首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. ATP-dependent calcium uptake by a rabbit brain vesicular fraction (microsomes) was studied in the presence of phosphate or oxalate. These anions, which are known to form insoluble calcium salts, increased the rate of calcium uptake and the capacity of the vesicles for calcium accumulation. 2. The degree of activation depended on the concentration of phosphate or oxalate. Under optimal conditions, phosphate promoted a 5-fold increase in the amount of calcium stored at steady state. This level was 200-250 nmol Ca-2+/mg protein. 3. Initial rate of calcium uptake followed Michaelis-Menten kinetics with an apparent Km for calcium of 6.7-10-minus 5 M and a V of 44 nmol/min per mg protein. Optimal pH was 7.0. With 2 mM ATP, optimal Mg-2+ concentration was 2 mM. 4. Dintrophenol and NaN3 inhibited calcium uptake in a mitochondria-enriched fraction but not in the microsomal fraction. 5. Calcium uptake activity was compared in the six subfractions prepared from the whole microsomal fraction by means of a sucrose density gradient fractionation. 6. The Mg-2+-dependent ATPase activity of brain microsomes was activated by calcium. Maximal activation was attained with 100 muM CaCl2. Greater calcium concentrations caused a progressive inhibition. 7. The data suggest that the ATP-dependent calcium uptake in brain microsomes, as in muscle microsomes, is brought about by an active transport process, calcium being accumulated as a free ion inside the vesicles.  相似文献   

2.
The role of inorganic phosphate as inhibitor of mitochondrial membrane permeability transition was studied. It is shown that in mitochondria containing a high phosphate concentration, i.e., 68 nmol/mg, Ca2+ did not activate the pore opening. Conversely, at lower levels of matrix phosphate, i.e., 38 nmol/mg, Ca2+ was able to induce subsequent pore opening. The inhibitory effect of phosphate was apparent in sucrose-based media, but it was not achieved in KCl media. The matrix free Ca2+ concentration and matrix pH were lowered by phosphate, but they were always higher in K+-media. In the absence of ADP, phosphate strengthened the inhibitory effect of cyclosporin A on carboxyatractyloside-induced Ca2+ efflux. Acetate was unable to replace phosphate in the induction of the aforementioned effects. It is concluded that phosphate preserves selective membrane permeability by diminishing the matrix free Ca2+ concentration.  相似文献   

3.
The kinetics of sodium-independent calcium efflux from liver mitochondria has been studied over the range of calcium loads from 2 to 60 nmol/mg with emphasis on the lower portion of this range. A procedure has been developed through which mitochondria may be depleted of endogenous calcium (initially in the range of 6-10 nmol/mg following preparation) to values as low as 2 nmol/mg, without involving substrate depletion or de-energization. Mitochondria depleted of calcium by this technique are more resistant to the calcium-induced permeability transition than are those depleted by the older procedures and are therefore appropriate for the kinetics studies. Calcium depletion is necessary in studying the kinetics of sodium-independent calcium efflux in order to bring efflux to a rate considerably less than 50% of the saturation rate. The results of these studies show cooperativity with a Hill coefficient of 1.9 +/- 0.2. They have been fit to an equation representative either of a nonessential activation mechanism with a single transport site or of an Adair-Pauling mechanism with two transport sites. From the fit of the data to this equation, a Vmax of 1.2 +/- 0.1 nmol/mg/min and a concentration of half-maximal activity of 8.4 +/- 0.6 nmol/mg have been obtained. The possible role of phosphate in controlling the Vmax of this transporter has been evaluated by measuring efflux as a function of calcium load at three different concentrations of total inorganic phosphate: 20 microM, 120 microM, and 1 mM. Failure of the maximum transport velocity to decrease with increasing inorganic phosphate indicates that the extreme flatness of the saturation portion of the velocity versus calcium concentration curve observed is not the result of precipitation of calcium with inorganic phosphate but is an inherent property of this efflux mechanism.  相似文献   

