首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of sodium transport in bacteria   总被引:5,自引:0,他引:5  
In some bacteria, an Na+ circuit is an important link between exergonic and endergonic membrane reactions. The physiological importance of Na+ ion cycling is described in detail for three different bacteria. Klebsiella pneumoniae fermenting citrate pumps Na+ outwards by oxaloacetate decarboxylase and uses the Na+ ion gradient thus established for citrate uptake. Another possible function of the Na+ gradient may be to drive the endergonic reduction of NAD+ with ubiquinol as electron donor. In Vibrio alginolyticus, an Na+ gradient is established by the NADH: ubiquinone oxidoreductase segment of the respiratory chain; the Na+ gradient drives solute uptake, flagellar motion and possibly ATP synthesis. In Propionigenium modestum, ATP biosynthesis is entirely dependent on the Na+ ion gradient established upon decarboxylation of methylmalonyl-CoA. The three Na(+)-translocating enzymes, oxaloacetate decarboxylase of Klebsiella pneumoniae, NADH: ubiquinone oxidoreductase of Vibrio alginolyticus and ATPase (F1F0) of Propionigenium modestum have been isolated and studied with respect to structure and function. Oxaloacetate decarboxylase consists of a peripheral subunit (alpha), that catalyses the carboxyltransfer from oxaloacetate to enzyme-bound biotin. The subunits beta and gamma are firmly embedded in the membrane and catalyse the decarboxylation of the carboxybiotin enzyme, coupled to Na+ transport. A two-step mechanism has also been demonstrated for the respiratory Na+ pump. Semiquinone radicals are first formed with the electrons from NADH; subsequently, these radicals dismutate in an Na(+)-dependent reaction to quinone and quinol. The ATPase of P. modestum is closely related in its structure to the F1F0 ATPase of E. coli, but uses Na+ as the coupling ion. A specific role of protons in the ATP synthesis mechanism is therefore excluded.  相似文献   

2.
It has been recently well documented that metal transport systems play a crucial role in the uptake, distribution and detoxification of heavy metals throughout the plant. A range of gene families that are likely to be involved in essential and non-essential metal transport has been now identified and their plasma membrane and/or tonoplast localization in plant cells has been recently confirmed. These include the primary metal transporters, using ATP as the source of energy and H(+)-coupling transporters, utilizing the electrochemical gradient previously generated by plasma membrane and tonoplast proton pumps. As the presence of nucleotide binding domains in the protein sequence may indicate its ATP-hydrolytic activity, it is more difficult to determine the H(+)-coupling activity of protein on the base of its structure. Thus, the H(+)-coupling activity of protein may be only proved by functional analysis of the protein. In this work, we briefly review the structure, regulation and function of the metal transporters operating as H(+)/metal cotransporters.  相似文献   

3.
Analysis of the bacterial genome sequences shows that many human and animal pathogens encode primary membrane Na+ pumps, Na+-transporting dicarboxylate decarboxylases or Na+ translocating NADH:ubiquinone oxidoreductase, and a number of Na+ -dependent permeases. This indicates that these bacteria can utilize Na+ as a coupling ion instead of or in addition to the H+ cycle. This capability to use a Na+ cycle might be an important virulence factor for such pathogens as Vibrio cholerae, Neisseria meningitidis, Salmonella enterica serovar Typhi, and Yersinia pestis. In Treponema pallidum, Chlamydia trachomatis, and Chlamydia pneumoniae, the Na+ gradient may well be the only energy source for secondary transport. A survey of preliminary genome sequences of Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, and Treponema denticola indicates that these oral pathogens also rely on the Na+ cycle for at least part of their energy metabolism. The possible roles of the Na+ cycling in the energy metabolism and pathogenicity of these organisms are reviewed. The recent discovery of an effective natural antibiotic, korormicin, targeted against the Na+ -translocating NADH:ubiquinone oxidoreductase, suggests a potential use of Na+ pumps as drug targets and/or vaccine candidates. The antimicrobial potential of other inhibitors of the Na+ cycle, such as monensin, Li+ and Ag+ ions, and amiloride derivatives, is discussed.  相似文献   

