首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently the purified alpha-subunit from Torpedo marmorata acetylcholine receptor was shown to bind alpha-bungarotoxin with a KD approximately 3 nM in the presence of sodium dodecyl sulfate (Tzartos, S.J., and Changeux, J.P. (1983) EMBO J. 2, 381-387). Here we describe a further significant step toward renaturation of the alpha-subunit as judged by toxin and monoclonal antibody binding. Purified T. marmorata receptor subunits were diluted with 1% lipids (asolectin) plus 0.5% Na+ cholate. An anion-exchange resin eliminated most of the detergents, leaving approximately 0.1% Na+ cholate and the lipids. After this treatment, about 20% of the alpha-subunit recovered (but not the beta-, gamma-, or delta-subunit) exhibited a high affinity for radioiodinated alpha-bungarotoxin with a KD approximately 0.5 nM. The 34,000- and 27,000-dalton proteolytic peptides of the alpha-subunit conserved this lipid-dependent toxin binding. Unlabeled alpha-toxins, hexamethonium, and carbamylcholine competed with alpha-bungarotoxin for the renatured alpha-subunit. Noncompetitive channel blockers doubled the lipid-dependent toxin-binding capacity of the alpha-subunit but had no effect on the 27,000-dalton peptide. The binding of several monoclonal antibodies to the main immunogenic region (which is particularly sensitive to denaturation) significantly increased. In particular, binding of antibody 16 changed from 1% to denatured to 100% to the lipid-renaturated alpha-subunit. The binding of these antibodies was lost with the lipid-renatured 34,000- and 27,000-dalton peptides.  相似文献   

2.
The nicotinic acetylcholine receptor (AChR) of human skeletal muscle has a reducible disulfide bond near the neurotransmitter binding site in each of its alpha-subunits. By testing a panel of overlapping synthetic peptides encompassing the alpha-subunit segment 177-208 (containing cysteines 192 and 193) we found that specific binding of 125I-labelled alpha-bungarotoxin (alpha-BTx) was maximal in the region 185-199. Binding was inhibited by unlabelled alpha-BTx greater than d-tubocurarine greater than atropine greater than carbamylcholine. Peptide 193-208 did not bind alpha-BTx, whereas 177-192 retained 40% binding activity. Peptides corresponding to regions 125-147 (containing cysteines 128 and 142) and 389-409, or peptides unrelated to sequences of the AChR failed to bind alpha-BTx. No peptide bound 125I-alpha-labelled parathyroid hormone. The apparent affinity (KD) of alpha-BTx binding to immobilized peptides 181-199 and 185-199 was approximately 25 microM and 80 microM, respectively, in comparison with alpha-BTx binding to native Torpedo ACh receptor (apparent KD approximately 0.5 nM). In solution phase, both peptides effectively competed with solubilized native human AChR for binding of alpha-BTx, and peptide 185-199 showed little evidence of dissociation after 24 h. Peptides that bound alpha-BTx did so when sulfhydryls were reduced. Cysteine modification, by N-ethylmaleimide or acetamidomethylation, abolished alpha-BTx-binding activity. The data implicate the region of cysteines 192 and 193 in the binding of neurotransmitter to the human receptor.  相似文献   

3.
Acetylcholine receptors (AChRs) with high affinity for nicotine but no affinity for alpha-bungarotoxin, which have been purified from rat and chicken brains by immuno-affinity chromatography, consist of two types of subunits, alpha and beta. The beta-subunits form the ACh binding sites. Putative nicotinic AChR subunit cDNAs alpha 3 and alpha 4 have been identified by screening cDNA libraries prepared from rat PC12 cells and rat brain with cDNA probes encoding the mouse muscle AChR alpha-subunit. Here we determine the amino-terminal amino acid sequence of the rat brain AChR beta-subunit by protein microsequencing to be the same as amino acid residues 27-43 of the protein which could be coded by alpha 4. Further, we present evidence consistent with a subunit stoichiometry of alpha 3 beta 2 for this neuronal nicotinic AChR.  相似文献   

