首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ATP-binding cassette (ABC) transporter TAP plays an essential role in antigen processing and immune response to infected or malignant cells. TAP translocates proteasomal degradation products from the cytosol into the endoplasmic reticulum, where MHC class I molecules are loaded with these peptides. Kinetically stable peptide-MHC complexes are transported to the cell surface for inspection by cytotoxic T lymphocytes. The transport cycle of TAP is initiated by peptide binding, which is responsible for peptide selection and for stimulation of ATP-hydrolysis and subsequent translocation. Here we have analysed the driving forces for the formation of the peptide-TAP complex by kinetic and thermodynamic methods. First, the apparent peptide association and dissociation rates were determined at various temperatures. Strikingly, very high activation energies for apparent association (E(a)(ass)=106 kJmol(-1)) and dissociation (E(a)(diss)=80 kJmol(-1)) of the peptide-TAP complex were found. Next, the temperature-dependence of the peptide affinity constants was investigated by equilibrium-binding assays. Along with calculations of free enthalpy deltaG, enthalpy deltaH and entropy deltaS, a large positive change in heat capacity was resolved (deltaC degrees =23 kJmol(-1)K(-1)), indicating a fundamental structural reorganization of the TAP complex upon peptide binding. The inspection of the conformational entropy reveals that approximately one-fourth of all TAP residues is rearranged. These thermodynamic studies indicate that at physiological temperature, peptide binding is endothermic and driven by entropy.  相似文献   

2.
Within the adaptive immune system the transporter associated with antigen processing (TAP) plays a pivotal role in loading of peptides onto major histocompatibility (MHC) class I molecules. As a central tool to investigate the structure and function of the TAP complex, we created cysteine-less human TAP subunits by de novo gene synthesis, replacing all 19 cysteines in TAP1 and TAP2. After expression in TAP-deficient human fibroblasts, cysteine-less TAP1 and TAP2 are functional with respect to adenosine triphosphate (ATP)-dependent peptide transport and inhibition by ICP47 from herpes simplex virus. Cysteine-less TAP1 and TAP2 restore maturation and intracellular trafficking of MHC class I molecules to the cell surface.  相似文献   

3.
The transporter associated with antigen processing (TAP) plays a key role in adaptive immunity by translocating proteasomal degradation products from the cytosol into the endoplasmic reticulum lumen for subsequent loading onto major histocompatibility (MHC) class I molecules. For functional and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture. Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry. The antigen translocation activity is stimulated by phosphatidylinositol and -ethanolamine, whereas cholesterol has a negative effect on TAP activity.  相似文献   

4.
The transport of antigenic peptides from the cytosol to the lumen of the endoplasmic reticulum (ER) is an essential process for presentation to cytotoxic T-lymphocytes. The transporter associated with antigen processing (TAP) is responsible for the intracellular translocation of peptides across the membrane of the ER. Efficient assembly of MHC-peptide complex requires the formation of a macromolecular transport and chaperone complex composed of TAP, tapasin and MHC class I molecules. Therefore, structure and function of TAP is important for the understanding of the immune surveillance.  相似文献   

5.
The transporter associated with antigen processing (TAP) comprises two structurally related subunits, TAP1 and TAP2, that form stable complexes in endoplasmic reticulum (ER) membranes. TAP complexes function in the translocation of peptides from the cytosol into the ER lumen for presentation by major histocompatibility complex class I molecules. Each TAP subunit contains an N-terminal membrane-spanning region with multiple membrane-spanning segments, and a C-terminal, cytosolic nucleotide binding region. To study the nature of the interactions occurring on the cytosolic face of TAP1/TAP2 complexes, we investigated quaternary associations mediated by two C-terminal fragments of human TAP1 (T1c, residues 452-748 and T1ctr, residues 472-748) and two C-terminal fragments of human TAP2 (T2c, residues 399-686 and T2ctr, residues 433-686). Each of these constructs contains the core nucleotide binding region as well as a long or short N-terminal extension. We show stable complex formation between T1c and T2c but not between T1ctr and T2ctr. The mechanistic implications of these results are discussed. We also show that each of the constructs except T1ctr interacts with wild type TAP1 and TAP2, indicating possibilities for homodimerization of TAP1 and TAP2, or of oligomerization of TAP1/TAP2 heterodimers on membranes.  相似文献   

