首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the aspartic acid metabolic pathway using mutant genes   总被引:3,自引:0,他引:3  
Azevedo RA 《Amino acids》2002,22(3):217-230
Summary. Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants. Received October 26, 2001 Accepted November 15, 2001  相似文献   

2.
3.
Plant lipids have essential biological roles in plant development and stress responses through their functions in cell membrane formation, energy storage and signalling. Vegetable oil, which is composed mainly of the storage lipid triacylglycerol, also has important applications in food, biofuel and oleochemical industries. Lipid biosynthesis occurs in multiple subcellular compartments and involves the coordinated action of various pathways. Although biochemical and molecular biology research over the last few decades has identified many proteins associated with lipid metabolism, our current understanding of the dynamic protein interactomes involved in lipid biosynthesis, modification and channelling is limited. This review examines advances in the identification and characterization of protein interactomes involved in plant lipid biosynthesis, with a focus on protein complexes consisting of different subunits for sequential reactions such as those in fatty acid biosynthesis and modification, as well as transient or dynamic interactomes formed from enzymes in cooperative pathways such as assemblies of membrane-bound enzymes for triacylglycerol biosynthesis. We also showcase a selection of representative protein interactome structures predicted using AlphaFold2, and discuss current and prospective strategies involving the use of interactome knowledge in plant lipid biotechnology. Finally, unresolved questions in this research area and possible approaches to address them are also discussed.  相似文献   

4.
植物多胺代谢途径研究进展   总被引:6,自引:0,他引:6  
多胺是一类小分子生物活性物质,广泛存在于生物体内,与植物的生长发育、衰老及抗逆性都有着密切的联系。目前,在植物中的多胺合成途径已经基本揭示,其生理作用在分子水平上逐步得到阐明。对多胺合成突变体和各种转基因植物的研究也使得人们更深入地了解了多胺以及其合成代谢相关酶在植物生长发育等生理过程中的重要作用。以下概述了植物多胺代谢途径,重点综述了代谢途径中各基因的功能及遗传操作的最新进展,并对将来的研究方向尤其是相关基因在植物抗逆境 (包括生物和非生物逆境) 基因工程方面的应用作了讨论。  相似文献   

5.
随着对硫化氢(hydrogen sulfide,H2S)生理效应的研究,蛋白质硫巯基化(S-sulfhydration)修饰已进入人们的视野。已知依赖于H2S的蛋白质硫巯基化是继磷酸化(phosphorylation)、泛素化(ubiquitylation)、乙酰化(acetylation)和S-亚硝基化(S-nitrosylation)等之后的一种新的蛋白质翻译后修饰方式。对动物的研究表明,蛋白质硫巯基化修饰通过影响蛋白质活性和功能,从而在细胞内信号通路中发挥重要的调控作用。最近的研究结果提示,硫巯基化修饰还参与调节植物新陈代谢和形态建成。本文阐述了依赖于H2S的蛋白质硫巯基化的作用机制、检测方法和生理功能,并提出硫巯基化修饰也可能参与植物细胞信号转导的观点。  相似文献   

6.
Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways   总被引:9,自引:0,他引:9  
A growing body of evidence indicates that phenylpropanoid and flavonoid metabolism is catalyzed, not by free-floating 'soluble' enzymes, but via one or more membrane-associated multienzyme complexes. This type of macromolecular organization has important implications for the overall efficiency, specificity, and regulation of these pathways. Classical biochemical studies of phenylpropanoid and flavonoid metabolism have laid a solid foundation for this model, providing evidence of the channeling of intermediates between enzyme active sites and co-localization of enzymes in cell membranes. This work is now being extended using transgenic plants to determine how the partitioning of metabolites within these pathways is controlled, as well as applying sensitive methods to define specific interactions among the individual enzymes. Information from these studies promises to provide new insights into the structuring of biosynthetic pathways within cells, which should lead to more effective means for engineering the production of plant metabolites with nutritional and agronomic importance.  相似文献   

7.
Compartmentation in plant metabolism   总被引:6,自引:0,他引:6  
Cell fractionation and immunohistochemical studies in the last 40 years have revealed the extensive compartmentation of plant metabolism. In recent years, new protein mass spectrometry and fluorescent-protein tagging technologies have accelerated the flow of information, especially for Arabidopsis thaliana, but the intracellular locations of the majority of proteins in the plant proteome are still not known. Prediction programs that search for targeting information within protein sequences can be applied to whole proteomes, but predictions from different programs often do not agree with each other or, indeed, with experimentally determined results. The compartmentation of most pathways of primary metabolism is generally covered in plant physiology textbooks, so the focus here is mainly on newly discovered metabolic pathways in plants or pathways that have recently been revised. Ultimately, all of the pathways of plant metabolism are interconnected, and a major challenge facing plant biochemists is to understand the regulation and control of metabolic networks. One of the best-characterized networks links sucrose synthesis in the cytosol with photosynthetic CO(2) fixation and starch synthesis in the chloroplasts. One of the key features of this network is how the transport of pathway intermediates and signal metabolites across the chloroplast envelope conveys information between the two compartments, influencing the regulation of several enzymes to co-ordinate fluxes through the different pathways. It is widely accepted that chloroplasts and mitochondria originated from prokaryotic endosymbionts, and that new transporters and regulatory networks evolved to integrate metabolism in these organelles with the rest of the cell. Curiously, the present-day locations of many metabolic pathways within the cell often do not reflect their evolutionary origin, and there is evidence of extensive shuffling of enzymes and whole pathways between compartments during the evolution of plants.  相似文献   