4.
alpha-Bungarotoxin blocks acetylcholine-mediated ion channel opening of peripheral acetylcholine receptors (AChR). A major binding region for alpha-bungarotoxin has been recently identified within parts of the segment 170-204 of the alpha-subunit. We used the Pepscan systematic peptide synthesis system to determine the minimum Torpedo AChR segment required for alpha-bungarotoxin binding and to investigate the role of each residue within this segment. Continuously overlapping decapeptides within alpha 179-203 and several decapeptides covering other alpha-subunit sequences showed that alpha 188-197 and alpha 189-198 exhibited the best 125I-alpha-bungarotoxin binding activity (KD = 7.3 x 10(-8) and 4.3 x 10(-8) M, respectively). Several continuously overlapping nona-, octa-, hepta-, hexa-, and tetrapeptides showed that the heptapeptide alpha 189-195 was the minimum sequence with high binding activity (KD = 5.6 x 10(-8)M). d-Tubocurarine, but not carbamylcholine, blocked toxin binding. Twenty-six analogs of the alpha 188-197, most having 1 residue substituted by Ala or Gly, showed that Tyr189, Tyr190, and especially Asp195 were indispensable for 125I-alpha-bungarotoxin binding. Cys192 and Cys193 could be substituted by other amino acids, proving that the disulfide bond between alpha 192-193 was not required for alpha-bungarotoxin binding. The decreased alpha-bungarotoxin binding capacity of the equivalent human muscle AChR alpha 188-197 peptide was the result of substitution of Tyr by Thr at alpha 189.  相似文献   

5.
Acetylcholine receptor (AChR) purified from human skeletal muscle affinity-alkylated with bromoacetyl[methyl-3H]choline bromide ([3H]BAC) in mildly reducing conditions to yield a specifically radiolabeled polypeptide, Mr 44,000, the alpha-subunit. The binding of [125I]alpha-bungarotoxin to AChR was completely inhibited by affinity-alkylation, indicating that the human AChR's binding site for alpha-bungarotoxin is closely associated with the alpha-subunit's acetylcholine binding site. Structures in the vicinity of the alpha-bungarotoxin binding sites of AChRs from human muscle and Torpedo electric organ were compared by varying the conditions of alkylation. Under optimal conditions of reduction and alkylation, both human and Torpedo AChR incorporated BAC in equivalence to the number of alpha-bungarotoxin binding sites. However, with limited conditions of reduction but sufficient BAC to alkylate 100% of the alpha-bungarotoxin binding sites of human AChR, only 71% of the Torpedo AChR's binding sites were alkylated. In optimal conditions of reduction but with the minimal concentration of BAC that permitted 100% alkylation of the human AChR's alpha-bungarotoxin sites, only 74% of the Torpedo AChR's binding sites were alkylated. These data suggest that the neurotransmitter binding region of human muscle AChR is structurally dissimilar from that of Torpedo electric organ, having a higher binding affinity for BAC and an adjacent disulfide bond that is more readily accessible to reducing agents.  相似文献   

6.
Bacterially expressed cDNA fragments of the alpha-subunit of the nicotinic acetylcholine receptor previously have been shown to bind alpha-bungarotoxin (Gershoni, J. M. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 4318-4321). Here, a novel system has been developed in which totally synthetic alpha-bungarotoxin binding sites are expressed in Escherichia coli transformants. The amino acid sequences, alpha 184-200 and alpha 184-196 of the Torpedo californica alpha-subunit of the nicotinic acetylcholine receptor were expressed as trpE fusion proteins via the expression vector pATH2 and a method for the enrichment of these fusion proteins is described. Quantitative analysis of toxin binding to the recombinant binding sites demonstrates that they bind toxin with affinities of KD = 2.5 X 10(-7) and 4.7 X 10(-6) M, respectively. Furthermore, the pharmacological profile of alpha 184-200 qualitatively reflects that of the intact receptor. These data not only indicate that the area of alpha 184-200 is an essential element of the cholinergic binding site but that residues alpha 197-200 contribute a point of contact between the receptor and alpha-bungarotoxin.  相似文献   