4.
5.
Phosphorylation of the calcium-transport ATPase of skeletal muscle sarcoplasmic reticulum by inorganic phosphate was investigated in the presence or absence of a calcium gradient. The maximum phosphoprotein formation in the presence of a calcium gradient at 20 degrees C and pH 7.0 is approximately 4 nmol/mg sarcoplasmic reticulum protein, but only between 2.4 and 2.8 nmol/mg protein in the absence of a calcium gradient, using Ionophore X-537 A or phospholipase-A-treated sarcoplasmic reticulum vesicles. Maximum phosphoprotein formation independent of calcium gradient at 20 degrees C and pH 6.2 is in the range of 3.6--4 nmol/mg protein. Half-maximum phosphoprotein formation dependent on calcium gradient was achieved with 0.1--0.2 mM free orthophosphate at 10 mM free magnesium or at 0.1--0.2 mM free magnesium at 10 mM free orthophosphate. Phosphoprotein formation independent of calcium gradient is in accordance with a model which assumes, firstly, the formation of a ternary complex of the ATPase protein with orthophosphate and magnesium (E . Pi . Mg) in equilibrium with the phosphoprotein (E-Pi . Mg) and, secondly, an interdependence of both ions in the formation of the ternary complex. The apparent equilibrium constant was 0.6 and the apparent dissociation constants KMg, KMg', KPi and KPi' were 8.8, 1.9, 7.2 and 1.5 mM respectively, assuming a total concentration of the phosphorylation site per enzyme of 7 nmol/mg protein.  相似文献   

6.
Induction of the inner membrane permeability transition, normally associated with the release of small molecules and ions from the mitochondrial matrix, also causes the release of matrix proteins. The release is linear with time and slow when compared to the time course of mitochondrial swelling. Transient induction of the high permeability state is reflected in transient release of proteins. Cyclosporin A (0.5 nmol/mg protein) or chelation of free Ca2+, which reverses the permeability transition, also block the subsequent release of protein even when added after extended preincubation. Possible mechanisms of protein release are discussed.  相似文献   

7.
Null point titration techniques have been developed for measurements of cytosolic free Mg2+ in isolated cells and matrix free Mg2+ in isolated mitochondria using antipyrylazo III as a spectrophotometric Mg2+ indicator. A cytosolic free Mg2+ of 0.37 +/- 0.02 mM was obtained with hepatocytes. This represented about 6% of the total cytosolic magnesium content (activity coefficient of 5.8 X 10(-2). Nondiffusable Mg2+-binding sites in the cytosol were equal to 11.1 nmol/mg cell dry weight with an apparent dissociation constant of 0.71 mM and accounted for binding of 32% of the cytosolic magnesium. The null point method gave a value of 0.35 +/- 0.01 mM for the mitochondrial matrix free Mg2+ concentration (activity coefficient of 8.8 X 10(-3). Nondiffusable Mg2+ binding sites in the mitochondria were estimated at 25.7 nmol/mg mitochondrial protein with an apparent dissociation constant of 0.22 mM, compared with an apparent dissociation constant of 1.66 microM for bound calcium. These data demonstrate the absence of a significant gradient of free Mg2+ between the cytosolic and mitochondrial compartments. They also demonstrate a high ligand binding capacity for magnesium in both compartments with relatively low affinity resulting in a constant value for free Mg2+ when total cell magnesium is constant. This maintains a ratio between free Mg2+ and free Ca2+ of about 2000 in the cytosol and 100 in the mitochondria. The high concentration and low affinity of Mg2+ binding sites results in rather large changes of free Mg2+ with small variations in total cell magnesium. This is apparent in hepatocytes isolated from streptozotocin diabetic rats which had a decreased total magnesium content and a cytosolic free Mg2+ of 0.16 +/- 0.02 mM.  相似文献   