6.
The transporter associated with antigen processing (TAP1/2) translocates cytosolic peptides of proteasomal degradation into the endoplasmic reticulum (ER) lumen. A peptide-loading complex of tapasin, major histocompatibility complex class I, and several auxiliary factors is assembled at the transporter to optimize antigen display to cytotoxic T-lymphocytes at the cell surface. The heterodimeric TAP complex has unique N-terminal domains in addition to a 6 + 6-transmembrane segment core common to most ABC transporters. Here we provide direct evidence that this core TAP complex is sufficient for (i) ER targeting, (ii) heterodimeric assembly within the ER membrane, (iii) peptide binding, (iv) peptide transport, and (v) specific inhibition by the herpes simplex virus protein ICP47 and the human cytomegalovirus protein US6. We show for the first time that the translocation pore of the transporter is composed of the predicted TM-(5-10) of TAP1 and TM-(4-9) of TAP2. Moreover, we demonstrate that the N-terminal domains of TAP1 and TAP2 are essential for recruitment of tapasin, consequently mediating assembly of the macromolecular peptide-loading complex.  相似文献   

7.
The heterodimeric peptide transporter TAP belongs to the ABC transporter family. Sequence comparisons with the P-glycoprotein and cystic fibrosis transmembrane conductance regulator and the functional properties of selective amino acids in these ABC transporters postulated that the glutamic acid at position 263 and the phenylalanine at position 265 of the TAP1 subunit could affect peptide transporter function. To define the role of both amino acids, TAP1 mutants containing a deletion or a substitution to alanine at position 263 or 265 were generated and stably expressed in murine and human TAP1(-/-) cells. The different TAP1 mutants were characterized in terms of expression and function of TAP, MHC class I surface expression, immune recognition, and species-specific differences. The phenotype of murine and human cells expressing human TAP1 mutants with a deletion or substitution of Glu(263) was comparable to that of TAP1(-/-) cells. In contrast, murine and human TAP1 mutant cells containing a deletion or mutation of Phe(265) of the TAP1 subunit exhibit wild-type TAP function. This was associated with high levels of MHC class I surface expression and recognition by specific CTL, which was comparable to that of wild-type TAP1-transfected control cells. Thus, biochemical and functional evidence is presented that the Glu(263) of the TAP1 protein, but not the Phe(265), is critical for proper TAP function.  相似文献   

8.
9.
The transporter associated with antigen processing (TAP) is an ATP binding cassette transporter responsible for peptide translocation into the lumen of the endoplasmic reticulum for assembly with major histocompatibility complex class I molecules. Immunoaffinity-purified TAP particles comprising TAP1 and TAP2 polypeptides, and TAP2 particles alone were characterized after detergent solubilization and studied by electron microscopy. Projection structures of TAP1+2 particles reveal a molecule approximately 10 nm across with a deeply staining central region, whereas TAP2 molecules are smaller in projection. A three-dimensional structure of TAP reveals it is isolated as a single heterodimeric complex, with the TAP1 and TAP2 subunits combining to create a central 3-nm-diameter pocket on the predicted endoplasmic reticulum-lumenal side. Its structural similarity to other ABC transporters demonstrates a common tertiary structure for this diverse family of membrane proteins.  相似文献   

10.
The transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticular lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. These peptide-MHC complexes are inspected at the cell surface by cytotoxic T-lymphocytes. Assembly of the functional peptide transport and loading complex depends on intra- and intermolecular packing of transmembrane helices (TMs). Here, we have examined the membrane topology of human TAP1 within an assembled and functional transport complex by cysteine-scanning mutagenesis. The accessibility of single cysteine residues facing the cytosol or endoplasmic reticular lumen was probed by a minimally invasive approach using membrane-impermeable, thiol-specific fluorophores in semipermeabilized "living" cells. TAP1 contains ten transmembrane segments, which place the N and C termini in the cytosol. The transmembrane domain consists of a translocation core of six TMs, a building block conserved among most ATP-binding cassette transporters, and a unique additional N-terminal domain of four TMs, essential for tapasin binding and assembly of the peptide-loading complex. This study provides a first map of the structural organization of the TAP machinery within the macromolecular MHCI peptide-loading complex.  相似文献   

11.
The transporter associated with antigen processing (TAP) is a key component of the cellular immune system. As a member of the ATP-binding cassette (ABC) superfamily, TAP hydrolyzes ATP to energize the transport of peptides from the cytosol into the lumen of the endoplasmic reticulum. TAP is composed of TAP1 and TAP2, each containing a transmembrane domain and a nucleotide-binding domain (NBD). Here we investigated the role of the ABC signature motif (C-loop) on the functional non-equivalence of the NBDs, which contain a canonical C-loop (LSGGQ) for TAP1 and a degenerate C-loop (LAAGQ) for TAP2. Mutation of the leucine or glycine (LSGGQ) in TAP1 fully abolished peptide transport. However, TAP complexes with equivalent mutations in TAP2 still showed residual peptide transport activity. To elucidate the origin of the asymmetry of the NBDs of TAP, we further examined TAP complexes with exchanged C-loops. Strikingly, the chimera with two canonical C-loops showed the highest transport rate whereas the chimera with two degenerate C-loops had the lowest transport rate, demonstrating that the ABC signature motifs control peptide transport efficiency. All single site mutants and chimeras showed similar activities in peptide or ATP binding, implying that these mutations affect the ATPase activity of TAP. In addition, these results prove that the serine of the C-loop is not essential for TAP function but rather coordinates, together with other residues of the C-loop, the ATP hydrolysis in both nucleotide-binding sites.  相似文献   

