首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of heme, measured by incorporation of iron-59, and of bacteriochlorophyll was studied with wild-type and mutant strains of Rhodopseudomonas spheroides. The wild type formed heme from glycine and succinate at one-fortieth the rate of bacteriochlorophyll under anaerobic-light conditions. Added delta-aminolevulinate stimulated heme synthesis 10-fold without increasing bacteriochlorophyll production. Heme synthesis from glycine and succinate was increased when the magnesium branch of the biosynthetic path was curtailed by mutation or by p-fluorophenylalanine or 8-azaguanine. Synthesis of bacteriochlorophyll by the wild type from glycine and succinate stopped immediately after addition of puromycin, but heme production continued for a period. Porphyrins and other precursors did not appear upon addition of puromycin alone, but simultaneous addition of o-phenanthroline resulted in the accumulation of coproporphyrin. Production of this porphyrin by a mutant strain with impaired ability to form heme was unaffected by puromycin. Heme synthesis from glycine and succinate or from delta-aminolevulinate was decreased by limitation of methionine; it is suggested that coproporphyrin accumulation from glycine and succinate under conditions of methionine deficiency results from relief of feedback inhibition of delta-aminolevulinate synthase by heme. The development of delta-aminolevulinate synthase activity in response to low aeration is prevented by addition of delta-aminolevulinate. This repressive action of the latter is abolished when its conversion to heme is impeded by mutation or by methionine deficiency. It is suggested that heme, the quantitatively minor end product of the branched biosynthetic pathway, may regulate the flow of common intermediates when utilization of protoporphyrin by the magnesium branch is diminished. This regulation may be exerted by feedback inhibition of delta-aminolevulinate synthase and also by repression of enzyme formation.  相似文献   

2.
Certain mutant strains of Rhodopseudomonas spheroides accumulate coproporphyrin(ogen) and porphobilinogen when incubated with low aeration in malate-glutamate medium supplemented with glycine and succinate. Strains 6-6 and 6-6R have barely detectable levels of uroporphyrinogen synthetase and accumulate porphobilinogen. Strain 6-6R is more active than 6-6 in porphobilinogen formation but is less active in heme synthesis. Production of porphobilinogen by strain 6-6 is stimulated by addition of δ-aminolevulinate or o-phenanthroline but neither additive affects strain 6-6R. Strain 2–33 accumulates porphobilinogen and coproporphyrin(ogen) and is exceptionally low in heme synthesis. Inhibition of bacteriochlorophyll synthesis by puromycin in the wild type and strain 6-6R is accompanied by an acceleration in heme synthesis. The wild type accumulates coproporphyrin(ogen) upon addition of o-phenanthroline but this is prevented by the prior addition of puromycin. It is concluded that the excess production of pyrroles by the mutants and by the wild type in response to o-phenanthroline is attributable to failure of feedback control of δ-aminolevulinate synthetase by heme. The mutants are convenient sources of porphobilinogen and coproporphyrin.  相似文献   

3.
1. Two mutant strains of Rhodopseudomonas spheroides, which are blocked in the synthesis of bacteriochlorophyll, accumulate pigments. These have been tentatively identified as magnesium 2,4-divinylphaeoporphyrin a5 monomethyl ester and the magnesium derivative of 2-devinyl-2-hydroxyethyl-phaeophorbid a, formed by mutant 2/73 and 2/21 respectively. 2. Maximum extracellular production of these pigments occurs when suspensions of the organisms are incubated with low aeration in a growth medium containing iron and supplemented with glycine, succinate, methionine and Tween 80. 3. Concomitant protein synthesis is required for pigment production by the mutants from glycine and succinate but this requirement is less marked when δ-aminolaevulic acid is the substrate. 4. In the absence of Tween 80, a considerable proportion of the total pigment is retained within the cells and appears in the particulate fraction of cell-free extracts. 5. Suspensions of the parent strain containing δ-aminolaevulic acid can be made to accumulate extracellular pigments which are tentatively identified as magnesium protoporphyrin monomethyl ester and the magnesium derivative of 2-devinyl-2-hydroxyethyl-phaeophorbid a. 6. Maximum production occurs with cells incubated photosynthetically after a period of oxygen repression of bacteriochlorophyll synthesis. Formation of the phaeophorbid derivative is enhanced by 8-azaguanine or 5-fluorouracil, or by adenine deficiency in a nutritional mutant; Tween 80 is also needed and iron is essential. 7. Synthesis of bacteriochlorophyll might possibly involve the participation of lipoprotein-bound intermediates, which may be formed at the initial stage of condensation between glycine and succinyl-CoA to give δ-aminolaevulic acid.  相似文献   