4.
The concept is developed according to which Na+, like H+, can play the role of a coupling ion in energy-transducing biomembranes. This idea is based on observations that (i) Na+ can be extruded from the cell by primary pumps (Na-motive NADH-quinone reductase, decarboxylase or ATPase), and (ii) the downhill Na+ flux into the cell can be coupled with the performance of all the three types of membrane-linked work i.e. chemical (ATP synthesis), osmotic (accumulation of solutes) and mechanical (motility). Marine alkalotolerant Vibrio alginolyticus represents the first example of such a complete sodium cycle pattern. Simplified versions of the sodium cycle or some of its constituents are found in the cytoplasmic membrane of a great variety of taxa including anaerobic, aerobic and photosynthetic bacteria, cyanobacteria and animals; this fact indicates that Na+ energetics should be regarded as a common case, rather than a rare exception applied to some natural niches only.  相似文献   

5.
An H(+)-translocating ATPase-defective mutant of Vibrio parahaemolyticus YS-1 grew well on lactate as a sole source of carbon at pH 8.5 under aerobic conditions, but not under anaerobic conditions. Both wild type cells and the mutant cells could grow on lactate at pH 8.5 even in the presence of an H+ conductor, carbonylcyanide m-chlorophenylhydrazone (CCCP), but not at pH 7.5. Oxidative phosphorylation resistant to CCCP in the mutant occurred at pH 8.5. These findings suggest the existence of Na(+)-coupled oxidative phosphorylation which is functional at alkaline pHs in V. parahaemolyticus. In fact, we observed ATP synthesis driven by an artificially imposed Na+ gradient in YS-1 cells, which was resistant to CCCP.  相似文献   

6.
The bacterium Vitreoscilla generates an electrical potential gradient due to sodium ion (delta psi Na+) across its membrane via respiratory-driven primary Na+ pump(s). The role of the delta psi Na+ as a driving force for ATP synthesis was, therefore, investigated. In respiring starved cells pulsed with 100 mM external Na+ [( Na+]o) there was a 167% net increase in cellular ATP concentration over basal levels compared with 0, 56, 78, and 78% for no addition, choline, Li+, and K+ controls, respectively. Doubling the [Na+]o to 200 mM boosted the net increase to 244% but a similar doubling of the choline caused only an increase to 78%. When the initial condition was intracellular Na+ ([Na+]i) = [Na+]o = 100 mM, there was a 94% net increase in cellular ATP compared with only 18 and 11% for Li+ and K+ controls, respectively, indicating that Nai+ may be the only cation tested that the cells extruded to generate the electrochemical gradient required to drive ATP synthesis. The Na(+)-dependent ATP synthesis was inhibited completely by monensin (12 microM), but only transiently by the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (100 microM), further evidence that the Na+ gradient and not a H+ gradient was driving the ATP synthesis. ATP synthesis in response to an artificially imposed H+ gradient (delta pH approximately 3) in the absence of an added cation, or in the presence of Li+, K+, or choline, yielded similar delta ATP/delta pH ratios of 0.98-1.22. In the presence of Na+, however, this ratio dropped to 0.23, indicating that Na+ inhibited H(+)-coupling to ATP synthesis and possibly that H+ and Na+ coupling to ATP synthesis share a common catalyst. The above evidence adds to previous findings that under normal growth conditions Na+ is probably the main coupling cation for ATP synthesis in Vitreoscilla.  相似文献   

7.
The relationship between rate of ATP synthesis, JATP, and value of the proton electrochemical gradient, delta mu H, has been analyzed in intact mitochondria. Onset of phosphorylation causes a depression of delta mu H of 1.5 kJ/mol. There is a close parallelism between inhibition of JATP and restoration of delta mu H to its state-4 value during titrations with oligomycin or atractyloside. Titrations with ionophores display the following features: (a) delta mu H can be depressed by 3-4 kJ/mol by valinomycin + K+ without affecting the rate of ATP synthesis; (b) uncouplers abolish JATP completely while depressing delta mu H by 3 kJ/mol; (c) complete abolition of ATP synthesis by inhibitors of electron transport is accompanied by a depression of delta mu H of only 1 kJ/mol. The results indicate that: (a) there is a close functional relationship between redox and ATPase H+ pumps, whereby inhibition of electron transfer is accompanied by simultaneous inhibition of the ATPase H+ pumps; and (b) uncoupling of oxidative phosphorylation is not due to depression of delta mu H per se. The consistence of the present data with either a chemiosmotic model where delta mu H is the sole and obligatory intermediate for energy coupling, or models where there is a direct transfer of energy between the two pumps is discussed.  相似文献   

