共查询到20条相似文献,搜索用时 15 毫秒
1.
Rojas RJ Yohe ME Gershburg S Kawano T Kozasa T Sondek J 《The Journal of biological chemistry》2007,282(40):29201-29210
The coordinated cross-talk from heterotrimeric G proteins to Rho GTPases is essential during a variety of physiological processes. Emerging data suggest that members of the Galpha(12/13) and Galpha(q/11) families of heterotrimeric G proteins signal downstream to RhoA via distinct pathways. Although studies have elucidated mechanisms governing Galpha(12/13)-mediated RhoA activation, proteins that functionally couple Galpha(q/11) to RhoA activation have remained elusive. Recently, the Dbl-family guanine nucleotide exchange factor (GEF) p63RhoGEF/GEFT has been described as a novel mediator of Galpha(q/11) signaling to RhoA based on its ability to synergize with Galpha(q/11) resulting in enhanced RhoA signaling in cells. We have used biochemical/biophysical approaches with purified protein components to better understand the mechanism by which activated Galpha(q) directly engages and stimulates p63RhoGEF. Basally, p63RhoGEF is autoinhibited by the Dbl homology (DH)-associated pleckstrin homology (PH) domain; activated Galpha(q) relieves this autoinhibition by interacting with a highly conserved C-terminal extension of the PH domain. This unique extension is conserved in the related Dbl-family members Trio and Kalirin and we show that the C-terminal Rho-specific DH-PH cassette of Trio is similarly activated by Galpha(q). 相似文献
2.
Yohe ME Rossman KL Gardner OS Karnoub AE Snyder JT Gershburg S Graves LM Der CJ Sondek J 《The Journal of biological chemistry》2007,282(18):13813-13823
Dbl-related oncoproteins are guanine nucleotide exchange factors specific for Rho-family GTPases and typically possess tandem Dbl homology (DH) and pleckstrin homology domains that act in concert to catalyze exchange. Because the ability of many Dbl-family proteins to catalyze exchange is constitutively activated by truncations N-terminal to their DH domains, it has been proposed that the activity of Dbl-family proteins is regulated by auto-inhibition. However, the exact mechanisms of regulation of Dbl-family proteins remain poorly understood. Here we show that the Dbl-family protein, Tim, is auto-inhibited by a short, helical motif immediately N-terminal to its DH domain, which directly occludes the catalytic surface of the DH domain to prevent GTPase activation. Similar to the distantly related Vav isozymes, auto-inhibition of Tim is relieved by truncation, mutation, or phosphorylation of the auto-inhibitory helix. A peptide comprising the helical motif inhibits the exchange activity of Tim in vitro. Furthermore, substitutions within the most highly conserved surface of the DH domain designed to disrupt interactions with the auto-inhibitory helix also activate the exchange process. 相似文献
3.
p115RhoGEF, a guanine nucleotide exchange factor for Rho GTPase, is also a GTPase activating protein (GAP) for G(12) and G(13) heterotrimeric G alpha subunits. Near its N-terminus, p115RhoGEF contains a domain (rgRGS) with remote sequence identity to RGS (regulators of G protein signaling) domains. The rgRGS domain is necessary but not sufficient for the GAP activity of p115RhoGEF. The 1.9 A resolution crystal structure of the rgRGS domain shows structural similarity to RGS domains but possesses a C-terminal extension that folds into a layer of helices that pack against the hydrophobic core of the domain. Mutagenesis experiments show that rgRGS may form interactions with G alpha(13) that are analogous to those in complexes of RGS proteins with their G alpha substrates. 相似文献
4.