8.
NEDDylation, a post-translational modification mediated by the conjugation of the ubiquitin-like protein Nedd8 to specific substrates, is an essential biological process that regulates cell cycle progression in eukaryotes. Here, we report the conservation of NEDDylation machinery and NEDDylated proteins in the silkworm, Bombyx mori. We have identified all the components necessary for reversible NEDDylation in the silkworm including Nedd8, E1, E2, E3, and deNEDDylation enzymes. By the approach of RNAi-mediated gene silencing, it was shown that knockdown of BmNedd8 and the conjugating enzymes decreased the global level of NEDDylation, while knockdown of deNEDDylation enzymes increased the prevalence of this modification in cultured silkworm cells. Moreover, the lack of the NEDDylation system caused cell cycle arrest at the G2/M phase and resulted in defects in chromosome congression and segregation. Using the wild-type and mutants of BmNedd8, we identified the specific substrates of BmNedd8, which are involved in the regulation for many cellular processes, including ribosome biogenesis, spliceosome structure, spindle formation, metabolism, and RNA biogenesis. This clearly demonstrates that the NEDDylation system is able to control multiple pathways in the silkworm. Altogether, the information on the functions and substrates of the NEDDylation system presented here could provide a basis for future investigations of protein NEDDylation and its regulatory mechanism on cell cycle progression in the silkworm.  相似文献   

9.
Genetic approaches to understanding sugar-response pathways   总被引:15,自引:0,他引:15  
Plants as photoautotrophic organisms are able to produce the carbohydrates they require and have developed mechanisms to co-ordinate carbohydrate production and its metabolism. Carbohydrate-derived signals regulate the expression of genes involved in both photosynthesis and metabolism, and control carbohydrate partitioning. A number of genetic approaches have been initiated to understand sugar-response pathways in plants and identify the components involved. Screening strategies to date have been based on the effects of high sugar media on early seedling development or on changes in the enzyme activity or expression of sugar-responsive genes. These screens have established roles for plant hormones in sugar-response pathways, in particular for abscisic acid. The present emphasis on the role of plant hormones in sugar responses is due to the fact that mutants could be readily identified as belonging to these established pathways, but also results from the nature of the mutant screens in use. Progress is being made on the identification of mutants and genes that may be specific to sugar-signalling pathways. It is also expected that the modification of existing screens may target sugar-signalling pathways more directly. Genetic approaches may be especially useful in identifying components of novel signalling pathways unique to plants, and their combination with genomic and molecular approaches will guide future research.  相似文献   

10.
植物次生代谢物途径及其研究进展   总被引:8,自引:0,他引:8  
植物次生代谢是植物在长期进化过程中与环境相互作用的结果,由初生代谢派生。萜类、生物碱类、苯丙烷类为植物次生代谢物的主要类型,其代谢途径多以代谢频道形式存在,具有种属、生长发育期等特异性。从植物次生代谢物的分类、代谢途径及代谢调控基因工程等方面展开论述,重点介绍了次生代谢物的生物合成途径,以及利用基因工程等技术对植物次生代谢途径进行遗传改良等方面的研究进展,为全面认识植物代谢网络、合理定位次生代谢及其关键酶、促进野生植物资源可持续利用等提供理论依据。  相似文献   

11.
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.  相似文献   

12.
13.
MetaCyc (http://metacyc.org) contains experimentally determined biochemical pathways to be used as a reference database for metabolism. In conjunction with the Pathway Tools software, MetaCyc can be used to computationally predict the metabolic pathway complement of an annotated genome. To increase the breadth of pathways and enzymes, more than 60 plant-specific pathways have been added or updated in MetaCyc recently. In contrast to MetaCyc, which contains metabolic data for a wide range of organisms, AraCyc is a species-specific database containing only enzymes and pathways found in the model plant Arabidopsis (Arabidopsis thaliana). AraCyc (http://arabidopsis.org/tools/aracyc/) was the first computationally predicted plant metabolism database derived from MetaCyc. Since its initial computational build, AraCyc has been under continued curation to enhance data quality and to increase breadth of pathway coverage. Twenty-eight pathways have been manually curated from the literature recently. Pathway predictions in AraCyc have also been recently updated with the latest functional annotations of Arabidopsis genes that use controlled vocabulary and literature evidence. AraCyc currently features 1,418 unique genes mapped onto 204 pathways with 1,156 literature citations. The Omics Viewer, a user data visualization and analysis tool, allows a list of genes, enzymes, or metabolites with experimental values to be painted on a diagram of the full pathway map of AraCyc. Other recent enhancements to both MetaCyc and AraCyc include implementation of an evidence ontology, which has been used to provide information on data quality, expansion of the secondary metabolism node of the pathway ontology to accommodate curation of secondary metabolic pathways, and enhancement of the cellular component ontology for storing and displaying enzyme and pathway locations within subcellular compartments.  相似文献   

