首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that Escherichia coli K92 produces two different capsular polymers known as CA (colanic acid) and PA (polysialic acid) in a thermoregulated manner. The complex Rcs phosphorelay is largely related to the regulation of CA synthesis. Through deletion of rscA and rscB genes, we show that the Rcs system is involved in the regulation of both CA and PA synthesis in E. coli K92. Deletion of either rcsA or rcsB genes resulted in decreased expression of cps (CA biosynthesis cluster) at 19°C and 37°C, but only CA production was reduced at 19°C. Concerning PA, both deletions enhanced its synthesis at 37°C, which does not correlate with the reduced kps (PA biosynthesis cluster) expression observed in the rcsB mutant. Under this condition, expression of the nan operon responsible for PA catabolism was greatly reduced. Although RcsA and RcsB acted as negative regulators of PA synthesis at 37°C, their absence did not reestablish PA expression at low temperatures, despite the deletion of rcsB resulting in enhanced kps expression. Finally, our results revealed that RcsB controlled the expression of several genes (dsrA, rfaH, h-ns and slyA) involved in the thermoregulation of CA and PA synthesis, indicating that RcsB is part of a complex regulatory mechanism governing the surface appearance in E. coli.  相似文献   

2.
Transposon Tn5 mutagenesis was used to generate random mutations in Shewanella baltica MAC1, a polyunsaturated fatty acid (PUFA)-producing bacterium. Three mutants produced 3–5 times more eicosapentaenoic acid (EPA 20:5 n−3) compared to the wild type at 10°C. One of the mutants produced 0.3 mg EPA g−1 when grown at high temperature (30°C). Moreover, 2 mg docosahexaenoic acid (DHA 22:6 n−3) g−1 was produced by S. baltica mutants at 4°C. Sequencing of insertion mutation(s) showed 96% homology to trimethylamine N-oxide (TMAO) reductase gene and 85% homology to rRNA operons of E. coli. Tn5 transposon mutagenesis therefore is a suitable technique to increase PUFA formation in bacteria.  相似文献   

3.
Aims: To determine the potential of the plant‐parasitic nematode Meloidogyne javanica to serve as a temporary reservoir for Escherichia coli. Methods and Results: The adhesion to and persistence of E. coli on the surface of M. javanica were evaluated at different times and temperatures. A pure culture of green fluorescent protein (GFP) tagged E. coli was mixed with ca. 1000 J2 M. javanica for 2 h at 25°C. The nematodes were then washed and the rate of the adhesion of the bacteria to the nematodes was determined by counting the viable nematode‐associated E. coli, and by fluorescence microscopy. A dose‐dependent adhesion rate was observed only at a bacterium to nematode ratio of 104–106 : 1. The adhesion of E. coli to the nematodes was also tested over a 24 h‐period at 4°C, 25°C and 37°C. At 4°C and 37°C, maximal adhesion was observed at 5 h; whereas at 25°C, maximal adherence was observed at 8 h. Survival experiments showed that the bacteria could be detected on the nematodes for up to 2 weeks when incubated at 4°C and 25°C, but not at 37°C. Conclusions: Under laboratory conditions, at 4°C and 25°C, M. javanica could serve as a temporary vector for E. coli for up to 2 weeks. Significance and Impact of the Study: These findings support the hypothesis that, in the presence of high concentrations of E. coli, M. javanica might serve as a potential vehicle for the transmission of food‐borne pathogens.  相似文献   

4.
Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50–55°C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55°C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35°C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55°C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.  相似文献   

5.
L-asparaginase synthesis by Escherichia coli B   总被引:2,自引:0,他引:2  
We have studied the influence of strain of organism, temperature, and medium on the production of the antileukemic intracellular enzyme L-asparaginase by E. coli B grown in shaken flasks. Five strains of E. coli B exhibited wide differences in their capacities to synthesize the EC-2 form of L-asparaginase active against leukemia. For the most productive strain, when grown in a casein hydrolysate medium, maximal production of L-asparaginase occurred at 25°C. At this temperature, the organism required glycerol, glucose, or other mono-saccharides to synthesize L-asparaginase. Synthesis was stimulated when glycerol was used in place of glucose, but not in its presence. The effect of glycerol on L-asparaginase synthesis was most evident when the cells were grown at 37°C, rather than at 25°C. With 0.25% glucose, cells had a specific activity of 409 I.U./g; with glycerol cells had a specific activity of 553 I.U./g. At 25°C, both cell and L-asparaginase synthesis were increased by the use of 0.25% glycerol resulting in only a slight increase in specific activity of the cells. The addition of zinc, copper, manganese, iron, L-asparagine, L-glutamine, or L-aspartic acid had no effect on L-asparaginase synthesis in the casein hydrolysate medium. L-aspartic acid (10?2 M) enhanced L-asparaginase synthesis in a synthetic medium that lacked these metals or L-asparagine, L-glutamine, or L-aspartic acid; cells grown under these conditions had a specific activity of 90 I.U./g. In the casein hydrolysate medium, cell morphology was correlated with temperature of incubation.  相似文献   