7.
To characterize the structure of the agonist-binding site of the Torpedo nicotinic acetylcholine receptor (AChR), we have used [3H]acetylcholine mustard [( 3H]AChM), a reactive analog of acetylcholine, to identify residues contributing to the cation-binding subsite. Reaction of [3H]AChM, in its aziridinium form, with AChR-rich membrane suspensions, resulted initially in reversible, high affinity binding (K approximately 0.3 microM) followed by slow alkylation of the acetylcholine-binding site. Incorporation of label into AChR alpha-subunit was inhibited by agonists and competitive antagonists, but not by noncompetitive antagonists, and reaction with 3 microM [3H]AChM for 2 h resulted in specific alkylation of 0.6% of alpha-subunits. Within the alpha-subunit, greater than 90% of specific incorporation was contained within an 18-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Val-46 and containing N-linked carbohydrate. To identify sites of specific alkylation, [3H]AChM-labeled alpha-subunit was digested with trypsin, and the digests were fractionated by reverse phase high pressure liquid chromatography. Specifically labeled material was recovered within a single peak containing a peptide extending from Leu-80 to Lys-107. NH2-terminal amino acid sequencing revealed specific release of 3H in cycle 14 corresponding to alpha-subunit Tyr-93. Identification of Tyr-93 as the site of alkylation was confirmed by radiosequence analysis utilizing o-phthalaldehyde to establish that the released 3H originated from a peptide containing prolines at residues 2 and 9. Because [3H]AChM contains as its reactive group a positively charged quaternary aziridinium, alpha-subunit Tyr-93 is identified as contributing to the cation-binding domain of the AChR agonist-binding site. The selective reaction of [3H]AChM with tyrosyl rather than acidic side chains indicates the importance of aromatic interactions for the binding of the quaternary ammonium group, and the lack of reaction with the tyrosyl or acidic side chains within alpha 190-200 emphasizes the selective orientation of acetylcholine within its binding site.  相似文献   

8.
Thirteen monoclonal antibodies (mAb) to the acetylcholine receptor (AChR) from Torpedo marmorata showed high avidity for the receptor but none exhibited binding to muscle AChR solubilised from seven other animal species. Five mAb and Fab monomer fragments prepared from two of them, inhibited alpha-bungarotoxin (alpha BuTx) binding to receptor by a maximum of 50%. In the presence of excess mAb the 125I-alpha BuTx bound could be precipitated by anti-IgG indicating that the mAb bound to only one of the two alpha BuTx binding sites on each AChR monomer. This site appeared to have a lower affinity for d-tubocurarine and decamethonium than the non-mAb site. Binding of five anti-site mAb was mutually competitive and four of them (AS2-AS5) were inhibited by other cholinergic ligands and influenced by four non-toxin binding site antibodies. One (AS1) bound within the toxin binding site yet outside the main neurotransmitter binding region. It is concluded that these five mAb distinguish between the two alpha BuTx binding sites on the Torpedo AChR, and bind only to the site which displays lower affinity for d-tubocurarine and other competitive ligands.  相似文献   