14.
The challenge of increasing vitamin C content in plant foods   总被引:1,自引:0,他引:1  
The term "vitamin" is used to define a number of organic compounds that have to be obtained from different foods because the organism itself cannot synthesize them in the quantities needed to sustain life. Vitamin C is the common name for L-ascorbic acid. In humans, the principal role of this molecule is to scavenge reactive oxygen species, due to its antioxidant capacity, and to serve as cofactor for many enzymes. A deficiency of L-ascorbic acid is traditionally linked to human diseases such as scurvy. Plant foods are the principal source of L-ascorbic acid for humans. There is a high variability of L-ascorbic acid content in the various plant organs that are used for human consumption. This diversity is related to the specific functions played by L-ascorbic acid in the different plant tissues. The net content of L-ascorbic acid in plants is determined through a balance of the activities of different biosynthetic, recycling, and catabolic pathways. Here we review the importance of L-ascorbic acid for human health, the current knowledge on its metabolism and function in plants, and the efforts that have already been made by genetic modification to improve its content in plant organs used for human food. We provide a current and forward looking perspective of how plant science can contribute to improving the L-ascorbic acid content in crop species using gene transformation, quantitative trait loci and association mapping-based approaches.  相似文献   

15.
Next to d -glucose, the pentoses l -arabinose and d -xylose are the main monosaccharide components of plant cell wall polysaccharides and are therefore of major importance in biotechnological applications that use plant biomass as a substrate. Pentose catabolism is one of the best-studied pathways of primary metabolism of Aspergillus niger, and an initial outline of this pathway with individual enzymes covering each step of the pathway has been previously established. However, although growth on l -arabinose and/or d -xylose of most pentose catabolic pathway (PCP) single deletion mutants of A. niger has been shown to be negatively affected, it was not abolished, suggesting the involvement of additional enzymes. Detailed analysis of the single deletion mutants of the known A. niger PCP genes led to the identification of additional genes involved in the pathway. These results reveal a high level of complexity and redundancy in this pathway, emphasizing the need for a comprehensive understanding of metabolic pathways before entering metabolic engineering of such pathways for the generation of more efficient fungal cell factories.  相似文献   

16.
Many plant products are biosynthesized and accumulated in epidermal glands. For investigations on the metabolism of these compounds it is most convenient to obtain cell-free preparations enriched in gland contents. Two simple mechanized procedures have been developed for gently abrading the plant surface in order to efficiently extract glandular enzymes in high purity. These methods allow rapid processing of large quantities of plant material and yield extracts largely uncontaminated with materials from underlying tissue. The use of these procedures for isolating several enzymes of terpenoid metabolism is described. These techniques work especially well for microsomal enzymes and may be useful not only for enzymes found in epidermal glands but also for other enzymes localized in or near the epidermis. With simple modification, these procedures can be adapted for use with a variety of different types of plant tissues.  相似文献   

17.
Aymeric Goyer 《Phytochemistry》2010,71(14-15):1615-1624
Thiamine diphosphate (vitamin B1) plays a fundamental role as an enzymatic cofactor in universal metabolic pathways including glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. In addition, thiamine diphosphate has recently been shown to have functions other than as a cofactor in response to abiotic and biotic stress in plants. Recently, several steps of the plant thiamine biosynthetic pathway have been characterized, and a mechanism of feedback regulation of thiamine biosynthesis via riboswitch has been unraveled. This review focuses on these most recent advances made in our understanding of thiamine metabolism and functions in plants. Phenotypes of plant mutants affected in thiamine biosynthesis are described, and genomics, proteomics, and metabolomics data that have increased further our knowledge of plant thiamine metabolic pathways and functions are summarized. Aspects of thiamine metabolism such as catabolism, salvage, and transport in plants are discussed.  相似文献   

18.
Desulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium. Plasmid-encoded functions include modification of cell surface components, nitrogen fixation and a type-III protein secretion system. This genome sequence represents a substantial step toward the elucidation of pathways for reduction (and bioremediation) of pollutants such as uranium and chromium and offers a new starting point for defining this organism's complex anaerobic respiration.  相似文献   

19.
20.
The evolution of new genes to make novel secondary compounds in plants is an ongoing process and might account for most of the differences in gene function among plant genomes. Although there are many substrates and products in plant secondary metabolism, there are only a few types of reactions. Repeated evolution is a special form of convergent evolution in which new enzymes with the same function evolve independently in separate plant lineages from a shared pool of related enzymes with similar but not identical functions. This appears to be common in secondary metabolism and might confound the assignment of gene function based on sequence information alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号