6.
Kluyveromyces marxianus is a promising nonconventional yeast for biobased chemical production due to its rapid growth rate, high TCA cycle flux, and tolerance to low pH and high temperature. Unlike Saccharomyces cerevisiae, K. marxianus grows on low-cost substrates to cell densities that equal or surpass densities in glucose, which can be beneficial for utilization of lignocellulosic biomass (xylose), biofuel production waste (glycerol), and whey (lactose). We have evaluated K. marxianus for the synthesis of polyketides, using triacetic acid lactone (TAL) as the product. The 2-pyrone synthase (2-PS) was expressed on a CEN/ARS plasmid in three different strains, and the effects of temperature, carbon source, and cultivation strategy on TAL levels were determined. The highest titer was obtained in defined 1% xylose medium at 37°C, with substantial titers at 41 and 43°C. The introduction of a high-stability 2-PS mutant and a promoter substitution increased titer four-fold. 2-PS expression from a multi-copy pKD1-based plasmid improved TAL titers a further five-fold. Combining the best plasmid, promoter, and strain resulted in a TAL titer of 1.24 g/L and a yield of 0.0295 mol TAL/mol carbon for this otherwise unengineered strain in 3 ml tube culture. This is an excellent titer and yield (on xylose) before metabolic engineering or fed-batch culture relative to other hosts (on glucose), and demonstrates the promise of this rapidly growing and thermotolerant yeast species for polyketide production.  相似文献   

7.
Acetobacter tropicalis SKU1100 is a thermotolerant acetic acid bacterium that grows even at 42 °C, a much higher temperature than the limit for the growth of mesophilic strains. To elucidate the mechanism underlying the thermotolerance of this strain, we attempted to identify the genes essential for growth at high temperature by transposon (Tn10) mutagenesis followed by gene or genome analysis. Among the 4,000 Tn10-inserted mutants obtained, 32 exhibited a growth phenotype comparable to that of the parent strain at 30 °C but not at higher temperatures. We identified the insertion site of Tn10 on the chromosomes of all the mutant strains by TAIL (Thermal Asymmetric Interlaced)-PCR, and found 24 genes responsible for thermotolerance. The results also revealed a partial overlap between the genes required for thermotolerance and those required for acetic acid resistance. In addition, the origin and role of these thermotolerant genes are discussed.  相似文献   

8.
Based on the recently constructed Escherichia coli itaconic acid production strain ita23, we aimed to improve the productivity by applying a two‐stage process strategy with decoupled production of biomass and itaconic acid. We constructed a strain ita32 (MG1655 ΔaceA Δpta ΔpykF ΔpykA pCadCs), which, in contrast to ita23, has an active tricarboxylic acid (TCA) cycle and a fast growth rate of 0.52 hr?1 at 37°C, thus representing an ideal phenotype for the first stage, the growth phase. Subsequently we implemented a synthetic genetic control allowing the downregulation of the TCA cycle and thus the switch from growth to itaconic acid production in the second stage. The promoter of the isocitrate dehydrogenase was replaced by the Lambda promoter (pR) and its expression was controlled by the temperature‐sensitive repressor CI857 which is active at lower temperatures (30°C). With glucose as substrate, the respective strain ita36A grew with a fast growth rate at 37°C and switched to production of itaconic acid at 28°C. To study the impact of the process strategy on productivity, we performed one‐stage and two‐stage bioreactor cultivations. The two‐stage process enabled fast formation of biomass resulting in improved peak productivity of 0.86 g/L/hr (+48%) and volumetric productivity of 0.39 g/L/hr (+22%) in comparison to the one‐stage process. With our dynamic production strain, we also resolved the glutamate auxotrophy of ita23 and increased the itaconic acid titer to 47 g/L. The temperature‐dependent activation of gene expression by the Lambda promoters (pR/pL) has been frequently used to improve protein or, in a few cases, metabolite production in two‐stage processes. Here we demonstrate that the system can be as well used in the opposite direction to selectively knock‐down an essential gene (icd) in E. coli to design a two‐stage process for improved volumetric productivity. The control by temperature avoids expensive inducers and has the potential to be generally used to improve cell factory performance.
  相似文献   