9.
The binding of the competitive antagonist alpha-bungarotoxin (alpha-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the alpha-subunit of the Torpedo acetylcholine receptor has been characterized. 125I-alpha-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by alpha-Btx (IC50 = 5.0 x 10(-8) M), d-tubocurarine (IC50 = 5.9 X 10(-5)M), and NaCl (IC50 = 7.9 x 10(-2)M). In the presence of 0.02% sodium dodecyl sulfate, 125I-alpha-Btx bound to the 56-residue peptide with a KD of 3.5 nM, as determined by equilibrium saturation binding studies. Because alpha-Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, [3H]PCP was bound to the 172-227 peptide. [3H]PCP binding was inhibited by chlorpromazine (IC50 = 6.3 x 10(-5)M), tetracaine (IC50 = 4.2 x 10(-6)M), and dibucaine (IC50 = 2.7 x 10(-4)M). Equilibrium saturation binding studies in the presence of 0.02% sodium dodecyl sulfate showed that [3H]PCP bound at two sites, a major site of high affinity with an apparent KD of 0.4 microM and a minor low-affinity site with an apparent KD of 4.6 microM. High -affinity binding occurred at a single site on peptide 205-227 (KD = 0.27 microM) and was competed by chlorpromazine but not by alpha-Btx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The binding sites on the nicotinic acetylcholine receptor of labels specific for the alpha-, beta-, and delta-subunits were determined by electron image analysis, using tubular crystals of receptors grown from the postsynaptic membranes of Torpedo marmorata electric organ. The labels were alpha-bungarotoxin (which attaches to the acetylcholine binding sites on the pair of alpha-subunits), Fab35 (a monoclonal antibody Fab fragment directed against the main immunogenic region of the alpha-subunit), Fab111 (a monoclonal antibody Fab fragment directed against a cytoplasmic site on the beta-subunit), and wheat germ agglutinin (which binds to N-acetylglucosamine residues on the delta-subunit). These labels, bound to receptors in the crystals, were located by comparing labeled with native structures, averaged in each case over more than 5,000 molecules. From the assignments made, we find that the clockwise arrangement of subunits around the receptor, viewed from the synaptic face, is: alpha, beta, alpha, gamma, and delta; that the main immunogenic region is at (or close to) the side of the alpha-subunit; and that the two acetylcholine binding sites are at the synaptic end of the alpha-subunits, 27-28 A from the central axis and approximately 53 A apart. In the crystal lattice, neighboring molecules are paired so that their delta- and alpha-subunits are juxtaposed, an organization that appears to relate closely to the grouping of receptors in vivo.  相似文献   

11.
The alpha subunit of the nicotinic acetylcholine receptor (AChR) from Torpedo electric organ and mammalian muscle contains high affinity binding sites for alpha-bungarotoxin and for autoimmune antibodies in sera of patients with myasthenia gravis. To obtain sufficient materials for structural studies of the receptor-ligand complexes, we have expressed part of the mouse muscle alpha subunit as a soluble, secretory protein using the yeast Pichia pastoris. By testing a series of truncated fragments of the receptor protein, we show that alpha211, the entire amino-terminal extracellular domain of AChR alpha subunit (amino acids 1-211), is the minimal segment that could fold properly in yeast. The alpha211 protein was secreted into the culture medium at a concentration of >3 mg/liter. It migrated as a 31-kDa polypeptide with N-linked glycosylation on SDS-polyacrylamide gel. The protein was purified to homogeneity by isoelectric focusing electrophoresis (pI 5.8), and it appeared as a 4.5 S monomer on sucrose gradient at concentrations up to 1 mm ( approximately 30 mg/ml). The receptor domain bound monoclonal antibody mAb35, a conformation-specific antibody against the main immunogenic region of the AChR. In addition, it formed a high affinity complex with alpha-bungarotoxin (k(D) 0.2 nm) but showed relatively low affinity to the small cholinergic ligand acetylcholine. Circular dichroism spectroscopy of alpha211 revealed a composition of secondary structure corresponding to a folded protein. Furthermore, the receptor fragment was efficiently (15)N-labeled in P. pastoris, and proton cross-peaks were well dispersed in nuclear Overhauser effect and heteronuclear single quantum coherence spectra as measured by NMR spectroscopy. We conclude that the soluble AChR protein is useful for high resolution structural studies.  相似文献   