4.
Summary Mutant strains of Rhodopseudomonas spheroides which are unable to synthesize bacteriochlorophyll can be divided into three groups, based on the types of pigment formed under semi-aerobic conditions. Group 1 forms chlorophyll derivatives including magnesium protoporphyrin when incubated with glycine and succinate or with -aminolevulinate. Those of groups 2 and 3 do not form such compounds and may lack the magnesium branch of the biosynthetic pathway. Unlike groups 1 and 2, the third group does not form carotenoids and this may signify the loss of the entire photosynthetic apparatus.All the mutants could form hemes. Mutants of group 3 differed from the others in that they did not accumulate coproporphyrin, or other intermediates common to the iron and magnesium branches, when incubated with ethionine. Coproporphyrin accumulation may represent the uncontrolled activity of a form of -aminolevulinate synthase (and possibly other early enzymes) specifically associated with the photosynthetic apparatus.Free phytol was not dectected in the lipids of mutants of groups 1 and 2. Their carotenoid content was similar to that of the wild type under the same conditions of incubation.Dedicated to Prof. C. B. Van Niel on the occasion of his 70th birthday.  相似文献   

5.
A Rhodobacter capsulatus mutant lacking cytochrome oxidase activity was isolated by Tn5 mutagenesis. Difference spectroscopy of crude extracts and extracted c-type cytochromes demonstrated that this mutant completely lacked all c-type cytochromes. The strain did, however, synthesize normal amounts of b-type cytochromes and nonheme iron. This mutant also excreted large amounts of coproporphyrin and protoporphyrin and synthesized reduced amounts of bacteriochlorophyll, suggesting a link between the synthesis of c-type cytochromes and the expression of the tetrapyrrole biosynthetic pathway.  相似文献   

6.
Porphyrin Biosynthesis in Cell-free Homogenates from Higher Plants   总被引:8,自引:6,他引:2       下载免费PDF全文
The porphyrin and phorbin biosynthetic activity of etiolated cucumber (Cucumis sativus, L.) cotyledons was compared to that of cotyledonary homogenates. Etiolated cotyledons incubated with δ-aminolevulinic acid accumulate protoporphyrin, coproporphyrin, small amounts of Mg protoporphyrin monoester, and trace amounts of uroporphyrin. They also incorporate 4-14C-δ-aminolevulinic acid into free porphyrins, protochlorophyllide, protochlorophyllide phytyl ester, and Mg protoporphyrin monoester. Homogenates incubated with δ-aminolevulinic acid likewise accumulate coproporphyrin, uroporphyrin, Mg coproporphyrin, and trace amounts of protoporphyrin. They also incorporate 4-14C-δ-aminolevulinic acid into Mg protoporphyrin monoester, Mg coproporphyrin, and free porphyrins. However, the capacity to synthesize protochlorophyllide and protochlorophyllide phytyl ester is lost and the endogenous protochlorophylls gradually disappear. Mg protoporphyrin monoester represents the terminal biosynthetic step in this cell-free system.  相似文献   