8.
9.
Calcium loading of skeletal muscle sarcoplasmic reticulum performed passively by incubation with high calcium concentrations (0.5--15 mM) on ice gives calcium loads of 50--60 nmol/mg sarcoplasmic reticulum protein. This accumulated calcium is not released by EGTA [ethyleneglycol bis-(2-aminoethyl)-N,N,N',N'-tetraacetic acid], but almost completely released by ionophore X-537A plus EGTA or phospholipase A plus EGTA treatment and is therefore assumed to be inside the sarcoplasmic reticulum. This calcium is distributed in one saturable and one non-saturable calcium compartment, as derived from the dependence of the calcium load on the calcium concentration in the medium. These compartments are assigned to bound and ionized calcium inside the sarcoplasmic reticulum, respectively. Maximum calcium binding under these conditions was 33 nmol/mg protein with an apparent half-saturation constant of 5,8 nmol/mg free calcium inside, or between 1.2 and 0.6 mM free calcium inside, assuming an average vesicular water space of 5 or 10 microliter/mg protein, respectively. Calcium-dependent phosphorylation of sarcoplasmic reticulum calcium-transport ATPase from orthophosphate depends on the square of free calcium inside, whilst inhibition of phosphorylation depends on the square of free calcium in the medium. Calcium-dependent phosphorylation appears to be determined by the free calcium concentrations inside or outside allowing calcium binding to the ATPase according to the two classes of calcium binding constants for low affinity calcium binding or high affinity calcium binding, respectively. It is further suggested that the saturation of the low-affinity calcium-binding sites of the ATPase facing the inside of the sarcoplasmic reticulum membrane is responsible for the greater apparent orthophosphate and magnesium affinity in calcium-dependent phosphorylation than in calcium-independent phosphorylation from orthophosphate. Maximum calcium-dependent phosphoprotein formation at 20 degrees C and pH 7.0 is about 4 nmol/mg sarcoplasmic reticulum protein.  相似文献   

10.
Formation of unesterified choline by rat brain   总被引:8,自引:0,他引:8  
Two preparations of rat brain (ischemic intact brain and homogenized whole brain) formed large amounts of unesterified (free) choline when incubated at 37 degrees C. The accumulation of choline was inhibited by microwave irradiation of brain, or by heating of brain to 50 degrees C, and was maximal at 37 degrees C at pH 7.4-8.5. Choline formation was only observed in subcellular fractions of brain that contained membranes. In homogenates of brain, choline accumulated at a rate exceeding 10 nmol/mg protein per h. There was a significant decrease in brain phosphatidylcholine concentration (of 50 nmol/mg protein) during incubation for 1 h at 37 degrees C. Concentrations of phosphocholine rose (by 2.3 nmol/mg protein), and concentrations of glycerophosphocholine and sphingomyelin did not change during this period. We used radiolabeled phospholipids to trace the fate of phosphatidylcholine and sphingomyelin during incubations of homogenates of brain. Phosphatidylcholine was degraded to form phosphocholine, glycerophosphocholine and free choline. No lysophosphatidylcholine accumulated. Sphingomyelin was degraded to form phosphocholine and a small amount of free choline. Magnesium ions stimulated choline production, while zinc ions were a potent inhibitor. Other divalent cations (calcium, manganese) had little effect on choline accumulation. ATP concentrations in brain homogenates were less than 5 nmol/mg protein (rapidly microwaved brain contained 27 nmol/mg protein). Addition of ATP or ADP to brain homogenates increased ATP concentrations and significantly inhibited choline accumulation. ATP diminished the formation of choline from added phosphatidylcholine, lysophosphatidylcholine, phosphocholine and glycerophosphocholine. The effects of ATP, zinc ion, or magnesium ion upon choline accumulation were not mediated by changes in the rates of utilization of choline for formation of phosphocholine or phosphatidylcholine. In summary, we showed that there was enhanced formation of choline when ATP concentrations within brain were low. This choline was derived, in part, from the degradation of phosphatidylcholine, and we suggest that phospholipase A activity was the primary initiator of choline release from this phospholipid.  相似文献   