We have cloned a novel unconventional myosin gene myoM in Dictyostelium. Phylogenetic analysis of the motor domain indicated that MyoM does not belong to any known subclass of the myosin superfamily. Following the motor domain, two calmodulin-binding IQ motifs, a putative coiled-coil region, and a Pro, Ser and Thr-rich domain, lies a combination of dbl homology and pleckstrin homology domains. These are conserved in Rho GDP/GTP exchange factors (RhoGEFs). We have identified for the first time the RhoGEF domain in the myosin sequences. The growth and terminal developmental phenotype of Dictyostelium cells were not affected by the myoM(-) mutation. Green fluorescent protein-tagged MyoM, however, accumulated at crown-shaped projections and membranes of phase lucent vesicles in growing cells, suggesting its possible roles in macropinocytosis. 相似文献
5.
The Dbl family guanine-nucleotide exchange factors (GEFs) for Rho GTPases share the structural array of a Dbl homology (DH) domain in tandem with a Pleckstrin homology (PH) domain. For oncogenic Dbl, the DH domain is responsible for the GEF activity, and the DH-PH module constitutes the minimum structural unit required for cellular transformation. To understand the structure-function relationship of the DH domain, we have investigated the role of specific residues of the DH domain of Dbl in interaction with Rho GTPases and in Dbl-induced transformation. Alanine substitution mutagenesis identified a panel of DH mutants made in the alpha1, alpha6, and alpha9 regions and the PH junction site that suffer complete or partial loss of GEF activity toward Cdc42 and RhoA. Kinetic and binding analysis of these mutants revealed that although most displayed decreased k(cat) values in the GEF reaction, the substrate binding activities of T506A and R634A were significantly reduced. E502A, Q633A, and N673A/D674A, on the other hand, retained the binding capability to the Rho GTPases but lost the GEF catalytic activity. In general, the in vitro GEF activity of the DH mutants correlated with the in vivo Cdc42- and RhoA-activating potential, and the GEF catalytic efficiency mirrored the transforming activity in NIH 3T3 cells. Moreover, the N673A/D674A mutant exhibited a potent dominant-negative effect on serum-induced cell growth and caused retraction of actin structures. These studies identify important sites of the DH domain involved in binding or catalysis of Rho proteins and demonstrate that maintaining a threshold of GEF catalytic activity, in addition to the Rho GTPase binding activity, is essential for efficient transformation by oncogenic Dbl. 相似文献
6.
Pruitt WM Karnoub AE Rakauskas AC Guipponi M Antonarakis SE Kurakin A Kay BK Sondek J Siderovski DP Der CJ 《Biochimica et biophysica acta》2003,1640(1):61-68
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo. 相似文献
7.
Megan B. Miller Kurutihalli S. Vishwanatha Richard E. Mains Betty A. Eipper 《The Journal of biological chemistry》2015,290(21):13541-13555
Previous studies revealed an essential role for the lipid-binding Sec14 domain of kalirin (KalSec14), but its mechanism of action is not well understood. Because alternative promoter usage appends unique N-terminal peptides to the KalSec14 domain, we used biophysical, biochemical, and cell biological approaches to examine the two major products, bKalSec14 and cKalSec14. Promoter B encodes a charged, unstructured peptide, whereas promoter C encodes an amphipathic helix (Kal-C-helix). Both bKalSec14 and cKalSec14 interacted with lipids in PIP strip and liposome flotation assays, with significantly greater binding by cKalSec14 in both assays. Disruption of the hydrophobic face of the Kal-C-helix in cKalSec14KKED eliminated its increased liposome binding. Although cKalSec14 showed significantly reduced binding to liposomes lacking phosphatidylinositol phosphates or cholesterol, liposome binding by bKalSec14 and cKalSec14KKED was not affected. When expressed in AtT-20 cells, bKalSec14-GFP was diffusely localized, whereas cKalSec14-GFP localized to the trans-Golgi network and secretory granules. The amphipathic C-helix was sufficient for this localization. When AtT-20 cells were treated with a cell-permeant derivative of the Kal-C-helix (Kal-C-helix-Arg9), we observed increased secretion of a product stored in mature secretory granules, with no effect on basal secretion; a cell-permeant control peptide (Kal-C-helixKKED-Arg9) did not have this effect. Through its ability to control expression of a novel, phosphoinositide-binding amphipathic helix, Kalrn promoter usage is expected to affect function. 相似文献
8.