12.
In contrast to many other viruses that escape the cellular immune response by downregulating major histocompatibility complex (MHC) class I molecules, flavivirus infection can upregulate their cell surface expression. Previously we have presented evidence that during flavivirus infection, peptide supply to the endoplasmic reticulum is increased (A. Müllbacher and M. Lobigs, Immunity 3:207-214, 1995). Here we show that during the early phase of infection with different flaviviruses, the transport activity of the peptide transporter associated with antigen processing (TAP) is augmented by up to 50%. TAP expression is unaltered during infection, and viral but not host macromolecular synthesis is required for enhanced peptide transport. This study is the first demonstration of transient enhancement of TAP-dependent peptide import into the lumen of the endoplasmic reticulum as a consequence of a viral infection. We suggest that the increased supply of peptides for assembly with MHC class I molecules in flavivirus-infected cells accounts for the upregulation of MHC class I cell surface expression with the biological consequence of viral evasion of natural killer cell recognition.  相似文献   

13.
Gaudet R  Wiley DC 《The EMBO journal》2001,20(17):4964-4972
The transporter associated with antigen processing (TAP) is an ABC transporter formed of two subunits, TAP1 and TAP2, each of which has an N-terminal membrane-spanning domain and a C-terminal ABC ATPase domain. We report the structure of the C-terminal ABC ATPase domain of TAP1 (cTAP1) bound to ADP. cTAP1 forms an L-shaped molecule with two domains, a RecA-like domain and a small alpha-helical domain. The diphosphate group of ADP interacts with the P-loop as expected. Residues thought to be involved in gamma-phosphate binding and hydrolysis show flexibility in the ADP-bound state as evidenced by their high B-factors. Comparisons of cTAP1 with other ABC ATPases from the ABC transporter family as well as ABC ATPases involved in DNA maintenance and repair reveal key regions and residues specific to each family. Three ATPase subfamilies are identified which have distinct adenosine recognition motifs, as well as distinct subdomains that may be specific to the different functions of each subfamily. Differences between TAP1 and TAP2 in the nucleotide-binding site may be related to the observed asymmetry during peptide transport.  相似文献   

14.
TAP delivers antigenic peptides into the endoplasmic reticulum (ER) that are subsequently bound by MHC class I molecules. TAP consists of two subunits (TAP1 and TAP2), each with a transmembrane (TMD) and a nucleotide-binding (NBD) domain. The two TAP-NBDs have distinct biochemical properties and control different steps during the peptide translocation process. We noted previously that the nonhomologous C-terminal tails of rat TAP1 and TAP2 determine the distinct functions of TAP-NBD1 and -NBD2. To identify the sequence elements responsible for the asymmetrical NBD function, we constructed chimeric rat TAP variants in which we systematically exchanged sequence regions of different length between the two TAP-NBDs. Our fine-mapping studies demonstrate that a nonhomologous region containing the alpha6/beta10-loop in conjunction with the downstream switch region is directly responsible for the functional separation of the TAP-NBDs. The alpha6/beta10-loop determines the nonsynonymous nucleotide binding of NBD1 and NBD2, whereas the switch region seems to play a critical role in regulating the functional cross-talk between the structural domains of TAP. Based on our findings, we postulate that these two sequence elements build a minimal functional unit that controls the asymmetry of the two TAP-NBDs.  相似文献   

15.
BACKGROUND: The transporter associated with antigen processing (TAP), a member of the family of ABC transporters, plays a crucial role in the processing and presentation of the major histocompatibility complex (MHC) class I restricted antigens. TAP transports peptides from the cytosol into the endoplasmic reticulum, thereby selecting peptides matching in length and sequence to respective MHC class I molecules. Upon loading on MHC class I molecules, the trimeric MHC class I/beta2-microglobulin/ peptide complex is then transported to the cell surface and presented to CD8+ cytotoxic T cells. Abnormalities in MHC class I surface expression have been found in a number of different malignancies, including tumors of distinct histology, viral infections, and autoimmune diseases, and therefore represent an important mechanism of malignant or virus-infected cells to escape proper immune response. In many cases, this downregulation has been attributed to impaired TAP expression, which could be due to structural alterations or dysregulation. This review summarizes the physiology and pathophysiology of TAP, thereby focusing on its function in immune responses and its role in human diseases.  相似文献   