11.
The cytosolic free Ca2+ concentration of calcium-tolerant rat myocytes has been measured by the null point titration technique using arsenazo III as a Ca2+ indicator and digitonin to permeabilize the plasma membrane. The mean value obtained for 8 separate preparations was 270 +/- 35 nM. The distribution of releasable calcium between the mitochondrial and sarcoplasmic reticular compartments was measured by the successive additions of uncoupler and A23187 to cells pretreated with ruthenium red. The relative distribution of calcium in each pool was independent of the cell calcium content up to the maximum value of releasable calcium investigated (4.5 nmol/mg of cell dry weight) and was distributed in the approximate ratio of 2:1 in favor of the sarcoplasmic reticulum. The cells contained 1 nmol of calcium/mg of cell dry weight in a form nonreleasable by A23187, which was independent of the total cell calcium content as measured by atomic absorption spectroscopy. It is calculated that the calcium content of mitochondria in heart under physiological conditions is about 5 nmol/mg of mitochondrial protein. At this level, the mitochondria are likely to provide effective buffering of the cytosolic free Ca2+ concentration of quiescent heart cells. The corresponding intramitochondrial free Ca2+ is in a range above values needed to regulate the activity of Ca2+-dependent enzymes of the citric acid cycle in heart. The physiological calcium content of the sarcoplasmic reticulum in heart cells is estimated to be about 2.5 nmol/mg of cell dry weight, which is at least 5-fold greater than the amount of calcium release calculated to cause maximum tension development of cardiac muscle.  相似文献   

12.
The role of intramitochondrial K+ content on the increase in membrane permeability to Ca2+, as induced by carboxyatractyloside was studied. In mitochondria containing a high K+ concentration (83 nmol/mg), carboxyatractyloside induced a fast and extensive mitochondrial Ca2+ release, membrane de-energization, and swelling. Conversely, in K(+)-depleted mitochondria (11 nmol/mg), carboxyatractyloside was ineffective. The addition of 40 mM K+ to K(+)-depleted mitochondria restored the capability of atractyloside to induce an increase in membrane permeability to Ca2+ release. The determination of matrix free Ca2+ concentration showed that, at an external free-Ca2+ concentration of 0.8 microM, control mitochondria contained 3.9 microM of free Ca2+ whereas K(+)-depleted mitochondria contained 0.9 microM free Ca2+. It is proposed that intramitochondrial K+ affects the matrix free Ca2+ concentration required to induce a state of high membrane permeability.  相似文献   

13.
Low levels of calcium (100 nmol/mg) added to beef heart mitochondria induced a configurational transition from the aggregated to the orthodox state and a simultaneous uncoupling of oxidative phosphorylation. The primary effect of calcium was to cause a nonspecific increase in the permeability of the inner membrane, resulting in entry of sucrose into the matrix space and the observed configurational transition. The uncoupling and permeability change induced by calcium could readily be reversed by lowering the calcium:magnesium ratio in the presence of either substrate or ATP. The configurational state, however, remained orthodox. This, along with studies of hypotonically induced orthodox mitochondria in which the membrane remained coupled and impermeable until after the addition of calcium, led to the conclusion that coupling was related to the permeability state of the inner membrane rather than the configurational state. Phosphate, arsenate, or oleic acid was found to cause a transition similar to that induced by calcium. Studies with the specific calcium transport inhibitors, EGTA, ruthenium red, and lanthanum revealed that endogenous calcium is required for the anion-induced transitions. A single mechanism was further indicated by a common sensitivity to N-ethylmaleimide. Strontium was ineffective as an inducer of the transition, even though it is transported by the same mechanism as calcium. This indicates that there are additional calcium-binding sites responsible for triggering the transition. Magnesium and calcium appeared to compete for these additional sites, since magnesium competitively inhibited the calcium-induced transition, but had no effect on calcium uptake. Calcium was found to potently inhibit the respiration of all NAD+-requiring substrates prior to the transition. Strontium also produced this inhibition without a subsequent transition. ATPase activity was induced at the exact time of transition with calcium and was not induced by strontium. This suggests that calcium-induced ATPase uniquely required the transition for activity, in contrast to the ATPase induced by uncoupler or valinomycin. The results of this work indicate that mitochondria have a built-in mechanism which responds to low levels of calcium, phosphate, and fatty acids, resulting in simultaneous changes, including increased permeability, inducation of ATPase, uncoupling of oxidative phosphorylation, and loss of respiratory control.  相似文献   