7.
The 13C NMR spectra were analyzed in bacteriochlorophyll a and magnesium protoporphyrin methyl ester formed in Rhodopseudomonas spheroides S. in the presence of L-[1-13C]glutamate and [2-13C]glycine. After reassignment of three alpha-pyrrolic carbons (C-9, -14 and -16) of bacteriochlorophyll a, the spectra showed that C-2 of glycine was preferentially incorporated into the eight-carbon atoms in these tetrapyrrole macrocycles derived from C-5 of 5-aminolevulinic acid (ALA). C-2 of glycine was also incorporated specifically into methyl ester carbon of magnesium protoporphyrin IX methyl ester and methoxyl carbon of methoxycarbonyl group attached to isocyclic ring of bacteriochlorophyll a. No enrichment of these nine-carbon atoms was observed in the spectrum of bacteriochlorophyll formed in the presence of L-[1-13C]glutamate, showing exclusive operation of ALA synthase on bacteriochlorophyll biosynthesis.  相似文献   

8.
Two mutant strains of Rhodopseudomonas spheroides were described which lacked delta-aminolevulinate synthase activity. They required delta-aminolevulinate for growth; they did not respond to protoporphyrin or magnesium photoporphyrin, and only poorly to hemin. Synthesis of cytochromes and heme by mutant H-4 was dependent upon delta-aminolevulinate; this strain did not form bacteriochlorophyll either with or without delta-aminolevulinate and, consequently, grew only under aerobic conditions. Mutant H-5 formed bacteriochlorophyll in response to delta-aminolevulinate and grew both anaerobically in the light and aerobically in the dark; the amount of delta-aminolevulinate needed for optimal anaerobic growth was higher than that required aerobically. Synthesis of bacteriochlorophyll and heme by suspensions of mutant H-5 incubated anaerobically in the light was dependent upon delta-aminolevulinate; bacteriochlorophyll production was completely inhibited by high aeration and by puromycin. The mutants differed in their ability to take up radioactive delta-aminolevulinate from the external environment; mutant H-5 was less active than mutant H-4 or the wild type. It was suggested that R. spheroides made only one form of delta-aminolevulinate synthase, which provided delta-aminolevulinate for bacteriochlorophyll and heme synthesis.  相似文献   

9.
The transport of succinate was studied in bacteroids of an effective, streptomycin-resistant strain (GF160) of Rhizobium leguminosarum. High levels of succinate transport occurred, and the kinetics, specificity, and sensitivity to metabolic inhibitors were similar to those previously described for free-living cells. The symbiotic properties of two transposon (Tn5)-mediated C4-dicarboxylate transport mutants (strains GF31 and GF252) were determined. Strain GF31 formed ineffective nodules, and bacteroids from these nodules showed no succinate transport activity. Strain GF252 formed partially effective nodules, and bacteroids from these nodules showed about 50% of the succinate transport activity of the parent bacteroids. Another dicarboxylic acid transport mutant (Dct-), strain GFS5, isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, formed ineffective nodules. The ability to form ineffective nodules in strains GF31 and GFS5 was shown to correlate with the Dct- phenotype. The data indicate that the presence of a functional C4-dicarboxylic acid transport system is essential for N2 fixation to occur in pea nodules.  相似文献   

10.
M S Huster  K M Smith 《Biochemistry》1990,29(18):4348-4355
Administration of carbon-13 and carbon-14 labeled glutamate, glycine, and methionine to Chlorobium vibrioforme forma thiosulfatophilum strain D have demonstrated operation of the C5 and C1 metabolic pathways in bacteriochlorophyll c and bacteriochlorophyll d biosynthesis in this organism, with glutamate providing the delta-aminolevulinic acid for macrocycle synthesis and glycine providing the source of the extra homologation at the 4-, 5-, and delta-positions (via S-adenosylmethionine). Further evidence showing that the bacteria appear to adjust the homologue composition of their antenna bacteriochlorophylls in response to varying growth conditions is presented. Timing of these changes within a single culture is consistent with a light adaptation mechanism, which predicts that degree of alkylation is directly proportional to light intensity in the culture; other factors influencing pigment composition during the lifespan of a single culture may also be operating, and these are discussed.  相似文献   