9.
Trihydroxy unsaturated fatty acids with 18 carbons have been reported as plant self-defense substances. Their production in nature is rare and is found mainly in plant systems. Previously, we reported that a new bacterial isolate, Pseudomonas aeruginosa PR3, converted oleic acid and ricinoleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid and 7,10,12-trihydroxy-8(E)-octadecenoic acid, respectively. Here we report that strain PR3 converted linoleic acid to two compounds: 9,10,13-trihydroxy-11(E)-octadecenoic acid (9,10,13-THOD) and 9,12,13-trihydroxy-10(E)-octadecenoic acid (9,12,13-THOD). Stereochemical analyses showed the presence of 16 different diastereomers — the maximum number possible. The optimum reaction temperature and pH for THOD production were 30°C and 7.0, respectively. The optimum linoleic acid concentration was 10 mg/ml. The most effective single carbon and nitrogen sources were glucose and sodium glutamate, respectively. However, when a mixture of yeast extract (0.05%), (NH4)2HPO4 (0.2%), and NH4NO3 (0.1%) was used as the nitrogen source, THOD production was higher by 8.3% than when sodium glutamate was the nitrogen source. Maximum production of total THOD with 44% conversion of substrate was achieved at 72 h of incubation, after which THOD production plateaued up to 240 h. THOD production and cell growth increased in parallel with glucose concentration up to 0.3%, after which cell growth reached its maximum and THOD production did not increase. These results suggested that THODs were not metabolized by strain PR3. This is the first report of microbial production of 9,10,13- and 9,12,13-THOD from linoleic acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 109–115. Received 18 March 2000/ Accepted in revised form 09 June 2000  相似文献   

10.
One of the major problems in industrial water systems is the generation of biofilm, which is resistant to antimicrobial agents and causes failure of sanitization policy. This work aimed to study the anti-biofilm activity of peracetic acid (PAA) at contact times and temperatures combinations. To this end, a 96-well microtiter-based calorimetric method was applied in in vitro biofilm production using Escherichia coli, isolated from the water supply system of a pharmaceutical plant. The phenotypic and phylogenetic tests confirmed that the isolated bacteria belong to strains of Escherichia coli. The anti-biofilm activity of peracetic acid on formed biofilm was investigated at concentrations of 0·15–0·5% for a contact time of 5–15 min at 20–60°C. The maximum biofilm formation by MTP method using an Escherichia coli isolate was achieved in 96-h incubation in TSB containing wells at 37°C. Biofilm formation rate shown to be high by the environmental isolate compared with that of standard strain. PAA at concentrations above 0·25%, the temperature of 40°C and a minimum of 10 min of contact time was effective in the eradication of biofilm in an MTP-based system.  相似文献   

11.
A bacterium that produced a large amount of poly(γ-glutamic acid) (PGA) when it was grown aerobically in a culture medium containing ammonium salt and sugar as sources of nitrogen and carbon, respectively, was isolated from soil. The bacterium, strain TAM-4, was classified as Bacillus subtilis. The maximum PGA production (22.1 mg/ml) was obtained when it was grown in a medium containing 1.8% ammonium chloride and 7.5% fructose at 30°C for 96 h with shaking. Some properties of the PGA obtained at different times of cultivation were investigated by gel permeation chromatography, SDS–PAGE, and measurement of viscosity, and calculation of the d/l ratio of glutamic acid constituting PGA. The results suggested that PGA was elongated with no changes in the diastereoisomer ratio in the molecule.  相似文献   

12.
Escherichia coli B, Escherichia coli MRE 600, Escherichia coli K 12-3300, Pseudomonas fluorescens, and Aerobacter aerogenes were grown exponentially in a bench-scale fermentor to cell concentrations in the range of 20 to 41 g dry cells/liter at 30°C and 30 to 55 g dry cells/liter at 25°C. The high cell concentrations were achieved in a growth system previously described for growth of Escherichia coli W (Biotechnol. Bioeng., 16 , 933 (1974); ibid. 17 , 227 (1975)). Various enzyme activity levels in the high-concentration cells were compared to those in cells grown in conventional low-density cultures. No significant differences were found. The culture supernatants were found to be essentially free of high-molecular weight metabolic or cell lysis products. Yield constants for glucose, nitrogen, oxygen, and phosphorus were also determined in the dense cultures and some of their relations to the growth conditions are discussed.  相似文献   

13.
Itaconic acid, which is a promising organic acid in synthetic polymers and some base-material production, has been produced by Aspergillus terreus fermentation at a high cost. The recombinant Escherichia coli that contained the cadA gene from A. terreus can produce itaconic acid but with low yield. By introducing the protein–protein scaffold between citrate synthesis, aconitase, and cis-aconitase decarboxylase, 5.7 g/L of itaconic acid was produced, which is 3.8-fold higher than that obtained with the strain without scaffold. The optimum pH and temperature for itaconic acid production were 8.5 and 30°C, respectively. When the competing metabolic network was inactivated by knock-out mutation, the itaconic acid concentration further increased, to 6.57 g/L.  相似文献   