14.
The 2-oxoglutarate dehydrogenase of intact rat heart mitochondria is activated by Ca2+, with 50% activation at approximately 0.5 nmol of total Ca/mg of mitochondrial protein, in the presence of Pi and Mg2+. Mitochondrial Ca contents in excess of 2 nmol/mg of protein result in 100% activation of the enzyme. Investigation of Ca2+ release from the mitochondria using the metallochromic indicator Arsenazo III defines aS 0.5 of 5.4±0.4 nmol of Ca/mg of protein, when the endogenous Ca content of the mitochondria is progressively depleted with EGTA, prior to the initiation of the release process being studied. The subsequent determination of matrix free Ca2+ concentration by the null-point technique has allowed expression of these results in terms of free concentration rather than Ca content, with an activity coefficient of approximately 0.001 for matrix Ca2+. From the above, Ca2+ efflux from heart mitochondria is not saturated at the mitochondrial Ca contents or Ca2+ concentrations which give effective regulation of dehydrogenase activity. A consequence is that heart mitochondria do not buffer the pCa of the extramitochondrial medium at these Ca contents (<2 nmol/mg of protein), and this is shown in direct measurements of extramitochondrial pCa. This is taken to question the physiological significance of mitochondrial buffering of cytosolic free Ca2+ in normal heart.  相似文献   

15.
The incorporation of inorganic phosphate in the fragmented sarcoplasmic membranes induced by the removal of calcium ions bound to high affinity binding sites at the cytoplasmic surface of the membranes gives rise to the formation of two species of phosphoenzyme. The properties of the phosphoproteins formed depend on the absence or the presence of a gradient of calcium ions across the membranes. The phosphoenzymes differ by the affinity of the protein for phosphate, the enthalpy of formation, the kinetics of phosphate incorporation, and by the sensitivity to ionophores and ADP. In the absence of a calcium gradient less than 0.5 nmol phosphoenzyme per mg protein are formed in media containing less than 5 mM phosphate at pH7 and 10 degrees C. Under the same conditions approximately 2 nmol of phosphoenzyme per mg protein are formed with an initial rate of 0.5 nmol mg-1-s-1 when a calcium gradient exists. When the gradient is abolished by the addition of the ionophore X537A, the level of phosphoprotein drops to the same value as observed in the absence of a gradient. On addition of ADP at concentrations increasing from 0.3 to 10 muM continuous ATP formation is activated to its maximum rate, and simultaneously, the level of phosphoprotein declines. These concentrations of ADP scarcely affect phosphoprotein formed in the absence of a gradient, the phosphoryl residue of which is displaced when the concentration of ADP exceeds 10 micrometer without the formation of an equivalent amount of ATP. Minimum mechanisms for the formation of gradient-independent and gradient-dependent phosphoprotein are discussed.  相似文献   

16.
The process of mitochondrial dysfunction in ischemic rat liver was studied. A close correlation was found between decrease in the mitochondrial adenine nucleotide content and deterioration of oxidative phosphorylation capacity. The level of total adenine nucleotides, which was 15--20 nmol/mg protein in mitochondria isolated from normal liver, fell to 1--2 nmol/mg protein with concomitant loss of oxidative phosphorylation capacity after anoxic incubation in vitro or in vivo for 120 min. However, neither the permeability barrier to adenine nucleotides nor matrix enzymes were affected under these conditions. The loss of adenine nucleotides was ascribed to degradation of AMP to adenosine and then leakage of the latter. Conventional procedures for maintenance of oxidative phosphorylation capacity of isolated mitochondria, preservation in the cold and addition of ATP or a respiratory substrate under aerobic conditions, were very effective in maintaining the intramitochondrial levels of adenine nucleotides. Of the three species of adenine nucleotides, only AMP was ineffective in maintaining mitochondrial function; mitochondria containing more than 5 nmol of ATP plus ADP/mg protein exhibited normal activity of oxidative phosphorylation, but with less than 2 nmol they showed no activity.  相似文献   