16.
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.  相似文献   

17.
The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8(+) lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8(+) T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections.  相似文献   

18.
This study investigates the differential capacity of TAP-deficient T2 cells, TAP-competent EBV cells, and immature and mature dendritic cells to present peptides to preformed CTL lines. It demonstrates that presentation of exogenous peptides involves peptide uptake and loading onto newly synthesized MHC class I molecules. This mechanism was best demonstrated for low affinity peptides in the presence of irrelevant peptides competing for HLA binding sites. Under these circumstances, inhibition of protein synthesis with cycloheximide or vesicular trafficking with brefeldin A significantly reduced the presentation of low affinity peptides. This was not restored by adding exogenous beta(2)-microglobulin to stabilize the MHC complex on the cell surface. In contrast, presentation of high affinity peptides was not sensitive to cycloheximide or brefeldin A, which suggests that different mechanisms may operate for presentation of high and low affinity peptides by TAP-competent cells. High affinity peptides can apparently compete with peptides in preloaded MHC class I molecules at the cell surface, whereas low affinity peptides require empty MHC molecules within cells. Accordingly, very high concentrations of exogenous low affinity peptides in conjunction with active MHC class I metabolism were required to allow successful presentation against a background of competing intracellular high affinity peptides in TAP-competent cells. These findings have implications for the design of peptide and protein-based vaccines.  相似文献   

19.
The objectives of this study were to identify the mechanism(s) of pseudorabies virus (PrV)-induced down-regulation of porcine class I molecules and the viral protein(s) responsible for the effect. The ability of PrV to interfere with the peptide transport activity of TAP was determined by an in vitro transport assay. In this assay, porcine kidney (PK-15) cells were permeabilized with streptolysin-O and incubated with a library of 125I-labeled peptides having consensus motifs for glycosylation in the endoplasmic reticulum (ER). The efficiency of transport of peptides from the cytosol into the ER was determined by adsorbing the ER-glycosylated peptides onto Con A-coupled Sepharose beads. Dose-dependent inhibition of TAP activity was observed in PrV-infected PK-15 cells. This inhibition, which occurred as early as 2 h postinfection (h.p.i.), reached the maximum level by 6 h.p.i., indicating that TAP inhibition is one of the mechanisms by which PrV down-regulates porcine class I molecules. Infection of cells with PrV in the presence of metabolic inhibitors revealed that cycloheximide a protein synthesis inhibitor, but not phosphonoacetic acid a herpesvirus DNA synthesis inhibitor, could restore the cell surface expression of class I molecules, indicating that late proteins are not responsible for the down-regulation. Infection in the presence of cycloheximide followed by actinomycin-D, which results in accumulation of the immediate-early protein, failed to down-regulate class I, indicating that one or more early proteins are responsible for the down-regulation of class I molecules.  相似文献   

20.
Stable cell surface presentation of HLA class I molecules requires active transport of antigenic peptides across the endoplasmic reticulum by products of two genes, TAP1 and TAP2, which map in the major histocompatibility complex class II region. Alleles of each gene are derived from a combination of variable sitesaat each locus. In this study, TAP1 and TAP2 alleles were identified in homozygous typing cell (HTC) lines, allowing resolution of specific haplotypes in conjunction with the highly polymorphic HLA class II region haplotypes. Three alleles at each TAP locus were found from which eight haplotypes could be assigned. Determination of TAP1 and TAP2 alleles in cell lines homozygous at DR, DQ, and DP created eight additional haplotypes beyond the number observed with these class II genes alone. Complete analysis of DR, DQ, TAP, and DP genotypes in 66 HTCs resulted in the following groups: 1) 46 homozygotes; 2) nine homozygous at DR, DQ, and TAP, but heterozygous at DP; 3) four homozygous at DR, DQ, and DP, but heterozygous at one or both TAP genes; 4) four homozygous at DR and DQ, but heterozygous at TAP and DP; and 5) three complex genotypes heterozygous at DP, TAP, and at least one of DQA1, DQB1, or DRB1 loci. TAP1 and TAP2 genes map in an area of frequent recombination. TAP alleles were determined in five DQB1, DPB1 recombinant individuals, three of which were informative. Recombination was found between DQB1 and the TAP loci in two individuals and between TAP and DPB1 in the other individual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号