11.
The 13C-NMR spectra of bacteriochlorophyll a formed in the presence of L-[1-13C]glutamate and [2-13C]glycine in Chromatium vinosum strain D were analyzed. The isotope in the glutamate was specifically incorporated into eight carbon atoms in the tetrapyrrole macrocycle derived from the C-5 of 5-aminolevulinic acid (ALA), and the 13C in glycine was incorporated into the methyl carbon of the methoxycarbonyl group attached to the isocyclic ring of bacteriochlorophyll a. These labeling patterns provide evidence for the exclusive operation of the C5 pathway in ALA biosynthesis in the bacterium. The 13C chemical shifts of two quaternary carbons (C-9 and C-16) of bacteriochlorophyll a were reassigned in the present study.  相似文献   

12.
Facultative phototrophs such as Rhodobacter sphaeroides can switch between heterotrophic and photosynthetic growth. This transition is governed by oxygen tension and involves the large‐scale production of bacteriochlorophyll, which shares a biosynthetic pathway with haem up to protoporphyrin IX. Here, the pathways diverge with the insertion of Fe2+ or Mg2+ into protoporphyrin by ferrochelatase or magnesium chelatase, respectively. Tight regulation of this branchpoint is essential, but the mechanisms for switching between respiratory and photosynthetic growth are poorly understood. We show that PufQ governs the haem/bacteriochlorophyll switch; pufQ is found within the oxygen‐regulated pufQBALMX operon encoding the reaction centre–light‐harvesting photosystem complex. A pufQ deletion strain synthesises low levels of bacteriochlorophyll and accumulates the biosynthetic precursor coproporphyrinogen III; a suppressor mutant of this strain harbours a mutation in the hemH gene encoding ferrochelatase, substantially reducing ferrochelatase activity and increasing cellular bacteriochlorophyll levels. FLAG‐immunoprecipitation experiments retrieve a ferrochelatase‐PufQ‐carotenoid complex, proposed to regulate the haem/bacteriochlorophyll branchpoint by directing porphyrin flux toward bacteriochlorophyll production under oxygen‐limiting conditions. The co‐location of pufQ and the photosystem genes in the same operon ensures that switching of tetrapyrrole metabolism toward bacteriochlorophyll is coordinated with the production of reaction centre and light‐harvesting polypeptides.  相似文献   

13.
A respiration-deficient mutant of Escherichia coli has been isolated which is unable to grow aerobically on nonfermentable substrates such as succinate and lactate. Spectroscopic and immunological studies showed that this mutant lacks the cytochrome o terminal oxidase of the high aeration branch of the aerobic electron transport chain. This strain carries a mutation in a gene designated cyo which is cotransducible with the acrA locus. Mutations in cyo were obtained by mutagenizing a strain that was cyd and, thus, was lacking the cytochrome d terminal oxidase. Strain RG99, which carries both the cyd- and cyo- alleles, grows normally under anaerobic conditions in the presence of nitrate. Introduction of the cyd+ allele into the strain restores the respiration function of the strain, indicating that the cytochrome o branch of the respiratory chain is dispensable under normal laboratory growth conditions.  相似文献   