17.
The objective of the present study was to assess the capacity of nonsynaptic brain mitochondria to accumulate Ca2+ when subjected to repeated Ca2+ loads, and to explore under what conditions a mitochondrial permeability transition (MPT) pore is assembled. The effects of cyclosporin A (CsA) on Ca2+ accumulation and MPT pore assembly were compared with those obtained with ubiquinone 0 (Ubo), a quinone that is a stronger MPT blocker than CsA, when tested on muscle and liver mitochondria. When suspended in a solution containing phosphate (2 mM) and Mg2+ (1 mM), but no ATP or ADP, the brain mitochondria had a limited capacity to accumulate Ca2+ (210 nmol/mg of mitochondrial protein). Furthermore, when repeated Ca2+ pulses (40 nmol/mg of protein each) saturated the uptake system, the mitochondria failed to release the Ca2+ accumulated. However, in each instance, the first Ca2+ pulse was accompanied by a moderate release of Ca2+, a release that was not observed during the subsequent pulses. The initial release was accompanied by a relatively marked depolarization, and by swelling, as assessed by light-scattering measurements. However, as the swelling was <50% of that observed following addition of alamethicin, it is concluded that the first Ca2+ pulse gives rise to an MPT in a subfraction of the mitochondrial population. CsA, an avid blocker of the MPT pore, only marginally increased the Ca(2+)-sequestrating capacity of the mitochondria. However, CsA eliminated the Ca2+ release accompanying the first Ca2+ pulse. The effects of CsA were shared by Ubo, but when the concentration of Ubo exceeded 20 microM, it proved toxic. The results thus suggest that brain mitochondria are different from those derived from a variety of other sources. The major difference is that a fraction of the brain mitochondria, studied presently, depolarized and showed signs of an MPT. This fraction, but not the remaining ones, contributed to the chemically and electron microscopically verified mitochondrial swelling.  相似文献   

18.
The mitochondrial permeability transition (mPT) is a potential pathogenic mechanism in neurodegeneration. Varying sensitivity to calcium-induced mPT has been demonstrated for regions within the CNS possibly correlating with vulnerability following insults. The spinal cord is selectively vulnerable in e.g. amyotrophic lateral sclerosis and increased mPT sensitivity of mitochondria derived from the spinal cord has previously been demonstrated. In this study, we introduce whole-body hypothermia prior to removal of CNS tissue to minimize the effects of differential tissue extraction prior to isolation of spinal cord and cortical brain mitochondria. Spinal cord mitochondria were able to retain considerably less calcium when administered as continuous infusion, which was not related to a general increased sensitivity of the mPT to calcium, its desensitization to calcium by the cyclophilin D inhibitor cyclosporin-A, or to differences in respiratory parameters. Spinal cord mitochondria maintained a higher concentration of extramitochondrial calcium during infusion than brain mitochondria possibly related to an increased set-point concentration for calcium uptake. A hampered transport and retention capacity of calcium may translate into an increased susceptibility of the spinal cord to neurodegenerative processes involving calcium-mediated damage.  相似文献   

19.
Microtubule-associated proteins (MAPs) were phosphorylated by a Ca2+- and calmodulin-dependent protein kinase from rat brain cytosol. The maximal amount of phosphate incorporated into MAPs was 25 nmol of phosphate/mg protein. A Ka value of the enzyme for calmodulin was 57.0 nM, with MAPs as substrates. Among MAPs, MAP2 and tau factor were phosphorylated in a Ca2+- and calmodulin-dependent manner. The phosphorylation of MAPs led to an inhibition of microtubule assembly in accordance with its degree. This reaction was dependent on addition of the enzyme, Ca2+, and calmodulin, and had a greater effect on the initial rate of microtubule assembly rather than on the final extent. The critical tubulin concentration for microtubule assembly was unchanged by the MAPs phosphorylation. Therefore assembly and disassembly of brain microtubule are regulated by the Ca2+- and calmodulin-dependent protein kinase that requires only a nanomolar concentration of calmodulin for activation.  相似文献   

20.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号