8.
Decarboxylation of dicarboxylic acids (oxalate, malonate, succinate, glutarate, and malate) can serve as the sole energy source for the growth of fermenting bacteria. Since the free energy change of a decarboxylation reaction is small (around –20 kJ per mol) and equivalent to only approximately one-third of the energy required for ATP synthesis from ADP and phosphate under physiological conditions, the decarboxylation energy cannot be conserved by substrate-level phosphorylation. It is either converted (in malonate, succinate, and glutarate fermentation) by membrane-bound primary decarboxylase sodium ion pumps into an electrochemical gradient of sodium ions across the membrane; or, alternatively, an electrochemical proton gradient can be established by the combined action of a soluble decarboxylase with a dicarboxylate/monocarboxylate antiporter (in oxalate and malate fermentation). The thus generated electrochemical Na+ or H+ gradients are then exploited for ATP synthesis by Na+- or H+-coupled F1F0 ATP synthases. This new type of energy conservation has been termed decarboxylation phosphorylation and is responsible entirely for ATP synthesis in several anaerobic bacteria. Received: 5 December 1997 / Accepted: 16 March 1998  相似文献   

9.
Methanosarcina mazei Gö1 couples the methyl transfer from methyl-tetrahydromethanopterin to 2-mercaptoethanesulfonate (coenzyme M) with the generation of an electrochemical sodium ion gradient (delta mu Na+) and the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate with the generation of an electrochemical proton gradient (delta muH+). Experiments with washed inverted vesicles were performed to investigate whether both ion gradients are used directly for the synthesis of ATP. delta mu Na+ and delta mu H+ were both able to drive the synthesis of ATP in the vesicular system. ATP synthesis driven by heterodisulfide reduction (delta mu H+) or an artificial delta pH was inhibited by the protonophore SF6847 but not by the sodium ionophore ETH157, whereas ETH157 but not SF6847 inhibited ATP synthesis driven by a chemical sodium ion gradient (delta pNa) as well as the methyl transfer reaction (delta mu Na+). Inhibition of the Na+/H+ antiporter led to a stimulation of ATP synthesis driven by the methyl transfer reaction (delta mu Na+), as well as by delta pNa. These experiments indicate that delta mu Na+ and delta mu H+ drive the synthesis of ATP via an Na(+)- and an H(+)-translocating ATP synthase, respectively. Inhibitor studies were performed to elucidate the nature of the ATP synthase(s) involved. delta pH-driven ATP synthesis was specifically inhibited by bafilomycin A1, whereas delta pNa-driven ATP synthesis was exclusively inhibited by 7-chloro-4-nitro-2-oxa-1,3-diazole, azide, and venturicidin. These results are evidence for the presence of an F(1)F(0)-ATP synthase in addition to the A(1)A(0)-ATP synthase in membranes of M. Mazei Gö1 and suggest that the F(1)F(0)-type enzyme is an Na+-translocating ATP synthase, whereas the A(1)A(0)-ATP synthase uses H+ as the coupling ion.  相似文献   

10.
V P Skulachev 《Bioscience reports》1991,11(6):387-441; discussion 441-4
The development of membrane bioenergetic studies during the last 25 years has clearly demonstrated the validity of the Mitchellian chemiosmotic H+ cycle concept. The circulation of H+ ions was shown to couple respiration-dependent or light-dependent energy-releasing reactions to ATP formation and performance of other types of membrane-linked work in mitochondria, chloroplasts, some bacteria, tonoplasts, secretory granules and plant and fungal outer cell membranes. A concrete version of the direct chemiosmotic mechanism, in which H+ potential formation is a simple consequence of the chemistry of the energy-releasing reaction, is already proved for the photosynthetic reaction centre complexes. Recent progress in the studies on chemiosmotic systems has made it possible to extend the coupling-ion principle to an ion other than H+. It was found that, in certain bacteria, as well as in the outer membrane of the animal cell, Na+ effectively substitutes for H+ as the coupling ion (the chemiosmotic Na+ cycle). A precedent is set when the Na+ cycle appears to be the only mechanism of energy production in the bacterial cell. In the more typical case, however, the H+ and Na+ cycles coexist in one and the same membrane (bacteria) or in two different membranes of one and the same cell (animals). The sets of delta mu H+ and delta mu Na+ generators as well as delta mu H+ and delta mu Na+ consumers found in different types of biomembranes, are listed and discussed.  相似文献   