12.
High affinity binding of platelet-derived growth factor (PDGF) has been proposed to involve the interaction of the dimeric PDGF ligand with two receptor subunits, designated alpha and beta. We have cloned and expressed a human PDGF receptor cDNA which differs in sequence from the beta-subunit and which has the PDGF binding properties and monoclonal antibody recognition, predicted for the alpha-subunit. Scatchard analysis indicated that PDGF-AA and PDGF-AB bound to transfected alpha-subunits with affinities of Kd = 0.06 and 0.05 nM, respectively. PDGF-BB bound with a significantly lower affinity (Kd = 0.4 nM). Nevertheless, this affinity is still great enough to mediate substantial PDGF-BB binding at physiological concentrations and would be considered to be "high affinity." We have used wild-type and kinase-inactive human beta-subunits to show that PDGF binding promotes receptor subunit dimerization in intact cells. In addition, we found that PDGF stimulates tyrosine phosphorylation of the kinase-inactive beta-subunit when it is expressed with alpha-subunits. The kinase-inactive beta-subunits were phosphorylated at tyrosine 857 and 751, the major phosphorylation sites of the wild-type beta-subunit, indicating either that intra- and intermolecular phosphorylation occurs on the same sites, or that a significant fraction of receptor tyrosine phosphorylation is intermolecular.  相似文献   

13.
Most anti-nicotinic acetylcholine receptor (AChR) antibodies in myasthenia gravis are directed against an immunodominant epitope or epitopes [main immunogenic region (MIR)] on the AChR alpha-subunit. Thirty-two synthetic peptides, corresponding to the complete Torpedo alpha-subunit sequence and to a segment of human muscle alpha-subunit, were used to map the epitopes for 11 monoclonal antibodies (mAbs) directed against the Torpedo and/or the human MIR and for a panel of anti-AChR mAbs directed against epitopes on the alpha-subunit other than the MIR. A main constituent loop of the MIR was localized within residues alpha 67-76. Residues 70 and 75, which are different in the Torpedo and human alpha-subunits, seem to be crucial in determining the binding profile for several mAbs whose binding to the peptides correlated very well with their binding pattern to native Torpedo and human AChRs. This strongly supports the identification of the peptide loop alpha 67-76 as the actual location of the MIR on the intact AChR molecule. Residues 75 and 76 were necessary for binding of some mAbs and irrelevant for others, in agreement with earlier suggestions that the MIR comprises overlapping epitopes. Structural predictions for the sequence segment alpha 67-76 indicate that this segment has a relatively high segmental mobility and a very strong turning potential centered around residues 68-71. The most stable structure predicted for this segment, in both the Torpedo and human alpha-subunits, is a hairpin loop, whose apex is a type I beta-turn and whose arms are beta-strands. This loop is highly hydrophilic, and its apex is negatively charged. All these structural properties have been proposed as characteristic of antibody binding sites. We also localized the epitopes for mAbs against non-MIR regions. Among these, the epitope for a monoclonal antibody (mAb 13) that noncompetitively inhibits channel function was localized within residues alpha 331-351.  相似文献   

14.
P Blount  J P Merlie 《Neuron》1989,3(3):349-357
We have stably expressed in fibroblasts different pairs of alpha and non-alpha subunits of the mouse muscle nicotinic acetylcholine receptor (AChR). The gamma and delta, but not the beta, subunits associated efficiently with the alpha subunit, and they extensively modified its binding characteristics. The alpha gamma and alpha delta complexes formed distinctly different high affinity binding sites for the competitive antagonist d-tubocurarine that, together, completely accounted for the two nonequivalent antagonist binding sites in native AChR. The alpha delta complex and native AChR had similar affinities for the agonist carbamylcholine. In contrast, although the alpha gamma complex contains the higher affinity competitive antagonist binding site, it had an affinity for carbamylcholine that was an order of magnitude less than that of the alpha delta complex or the AChR. The comparatively low agonist affinity of the alpha gamma complex may represent an allosterically regulated binding site in the native AChR. These data support a model of two nonequivalent binding sites within the AChR and imply that the basis for this nonequivalence is the association of the alpha subunit with the gamma or delta subunit.  相似文献   