The key role of the Rho family GTPases Rac, Rho, and CDC42 in regulating the actin cytoskeleton is well established (Hall, A. 1998. Science. 279:509-514). Increasing evidence suggests that the Rho GTPases and their upstream positive regulators, guanine nucleotide exchange factors (GEFs), also play important roles in the control of growth cone guidance in the developing nervous system (Luo, L. 2000. Nat. Rev. Neurosci. 1:173-180; Dickson, B.J. 2001. Curr. Opin. Neurobiol. 11:103-110). Here, we present the identification and molecular characterization of a novel Dbl family Rho GEF, GEF64C, that promotes axon attraction to the central nervous system midline in the embryonic Drosophila nervous system. In sensitized genetic backgrounds, loss of GEF64C function causes a phenotype where too few axons cross the midline. In contrast, ectopic expression of GEF64C throughout the nervous system results in a phenotype in which far too many axons cross the midline, a phenotype reminiscent of loss of function mutations in the Roundabout (Robo) repulsive guidance receptor. Genetic analysis indicates that GEF64C expression can in fact overcome Robo repulsion. Surprisingly, evidence from genetic, biochemical, and cell culture experiments suggests that the promotion of axon attraction by GEF64C is dependent on the activation of Rho, but not Rac or Cdc42. 相似文献
9.
Chen Z Singer WD Wells CD Sprang SR Sternweis PC 《The Journal of biological chemistry》2003,278(11):9912-9919
Structural requirements for function of the Rho GEF (guanine nucleotide exchange factor) regulator of G protein signaling (rgRGS) domains of p115RhoGEF and homologous exchange factors differ from those of the classical RGS domains. An extensive mutagenesis analysis of the p115RhoGEF rgRGS domain was undertaken to determine its functional interface with the Galpha(13) subunit. Results indicate that there is global resemblance between the interaction surface of the rgRGS domain with Galpha(13) and the interactions of RGS4 and RGS9 with their Galpha substrates. However, there are distinct differences in the distribution of functionally critical residues between these structurally similar surfaces and an additional essential requirement for a cluster of negatively charged residues at the N terminus of rgRGS. Lack of sequence conservation within the N terminus may also explain the lack of GTPase-activating protein (GAP) activity in a subset of the rgRGS domains. For all mutations, loss of functional GAP activity is paralleled by decreases in binding to Galpha(13). The same mutations, when placed in the context of the p115RhoGEF molecule, produce deficiencies in GAP activity as observed with the rgRGS domain alone but show no attenuation of the regulation of Rho exchange activity by Galpha(13). This suggests that the rgRGS domain may serve a structural or allosteric role in the regulation of the nucleotide exchange activity of p115RhoGEF on Rho by Galpha(13). 相似文献
10.
11.
Targeted deletion of the zebrafish obscurin A RhoGEF domain affects heart, skeletal muscle and brain development 总被引:1,自引:0,他引:1
Obscurin is a giant structural and signaling protein that participates in the assembly and structural integrity of striated myofibrils. Previous work has examined the physical interactions between obscurin and other cytoskeletal elements but its in vivo role in cell signaling, including the functions of its RhoGTPase Exchange Factor (RhoGEF) domain have not been characterized. In this study, morpholino antisense oligonucleotides were used to create an in-frame deletion of the active site of the obscurin A RhoGEF domain in order to examine its functions in zebrafish development. Cardiac myocytes in the morphant embryos lacked the intercalated disks that were present in controls by 72 and, in the more severely affected embryos, the contractile filaments were not organized into mature sarcomeres. Neural abnormalities included delay or loss of retinal lamination. Rescue of the phenotype with co-injection of mini-obscurin A expression constructs demonstrated that the observed effects were due to the loss of small GTPase activation by obscurin A. The immature phenotype of the cardiac myocytes and the retinal neuroblasts observed in the morphant embryos suggests that obscurin A-mediated small GTPase signaling promotes tissue-specific cellular differentiation. This is the first demonstration of the importance of the obscurin A-mediated RhoGEF signaling in vertebrate organogenesis and highlights the central role of obscurin A in striated muscle and neural development. 相似文献
12.