14.
A methionine-producing strain was derived from a lysine-producing Corynebacterium glutamicum through a process of genetic manipulation in order to assess its potential to synthesize and accumulate methionine during growth. The strain carries a deregulated hom gene (hom(FBR)) to abolish feedback inhibition of homoserine dehydrogenase by threonine and a deletion of the thrB gene (delta thrB) to abolish threonine synthesis. The constructed C. glutamicum MH20-22B/hom(FBR)/delta thrB strain accumulated 2.9 g/l of methionine by batch fermentation and showed resistance to methionine analogue ethionine at concentrations up to 30 mM. The growth of the strain was apparently impaired as a result of the accumulation of methionine biosynthetic intermediate, homocysteine. Production assays also revealed that the accumulation of methionine in the growth medium was transient and declined as the carbon source was depleted. During the period of methionine disappearance, the methionine biosynthetic genes were completely repressed in the engineered strains but not in the parental strain. After all, we have not only successfully constructed a methionine-producing C. glutamicum strain by genetic manipulation, but also revealed cellular constraints in attaining high yield and productivity.  相似文献   

15.
Porphyrin-Accumulating Mutants of Escherichia coli   总被引:17,自引:9,他引:8       下载免费PDF全文
Four mutants (pop-1, pop-6, pop-10, and pop-14) which accumulate a red water-insoluble pigment were obtained in Escherichia coli K-12 AB1621. For each mutant, the red pigment was shown to be protoporphyrin IX, a late precursor of heme. Mutagenic treatment of mutant pop-1 yielded a secondary mutant, pop-1 sec-20, which accumulated a brown water-soluble pigment. The brown pigment was shown to be coproporphyrin III. Mutant pop-1 resembled the parental strain in its cytochrome absorption spectrum, catalase activity, and ability to grow on nonfermentable carbon and energy sources; therefore, its ability to produce and utilize heme was unimpaired. Judged on the same criteria, the secondary mutant, pop-1 sec-20, was partially heme and respiratory deficient. Growth in anaerobic conditions decreased by 25% the accumulation of protoporphyrin by pop-1; under the same conditions, pop-1 sec-20 did not accumulate coproporphyrin or coproporphyrinogen. The mutations causing protoporphyrin accumulation in all four pop mutants were found to map in the lac to purE (10-13 min) region of the E. coli chromosome. In the case of mutant pop-1, the mutation was shown to be strongly linked to the tsx locus (12 min). In mutant pop-1 sec-20, the second mutation causing coproporphyrin accumulation was co-transducible with the gal locus at a frequency of 88 to 96%. The mechanism of porphyrin accumulation by the mutants is discussed.  相似文献   

16.
A comparative study was made on features of the induced synthesisof RuDP carboxylase in three strains of R. spheroides with differentbiochemical properties. In strains Sb and Sa, which were able to grow under either light-anaerobicor dark-aerobic conditions, activities of RuDP carboxylase inthe light-grown cells were much higher than those in dark-growncells. The level of RuDP carboxylase activity in dark-growncells of the Sb strain (wild type strain) increased two to threetimes in the dark by incubating the heavy cell suspension underlow aeration, but, for a further increase in enzyme activity,a light-anaerobic condition was required. This is in contrastto the induced formation of bacteriochlorophyll which has beenshown to proceed actively in the dark as well as in the light.On the other hand, with dark-grown cells of the Sa strain, whichhad possible partial defects in the chlorophyll synthesis system,the induced synthesis of RuDP carboxylase under the light-anaerobiccondition was markedly retarded as compared to that with theSb strain. RuDP carboxylase formation was not induced in L-57(a colorless mutant) under any of these conditions. The induced formation of RuDP carboxylase, as well as of bacteriochlorophyll,under the light-anaerobic condition was considerably suppressedby hydroxyurea and mitomycin C. This suggests that the geneticcontrol systems of RuDP carboxylase synthesis may be closelyrelated with those for the formation of the photosynthetic apparatus. 1This work was supported in part by Public Health Research GrantAM 08016 from the National Institute of Arthritis and MetabolicDiseases, U.S.A. (G. K.). 2Present address: Laboratory of Radioisotope Experiment, TohokuUniversity School of Medicine, Sendai, Japan. (Received September 6, 1968; )  相似文献   