15.
To study the functional and structural roles of the epsilon subunit in adult muscle acetylcholine receptor (AChR), we have co-expressed the alpha and epsilon subunits of the mouse receptor in transfected fibroblasts. Ligand binding studies suggest that association of epsilon with alpha subunit results in a lower association rate constant for 125I-labeled alpha-bungarotoxin binding than that of the unassembled alpha subunit, approaching that for toxin binding to the AChR. Furthermore, alpha epsilon complexes contain high affinity binding sites for competitive antagonists and agonists not present in the unassembled alpha subunit, but similar to one of the two nonequivalent binding sites in the adult AChR. Structural analysis of alpha epsilon complexes by sucrose gradient velocity centrifugation suggests that some of the complexes formed are trimers or tetramers of alpha and epsilon subunits. Comparison of these data with those previously obtained for alpha gamma complexes suggests that gamma and epsilon have homologous functional roles and identical structural positions in the fetal and adult AChRs, respectively.  相似文献   

16.
In rat myometrial membranes, two 3H-Bradykinin binding sites with KD values of 16 pM and 1.0 nM were identified. Employed at pM concentrations, bradykinin stimulated high affinity GTPases. This effect was abolished by the bradykinin antagonist, [D-Arg(Hyp3-Thi5,8, D-Phe7)]bradykinin (10 microM), and by treatment of membranes with pertussis toxin. Myometrial membranes contained two pertussis toxin substrates of 40 and 41 kDa, which corresponded immunologically to alpha-subunits of Gi-type G-proteins. The faster migrating substrate was tentatively identified as Gi2 alpha-subunit. The electrophoretic mobility of the slower migrating Gi alpha-subunit was very similar to that of the Gi3 alpha-subunit. Go alpha-subunits were not detected. Thus, in uterine smooth muscle, G-proteins of the Gi-family (Gi2, Gi3) couple high-affinity bradykinin receptors to their effector enzymes.  相似文献   

17.
T L Lentz  E Hawrot  P T Wilson 《Proteins》1987,2(4):298-307
Peptides corresponding to portions of loop 2 of snake venom curare-mimetic neurotoxins and to a structurally similar region of rabies virus glycoprotein were synthesized. Interaction of these peptides with purified Torpedo electric organ acetylcholine receptor was tested by measuring their ability to block the binding of 125I-labeled alpha-bungarotoxin to the receptor. In addition, inhibition of alpha-bungarotoxin binding to a 32-residue synthetic peptide corresponding to positions 173-204 of the alpha-subunit was determined. Neurotoxin and glycoprotein peptides corresponding to toxin loop 2 inhibited labeled toxin binding to the receptor with IC50 values comparable to those of nicotine and the competitive antagonist d-tubocurarine and to the alpha-subunit peptides with apparent affinities between those of d-tubocurarine and alpha-cobratoxin. Substitution of neurotoxin residue Arg37, the proposed counterpart of the quaternary ammonium of acetylcholine, with a negatively charged Glu residue reduced the apparent affinity about 10-fold. Peptides containing the neurotoxin invariant residue Trp29 and 10- to 100-fold higher affinities than peptides lacking this residue. These results demonstrate that relatively short synthetic peptides retain some of the binding ability of the native protein from which they are derived, indicating that such peptides are useful in the study of protein-protein interactions. The ability of the peptides to compete alpha-bungarotoxin binding to the receptor with apparent affinities comparable to those of other cholinergic ligands indicates that loop 2 of the neurotoxins and the structurally similar segment of the rabies virus glycoprotein act as recognition sites for the acetylcholine receptor. Invariant toxin residues Arg37 and Trp29 and their viral homologs play important, although not essential, roles in binding, possibly by interaction with complementary anionic and hydrophobic subsites on the acetylcholine receptor. The alpha-subunit peptide most likely contains all of the determinants for binding of the toxin and glycoprotein peptides present on the alpha-subunit, because these peptides bind to the 32-residue alpha-subunit peptide with the same or greater affinity as to the intact subunit.  相似文献   