Schiller MR Chakrabarti K King GF Schiller NI Eipper BA Maciejewski MW 《The Journal of biological chemistry》2006,281(27):18774-18786
RhoGEFs are central controllers of small G-proteins in cells and are regulated by several mechanisms. There are at least 22 human RhoGEFs that contain SH3 domains, raising the possibility that, like several other enzymes, SH3 domains control the enzymatic activity of guanine nucleotide exchange factor (GEF) domains through intra- and/or intermolecular interactions. The structure of the N-terminal SH3 domain of Kalirin was solved using NMR spectroscopy, and it folds much like other SH3 domains. However, NMR chemical shift mapping experiments showed that this Kalirin SH3 domain is unique, containing novel cooperative binding site(s) for intramolecular PXXP ligands. Intramolecular Kalirin SH3 domain/ligand interactions, as well as binding of the Kalirin SH3 domain to the adaptor protein Crk, inhibit the GEF activity of Kalirin. This study establishes a novel molecular mechanism whereby intramolecular and intermolecular Kalirin SH3 domain/ligand interactions modulate GEF activity, a regulatory mechanism that is likely used by other RhoGEF family members. 相似文献
13.
COMMD1 is the prototype of a new protein family that plays a role in several important cellular processes, including NF-kappaB signaling, sodium transport, and copper metabolism. The COMMD proteins interact with one another via a conserved C-terminal domain, whereas distinct functions are predicted to result from a variable N-terminal domain. The COMMD proteins have not been characterized biochemically or structurally. Here, we present the solution structure of the N-terminal domain of COMMD1 (N-COMMD1, residues 1-108). This domain adopts an alpha-helical structure that bears little resemblance to any other helical protein. The compact nature of N-COMMD1 suggests that full-length COMMD proteins are modular, consistent with specific functional properties for each domain. Interactions between N-COMMD1 and partner proteins may occur via complementary electrostatic surfaces. These data provide a new foundation for biochemical characterization of COMMD proteins and for probing COMMD1 protein-protein interactions at the molecular level. 相似文献
14.
Kogan MJ Dalcol I Gorostiza P Lopez-Iglesias C Pons R Pons M Sanz F Giralt E 《Biophysical journal》2002,83(2):1194-1204
Zeins are maize storages proteins that accumulate inside large vesicles called protein bodies. gamma-Zein lines the inner face of the protein body membrane, and its N-terminal proline-rich repetitive domain with the sequence (VHLPPP)(8) appears to be necessary for the accumulation of the protein within the organelle. Synthetic (VHLPPP)(8) adopts an amphipathic polyproline II conformation. In a preliminary recent work we used atomic force microscopy to study the surface organization of the octamer and transmission electron microscopy to visualize aggregates of the peptide from aqueous solution. We previously envisioned two self-assembly models (i.e., the geometric and the micellar) that take into account the observed features. In the present work we studied in detail the self-assembly of the peptide in solution and found that the peptide is able to form cylindrical micelles. Fibrils formed on graphite are generated by assembly of solution micelles. Based on the results of these studies, we focused exclusively on the micellar model. To our knowledge we have characterized for the first time supramolecular aggregates of polyproline structures other than collagen. The spontaneous arrangement of (VHLPPP)(8) suggests a role for the N-terminal domain of gamma-zein in the process of the whole protein deposition in protein bodies. 相似文献
15.