14.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

15.
A polar bacterium was isolated from Arctic sea sediments and identified as Psychromonas artica, based on 16S rDNA sequence. Psychromonas artica KOPRI 22215 has an optimal growth temperature of 10 °C and a maximum growth temperature of 25 °C, suggesting this bacterium is a psychrophile. Cold shock proteins (Csps) are induced upon temperature downshift by more than 10 °C. Functional studies have researched mostly Csps of a mesophilic bacterium Escherichia coli, but not on those of psychrophilic bacteria. In an effort to understand the molecular mechanisms of psychrophilic bacteria that allow it withstand freezing environments, we cloned a gene encoding a cold shock protein from P. artica KOPRI 22215 (CspAPa) using the conserved sequences in csp genes. The 204 bp-long ORF encoded a protein of 68 amino acids, sharing 56% homology to previously reported E. coli CspA protein. When CspAPa was overexpressed in E. coli, it caused cell growth-retardation and morphological elongation. Interestingly, overexpression of CspAPa drastically increased the host’s cold-resistance by more than ten times, suggesting the protein aids survival in polar environments.  相似文献   

16.
The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations × three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37°C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37°C. At 30°C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37°C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and ≥2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.  相似文献   

17.
This work describes the characterization of recombinantEsherichia coli ATCC 11303 (pLOI 297) in the production of ethanol from cellulose and xylose. We have examined the fermentation of glucose and xylose, both individually and in mixtures, and the selectivity of ethanol production under various conditions of operation. Xylose metabolism was strongly inhibited by the presence of glucose. Ethanol was a strong inhibitor of both glucose and xylose fermentations; the maximum ethanol levels achieved at 37°C and 42°C were about 50 g/l and 25 g/l respectively. Simmultaneous sacharification and fermentation of cellulose with recombinantE. coli and exogenous cellulose showed a high ethanol yield (84% of theoretical) in the hydrolysis regime of pH 5.0 and 37°C. The selectivity of organic acid formation relative to that of ethanol increased at extreme levels of initial glucose concentration; production of succinic and acetic acids increased at low levels of glucose ( <1 g/l), and lactic acid production increased when initial glucose was higher than 100 g/l.  相似文献   

18.
Bacillus subtilis growing at 37° C synthesizes, almost exclusively, saturated fatty acids. However, when a culture growing at 37°C is transferred to 20°C, the synthesis of unsaturated fatty acids is induced. The addition of the DNA gyrase inhibitor novobiocin specifically prevented the induction of unsaturated fatty acid synthesis at 20° C. Furthermore, it was determined that plasmid DNA isolated from cells growing at 20°C was significantly more negatively supercoiled than the equivalent DNA isolated from cells growing at 37°C. The overall results agree with the hypothesis that an increase in DNA supercoiling associated with a temperature downshift could regulate the unsaturated fatty acids synthesis in B. subtilis.  相似文献   

19.
A kraft lignin-degrading bacterium (ITRC S 7 ) was isolated from sludge of pulp and paper mill and characterized as Aneurinibacillus aneurinilyticus by biochemical tests and 16SrRNA gene sequencing. The bacterium did not utilize kraft lignin (KL) as the sole source of carbon and energy. However, this strain reduced the color (58%) and lignin content (43%) from kraft lignin-mineral salt medium when supplemented with glucose at pH 7.6 and 30°C after 6 days. The degradation on addition of glucose in culture medium is clear evidence of co-metabolism of KL by A. aneurinilyticus. The analysis of lignin degradation products by GC-MS in ethyl acetate extract from an A. aneurinilyticus-inoculated sample revealed the formation of low molecular weight aromatic compounds such as guaiacol, acetoguaiacone, gallic acid and ferulic acid, indicating that the bacterium can oxidize of the sinapylic (G units) and coniferylic (S units) alcohol units which are the basic moieties that build the hardwood lignin structure. The low molecular weight aromatic compounds identified in extracts of the inoculated sample favors the idea of biochemical modification of the KL to a single aromatic unit.  相似文献   

20.
The production of extracellular acid proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on haemoglobin pH 5.0 at 37 °C. The highest acid proteolytic activity (80 U/ml) was observed in culture medium containing glucose and gelatin at 1%(w/v) at 30 °C at the third day of incubation. Cultures developed in Vogel medium with glucose at 2%(w/v) showed at about 45% of proteolytic activity when compared to the cultures with 1% of the same sugar. The optimum pH of enzymatic activity was 2.0 and the enzyme was stable at pH values ranging from 2.0 to 4.0. The optimum temperature was 40 °C and the half-lives at 40, 45 and 50 °C were 30, 10 and 5 min, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号