18.
R E Middleton  J B Cohen 《Biochemistry》1991,30(28):6987-6997
The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sites on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]nicotine binds at equilibrium with Keq = 0.6 microM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the alpha- and gamma-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the alpha-subunit was labeled via both agonist sites but the gamma-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Within the alpha-subunit, 93% of the labeling was contained within a 20-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Ser-173. Sequence analysis of this peptide indicated that approximately 80% of the incorporation was into Tyr-198, approximately 13% was into Cys-192, and approximately 7% was into Tyr-190. Chymotryptic digestion of the alpha-subunit confirmed that Tyr-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radio-sequencing strategy employing omicron-phthalaldehyde, since the efficiency of photolabeling was low (approximately 1.0%) and the labeled chymotryptic peptide was not isolated in sufficient quantity to be identified by mass. [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.  相似文献   

19.
The N-terminal extracellular domain (ECD; amino acids 1-208) of the neuronal nicotinic acetylcholine receptor (AChR) alpha7 subunit, the only human AChR subunit known to assemble as a homopentamer, was expressed as a glycosylated form in the yeast Pichia pastoris in order to obtain a native-like model of the extracellular part of an intact pentameric nicotinic AChR. This molecule, alpha7-ECD, although able to bind the specific ligand alpha-bungarotoxin, existed mainly in the form of microaggregates. Substitution of Cys-116 in the alpha7-ECD with serine led to a decrease in microaggregate size. A second mutant form, alpha7-ECD(C116S,Cys-loop), was generated in which, in addition to the C116S mutation, the hydrophobic Cys-loop (Cys(128)-Cys(142)) was replaced by the corresponding hydrophilic Cys-loop from the snail glial cell acetylcholine-binding protein. This second mutant protein was water-soluble, expressed at a moderate level (0.5 +/- 0.1 mg/liter), and had a size corresponding approximately to a pentamer as judged by gel filtration and electron microscopy studies. It also bound (125)I-alpha-bungarotoxin with relatively high affinity (K(d) = 57 nm), the binding being inhibited by unlabeled alpha-bungarotoxin, d-tubocurarine, or nicotine (K(i) = 0.8 x 10(-7) m, K(i) = 1 x 10(-5) m, and K(i) = 0.9 x 10(-2) m, respectively). All three constructs were expressed as glycosylated forms, but in vitro deglycosylation reduced the heterogeneity without affecting their ligand binding properties. These results show that alpha7-ECD(C116S,Cys-loop) was expressed in P. pastoris as an oligomer (probably a pentamer) with a near native conformation and that its deglycosylated form seems to be suitable starting material for structural studies on the ligand-binding domain of a neurotransmitter receptor.  相似文献   

20.
The structure of a peptide corresponding to residues 182-202 of the acetylcholine receptor alpha1 subunit in complex with alpha-bungarotoxin was solved using NMR spectroscopy. The peptide contains the complete sequence of the major determinant of AChR involved in alpha-bungarotoxin binding. One face of the long beta hairpin formed by the AChR peptide consists of exposed nonconserved residues, which interact extensively with the toxin. Mutations of these receptor residues confer resistance to the toxin. Conserved AChR residues form the opposite face of the beta hairpin, which creates the inner and partially hidden pocket for acetylcholine. An NMR-derived model for the receptor complex with two alpha-bungarotoxin molecules shows that this pocket is occupied by the conserved alpha-neurotoxin residue R36, which forms cation-pi interactions with both alphaW149 and gammaW55/deltaW57 of the receptor and mimics acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号