We screened a cDNA bank of rabbit gastric fundic mucosa by two-hybrid assays looking for binding partners of the N-terminal domain of the rabbit gastric H,K-ATPase. We extracted five clones sharing more than 90% sequence identity. The longest clone codes for a protein sharing a high identity (96 and 96.8%, respectively) with a fragment of the membrane domain, from Arg-835 to Ser-873, plus the major part of the "spectrin binding domain" going from Glu-874 to Leu-1455 of human and mouse ankyrin III. We conclude that the membrane and spectrin binding domains of the rabbit ankyrin III are candidates for the binding partner of the N-terminal domain of the rabbit gastric H,K-ATPase. To validate the ankyrin-ATPase interaction and to test its specificity, we produced both domains in yeast and bacteria, coimmunoprecipitated them with an anti-ATPase antibody, and copurified them by affinity chromatography. The sequence of rabbit ankyrin III was not known, and this is the first report demonstrating that the ankyrin III and the H,K-ATPase interact with no intermediate. The interaction involves the N-terminal domain of the ATPase on one hand and the spectrin binding domain of the ankyrin on the other. 相似文献
16.
Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation 总被引:12,自引:0,他引:12
Rho-family GTPases transduce signals from receptors leading to changes in cell shape and motility, mitogenesis, and development. Proteins containing the Dbl homology (DH) domain are responsible for activating Rho GTPases by catalyzing the exchange of GDP for GTP. Receptor-initiated stimulation of Dbl protein Vav exchange activity involves tyrosine phosphorylation. We show through structure determination that the mVav1 DH domain is autoinhibited by an N-terminal extension, which lies in the GTPase interaction site. This extension contains the Tyr174 Src-family kinase recognition site, and phosphorylation or truncation of this peptide results in stimulation of GEF activity. NMR spectroscopy data show that the N-terminal peptide is released from the DH domain and becomes unstructured upon phosphorylation. Thus, tyrosine phosphorylation relieves autoinhibition by exposing the GTPase interaction surface of the DH domain, which is obligatory for Vav activation. 相似文献
17.
Renzoni D Esposito D Pfuhl M Hinton JC Higgins CF Driscoll PC Ladbury JE 《Journal of molecular biology》2001,306(5):1127-1137
The H-NS protein plays a key role in condensing DNA and modulating gene expression in bacterial nucleoids. The mechanism by which this is achieved is dependent, at least in part, on the oligomerization of the protein. H-NS consists of two distinct domains; the N-terminal domain responsible for protein oligomerization, and the C-terminal DNA binding domain, which are separated by a flexible linker region. We present a multidimensional NMR study of the amino-terminal 64 residues of H-NS (denoted H-NS1-64) from Salmonella typhimurium, which constitute the oligomerization domain. This domain exists as a homotrimer, which is predicted to be self-associated through a coiled-coil configuration. NMR spectra show an equivalent magnetic environment for each monomer indicating that the polypeptide chains are arranged in parallel with complete 3-fold symmetry. Despite the limited resonance dispersion, an almost complete backbone assignment for 1H(N), 1H(alpha), 15N, 13CO and 13C(alpha) NMR resonances was obtained using a suite of triple resonance experiments applied to uniformly 15N-, 13C/15N- and 2H/13C/15N-labelled H-NS1-64 samples. The secondary structure of H-NS1-64 has been identified on the basis of the analysis of 1H(alpha), 13C(alpha), 13Cbeta and 13CO chemical shifts, NH/solvent exchange rates, intra-chain H(N)-H(N) and medium-range nuclear Overhauser enhancements (NOEs). Within the context of the homotrimer, each H-NS1-64 protomer consists of three alpha-helices spanning residues 2-8, 12-20 and 22-53, respectively. A topological model is presented for the symmetric H-NS1-64 trimer based upon the combined analysis of the helical elements and the pattern of backbone amide group 15N nuclear relaxation rates within the context of axially asymmetric diffusion tensor. In this model, the longest of the three helices (helix 3, residues 22-53) forms a coiled-coil interface with the other chains in the homotrimer. The two shorter N-terminal helices fold back onto the outer surface of the coiled-coil core and potentially act to stabilise this configuration. 相似文献
18.