11.
The Na(+)-bile acid cotransporters NTCP and ASBT are largely responsible for the Na(+)-dependent bile acid uptake in hepatocytes and intestinal epithelial cells, respectively. This review discusses the experimental methods available for demonstrating electrogenicity and examines the accumulating evidence that coupled transport by each of these bile acid transporters is electrogenic. The evidence includes measurements of transport-associated currents by patch clamp electrophysiological techniques, as well as direct measurement of fluorescent bile acid transport rates in whole cell patch clamped, voltage clamped cells. The results support a Na+:bile acid coupling stoichiometry of 2:1.  相似文献   

12.
Ambiguity exists with respect to mechanisms of glutathione (GSH) transport and the molecular identity of GSH transporters. Empirical and theoretical limitations have hindered functional and molecular characterizations. Published literature referring to the isolation and molecular identification of Na+-coupled GSH transporters that mediate the cellular uptake of GSH is highly debated. Whereas a number of functional and kinetic reports of this putative symport mechanism exist, the hypothetical transmembrane Na+-coupled GSH transporter protein or the genetic message encoding it has not been isolated. Theoretical thermodynamic calculations to support the concept of secondary active GSH transport and to rationalize accounts of physical-kinetic measurements describing Na+-coupled cellular GSH uptake were performed. The adequacy of requisite energy and stoichiometric conservation of the separate electrical and chemical components of a Na+ gradient in maintaining a high cellular accumulation gradient for GSH was examined through a purely phenomenological perspective. Dependent on the biological context, the energetic coupling between Na+ and GSH cotransport may occur at ratios from 1:1 to 3:1. Molecular identification of specific transporters responsible for cellular Na+-coupled GSH uptake will facilitate determination of their relative contribution to the overall plasma membrane resting potential. In tissues with a high GSH concentration relative to their extracellular milieu, particularly in pathologies of cystic fibrosis and dry eye syndromes, large energy coupling ratios in cotransport of Na+ and GSH may be expected. Na+-coupled GSH transport may play an important role in disease onset and (or) progression, or treatment modalities thereof.  相似文献   

13.
Mechanisms of Na+ transport into the inside-out subcellular vesicles of alkalo- and halotolerant Bacillus FTU and of Escherichia coli grown at different pH have been studied. Both microorganisms growing at pH 7.5 are shown to possess a system of the respiration-dependent Na+ transport which (i) is inhibited by protonophorous uncoupler, by delta pH-discharging agent diethylammonium (DEA) acetate, by micromolar cyanide arresting the H(+)-motive respiratory chain, and by amiloride, and (ii) is resistant to the Na+/H+ antiporter monensin and to Ag+, inhibitor of the Na(+)-motive respiratory chain. Growth at pH 8.6 strongly changes the activator and inhibitor pattern. Now (1) protonophore stimulates the Na+ transport, (2) DEA acetate is without effect in the absence of protonophore and is stimulating in its presence, (3) amiloride and low cyanide are ineffective, (4) monensin and Ag+ completely arrest the Na+ accumulation in the vesicles. Independent of pH of the growth medium, (a) valinomycin is stimulatory for the Na+ transport, (b) Na+ ionophore ETH 157 is inhibitory and, (c) Na+ transport can be supported by NADH----fumarate as well as by ascorbate (TMPD)----O2 electron transfers. Growth at alkaline pH results in the appearance of ascorbate (TMPD) oxidation resistant to low and sensitive to high cyanide concentrations. These relationships are in agreement with the concept (Skulachev, V.P. (1984) Trends Biochem. Sci. 9, 483-485) that adaptation to alkaline conditions in bacteria growing in the high [Na+] media causes substitution of Na+ for H+ as a coupling ion. The obtained data indicate that under alkaline conditions, Na+ can be pumped from the cell by the Na(+)-motive respiratory chain with neither H(+)-motive respiration nor the Na+/H+ antiporter involved. In the Na(+)-motive respiratory chain of Bac. FTU or E. coli, two Na+ pumps are localized, one in its initial and the other in its terminal spans.  相似文献   

