which was maximal 3 h after L-cycloserine administration and which was still noticeable 8 h after the drug treatment. L-Cycloserine was also a potent in vitro inhibitor of brain GABA-T activity. The inhibition was competitive with respect to GABA, the Ki value being 3.1 X 10(-5) M. The prior administration of L-cycloserine to mice significantly delayed the onset of isonicotinic acid hydrazide induced convulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号