Freedman SJ Song HK Xu Y Sun ZY Eck MJ 《The Journal of biological chemistry》2003,278(15):13462-13467
SNARE proteins mediate intracellular membrane fusion by forming a coiled-coil complex to merge opposing membranes. A "fusion-active" neuronal SNARE complex is a parallel four-helix bundle containing two coiled-coil domains from SNAP-25 and one coiled-coil domain each from syntaxin-1a and VAMP-2. "Prefusion" assembly intermediate complexes can also form from these SNAREs. We studied the N-terminal coiled-coil domain of SNAP-23 (SNAP-23N), a non-neuronal homologue of SNAP-25, and its interaction with other coiled-coil domains. SNAP-23N can assemble spontaneously with the coiled-coil domains from SNAP-23C, syntaxin-4, and VAMP-3 to form a heterotetrameric complex. Unexpectedly, pure SNAP-23N crystallizes as a coiled-coil homotetrameric complex. The four helices have a parallel orientation and are symmetrical about the long axis. The complex is stabilized through the interaction of conserved hydrophobic residues comprising the a and d positions of the coiled-coil heptad repeats. In addition, a central, highly conserved glutamine residue (Gln-48) is buried within the interface by hydrogen bonding between glutamine side chains derived from adjacent subunits and to solvent molecules. A comparison of the SNAP-23N structure to other SNARE complex structures reveals how a simple coiled-coil motif can form diverse SNARE complexes. 相似文献
19.
Autoinhibited proteins serve key roles in many signal transduction pathways, and therefore proper regulation of these proteins is critical for normal cellular function. Proto-oncogene Vav1 is an autoinhibited guanine nucleotide exchange factor (GEF) for Rho family GTPases. The core autoinhibitory module of Vav1 consists of the catalytic Dbl homology (DH) domain bound through its active site to an alpha helix centered about Tyr174 in the Acidic (Ac) region of the protein. Phosphorylation of Tyr174 and two other tyrosines in the Ac region, Tyr142 and Tyr160, relieves autoinhibition and activates the catalytic DH domain. In this study, we use biochemical and structural analyses of the Vav1 Ac and DH domains to examine the kinetic and thermodynamic properties of Vav1 activation by the Src family kinase, Lck, and the role of the Lck SH2 domain in this process. We find that in the Ac-DH fragment of Vav1, Tyr174, but not Tyr142 or Tyr160, is protected from phosphorylation by interactions with the DH domain. Binding of the Lck SH2 domain to phosphorylated Tyr142 increases kcat/KM for Tyr174 by 4-fold, likely because the kinase domain can act on the substrate effectively in an intramolecular fashion. These studies of the autoinhibited Ac-DH module provide the foundation for a quantitative structural and thermodynamic understanding of the regulation of full length Vav1. Moreover, kinetic pathways involving initial interactions with exposed sites or "access points", as observed here for Vav1, may be generally important in the regulation of many autoinhibited proteins. 相似文献
20.
Rossjohn J Cappai R Feil SC Henry A McKinstry WJ Galatis D Hesse L Multhaup G Beyreuther K Masters CL Parker MW 《Nature structural biology》1999,6(4):327-331
Amyloid precursor protein (APP) plays a central role in Alzheimer disease. A proteolytic-breakdown product of APP, called beta-amyloid, is a major component of the diffuse and fibrillar deposits found in Alzheimer diseased brains. The normal physiological role of APP remains largely unknown despite much work. A knowledge of its function will not only provide insights into the genesis of the disease but may also prove vital in the development of an effective therapy. Here we describe the 1.8 A resolution crystal structure of the N-terminal, heparin-binding domain of APP (residues 28-123), which is responsible, among other things, for stimulation of neurite outgrowth. The structure reveals a highly charged basic surface that may interact with glycosaminoglycans in the brain and an abutting hydrophobic surface that is proposed to play an important functional role such as dimerization or ligand binding. Structural similarities with cysteine-rich growth factors, taken together with its known growth-promoting properties, suggests the APP N-terminal domain could function as a growth factor in vivo. 相似文献