14.
All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.  相似文献   

15.
The role of Na+ in Vibrio alginolyticus oxidative phosphorylation has been studied. It has been found that the addition of a respiratory substrate, lactate, to bacterial cells exhausted in endogenous pools of substrates and ATP has a strong stimulating effect on oxygen consumption and ATP synthesis. Phosphorylation is found to be sensitive to anaerobiosis as well as to HQNO, an agent inhibiting the Na+-motive respiratory chain of V. alginolyticus. Na+ loaded cells incubated in a K+ or Li+ medium fail to synthesize ATP in response to lactate addition. The addition of Na+ at a concentration comparable to that inside the cell is shown to abolish the inhibiting effect of the high intracellular Na+ level. Neither lactate oxidation nor delta psi generation coupled with this oxidation is increased by external Na+ in the Na+-loaded cells. It is concluded that oxidative ATP synthesis in V. alginolyticus cells is inhibited by the artificially imposed reverse delta pNa, i.e., [Na+]in greater than [Na+]out. Oxidative phosphorylation is resistant to a protonophorous uncoupler (0.1 mM CCCP) in the K+-loaded cells incubated in a high Na+ medium, i.e., when delta pNa of the proper direction [( Na+]in less than [Na+]out) is present. The addition of monensin in the presence of CCCP completely arrests the ATP synthesis. Monensin without CCCP is ineffective. Oxidative phosphorylation in the same cells incubated in a high K+ medium (delta pNa is low) is decreased by CCCP even without monensin. Artificial formation of delta pNa by adding 0.25 M NaCl to the K+-loaded cells (Na+ pulse) results in a temporary increase in the ATP level which spontaneously decreases again within a few minutes. Na+ pulse-induced ATP synthesis is completely abolished by monensin and is resistant to CCCP, valinomycin and HQNO. 0.05 M NaCl increases the ATP level only slightly. Thus, V. alginolyticus cells at alkaline pH represent the first example of an oxidative phosphorylation system which uses Na+ instead of H+ as the coupling ion.  相似文献   

16.
In Propionigenium modestum, ATP synthesis is coupled via delta mu Na+ to the decarboxylation of (S)-methylmalonyl-CoA. The low energy yield of this reaction implies that approx. 4 decarboxylation cycles are necessary to synthesize 1 molecule of ATP. Theoretical considerations in accord with experimental results suggest ATP synthesis in P. modestum at delta mu Na+ = -110 mV. Other anaerobic bacteria synthesize ATP at a delta mu H+ of similar size and alkaliphilic bacteria at pH 10.3 have a delta mu H+ of only -103 mV. In these cases, the H+(Na+) to ATP stoichiometry must be at least 4.  相似文献   

17.
Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla   总被引:2,自引:0,他引:2  
B J Efiok  D A Webster 《Biochemistry》1990,29(19):4734-4739
Vitreoscilla is a Gram-negative bacterium with unique respiratory physiology in which Na+ was implicated as a coupling cation for the generation of a transmembrane electrical gradient (delta psi). Thus, cells respiring in the presence of 110 mM Na+ generated a delta psi of -142 mV compared to only -42 and -56 mV for Li+ and choline, respectively, and even the -42 and -56 mV were insensitive to the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (DTHB). The kinetics of delta psi formation and collapse correlated well with the kinetics of Na+ fluxes but not with those of H+ fluxes. Cyanide inhibited respiration, Na+ extrusion, and delta psi formation 81% or more, indicating that delta psi formation and Na+ extrusion were coupled to respiration. Experiments were performed to distinguish among three possible transport systems for this coupling: (1) a Na(+)-transporting ATPase; (2) an electrogenic Na+/H+ antiport system; (3) a primary Na+ pump directly driven by the free energy of electron transport. DCCD and arsenate decreased cellular ATP up to 86% but had no effect on delta psi, evidence against a Na(+)-transporting ATPase. Low concentrations of DTHB had no effect on delta psi; high concentrations transiently collapsed delta psi, but led to a stimulation of Na+ extrusion, the opposite of that expected for a Na+/H+ antiport system. Potassium ion, which collapses delta psi, also stimulated Na+ extrusion. The experimental evidence is against Na+ extrusion by mechanisms 1 and 2 and supports the existence of a respiratory-driven primary Na+ pump for generating delta psi in Vitreoscilla.  相似文献   