17.
Strain IVIC-Pb9, unlike other strains ofParacoccidioides brasiliensis, cannot grow on a simple basal medium and requires the addition of casein hydrolyzate or yeast extract. The present study shows that this requirement is limited to very low concentrations of methionine and that methionine concentrations above 0.01% inhibit growth. The levels of glucose and organic nitrogen required for maximum rate of growth of strain IVIC-Pb9 on both basal medium and GGY medium composed of glucose, glycine and yeast extract were also determined. An evaluation of the suitability of the GGY medium revealed that its composition, as commonly used to grow dimorphic fungi, is not adequate to obtain a maximum rate of growth with strain IVIC-Pb9 ofP. brasiliensis.  相似文献   

18.
Zhu L  Dong H  Zhang Y  Li Y 《Metabolic engineering》2011,13(4):426-434
To improve the aero- and solvent tolerance of the solvent-producing Clostridium acetobutylicum, glutathione biosynthetic capability was introduced into C. acetobutylicum DSM1731 by cloning and over-expressing the gshAB genes from Escherichia coli. Strain DSM1731(pITAB) produces glutathione, and shows a significantly improved survival upon aeration and butanol challenge, as compared with the control. In addition, strain DSM1731(pITAB) exhibited an improved butanol tolerance and an increased butanol production capability, as compared with the recombinant strains with only gshA or gshB gene. These results illustrated that introducing glutathione biosynthetic pathway, which is redundant for the metabolism of C. acetobutylicum, can increase the robustness of the host to achieve a better solvent production.  相似文献   

19.
F H Yildiz  H Gest    C E Bauer 《Journal of bacteriology》1991,173(13):4163-4170
A genetic system has been developed for studying bacterial photosynthesis in the recently described nonsulfur purple photosynthetic bacterium Rhodospirillum centenum. Nonphotosynthetic mutants of R. centenum were obtained by enrichment for spontaneous mutations, by ethyl methanesulfonate mutagenesis coupled to penicillin selection on solid medium, and by Tn5 transposition mutagenesis with an IncP plasmid vector containing a temperature-sensitive origin of replication. In vivo and in vitro characterization of individual strains demonstrated that 38 strains contained mutations that blocked bacteriochlorophyll a biosynthesis at defined steps of the biosynthetic pathway. Collectively, these mutations were shown to block seven of eight steps of the pathway leading from protoporphyrin IX to bacteriochlorophyll a. Three mutants were isolated in which carotenoid biosynthesis was blocked early in the biosynthetic pathway; the mutants also exhibited pleiotropic effects on stability or assembly of the photosynthetic apparatus. Five mutants failed to assemble a functional reaction center complex, and seven mutants contained defects in electron transport as shown by an alteration in cytochromes. In addition, several regulatory mutants were isolated that acquired enhanced repression of bacteriochlorophyll in response to the presence of molecular oxygen. The phenotypes of these mutants are discussed in relation to those of similar mutants of Rhodobacter and other Rhodospirillum species of purple photosynthetic bacteria.  相似文献   

20.
A genetic screen designed to isolate mutants of Escherichia coli W3110 altered in the ability to induce the heat shock response identified a strain unable to induce the heat shock proteins in a rich, defined medium lacking methionine after exposure to 2,4-dinitrophenol. This strain also grew slowly at 28 degrees C and linearly at 42 degrees C in this medium. The abnormal induction of the heat shock proteins and abnormal growth at both high and low temperatures were reversed when methionine was included in the growth medium. The mutation responsible for these phenotypes mapped to the glyA gene, a biosynthetic gene encoding the enzyme that converts serine and tetrahydrofolate to glycine and 5,10-methylenetetrahydrofolate. This reaction is the major source of glycine and one-carbon units in the cell. Because fixed one-carbon units, in the form of methionine, allowed mutant cells to induce the heat shock response after exposure to 2,4-dinitrophenol, a one-carbon restriction may be responsible for the phenotypes described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号