18.
Mutants of Vibrio parahaemolyticus lacking the H+-translocating ATPase were isolated to evaluate both the role of this enzyme and the possibility of the involvement of other cation-translocating ATPase in the energy transduction in this organism. Dicyclohexylcarbodiimide-sensitive ATPase activity which represents the H+-translocating ATPase was not detected either in the membrane vesicles or in the cytosol of the mutants. Three major subunits, alpha, beta and gamma, of the H+-translocating ATPase were missing in the membranes of the mutants. Although ATP was synthesized in wild type cells when an artificial H+ gradient was imposed, little ATP was synthesized in the mutants. However, we observed a large ATP synthesis driven by the respiration not only in the wild type but also in the mutants. The respiratory-driven ATP synthesis in wild type was inhibited by an H+ conductor, carbonylcyanide m-chlorophenylhydrazone, by about 50%. On the other hand, the ATP synthesis in the mutants was not affected by the H+ conductor. Since this organism possesses a respiratory Na+ pump, Na+-coupled ATP synthesis might take place. In fact, we observed some ATP synthesis driven by an artificially imposed Na+ gradient both in the wild type and the mutant.  相似文献   

19.
Cell suspensions of Acetobacterium woodii prepared from cultures grown on fructose plus caffeate catalyzed caffeate reduction with electrons derived from molecular hydrogen. Hydrogen-dependent caffeate reduction was strictly Na(+) dependent with a K(m) for Na(+) of 0.38 mM; Li(+) could substitute for Na(+). The sodium ionophore ETH2120, but not protonophores, stimulated hydrogen-dependent caffeate reduction by 280%, indicating that caffeate reduction is coupled to the buildup of a membrane potential generated by primary Na(+) extrusion. Caffeate reduction was coupled to the synthesis of ATP, and again, ATP synthesis coupled to hydrogen-dependent caffeate reduction was strictly Na(+) dependent and abolished by ETH2120, but not by protonophores, indicating the involvement of a transmembrane Na(+) gradient in ATP synthesis. The ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) abolished ATP synthesis, and at the same time, hydrogen-dependent caffeate reduction was inhibited. This inhibition could be relieved by ETH2120. These experiments are fully compatible with a chemiosmotic mechanism of ATP synthesis with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by A. woodii.  相似文献   

20.
Bacterial Na+ energetics   总被引:4,自引:0,他引:4  
V P Skulachev 《FEBS letters》1989,250(1):106-114
Novel observations related to the Na+-linked energy transduction in bacterial membranes are considered. It is concluded that besides the well-known systems based on the circulation of protons, there are those based on the circulation of Na+. In some cases, H+ and Na+ cycles co-exist in one and the same membrane. Representatives of the 'sodium world', i.e. cells possessing primary Na+ pumps (delta mu Na generators and consumers) are found in many genera of bacteria. Among the delta mu Na generators, one should mention Na+-NADH-quinone reductase and Na+-terminal oxidase of the respiratory chain, Na+-decarboxylases and Na+-ATPases. For delta mu Na consumers, there are Na+-ATP-synthases, Na+-metabolite symporters and Na+ motors. Sometimes, one and the same enzyme can transport H+ or, alternatively, Na+. For instance, an Na+-ATP-synthase of the F0F1 type translocates H+ when Na+ is absent. Employment of the Na+ cycle, apart from or instead of the H+ cycle, increases the resistance of bacteria to alkaline or protonophore-containing media and, apparently, to some other unfavourable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号