首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Searching for the best procedure for simultaneous estimation of the anterior pituitary hormones, extraction efficiencies of various media, additives such as urea and triton X-100, and physical treatments such as freezing-thawing (F-T) and sonication, were examined by measuring prolactin (PRL), growth hormone (GH), lutropin (LH), follitropin (FSH), and thyrotropin (TSH) in the extracts. Ethanolic media (60% EtOH) gave high yields of PRL at neutral to alkaline pH, but poor extraction of GH accompanied by a marked loss of its immunoreactivity during storage. Ethanolic media also gave a poor yield of LH even at high pH. Aqueous media like PBS at various pH, 0.1 M acetic acid and distilled water were considerably effective in the extraction of GH, LH, FSH and TSH if they were coupled with F-T and sonication. However, high yields of PRL could not be obtained with these aqueous media even with F-T and sonication. Hartree's 40% EtOH-6% ammonium acetate, pH 5.1, solubilized considerable amounts of glycoprotein hormones, but yielded almost no GH and only a small amount of PRL. The addition of triton X-100 to PBS (pH 7) at 0.1% resulted in the maximum extraction of glycoprotein hormones with homogenization and F-T, but further sonication was necessary for GH and PRL. When the anterior pituitaries were homogenized and frozen-thawed in PBS (pH 7) containing 1 M urea, yields of PRL, GH, LH, FSH, and TSH were maximum, and sonication did not cause any additional extraction, indicating that this procedure, i.e. homogenization and F-T in 1 M urea-PBS, would be the best for the simultaneous estimation of these anterior pituitary hormones.  相似文献   

2.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

3.
A sensitive and specific radioimmunoassay for LH-releasing hormone (LHRH) was developed. Using a specific antibody we have attempted to define or dissociate a separate FSHRH, antigenically distinct from LHRH. In an in vitro system, LH release by hypothalamic extract was inhibited by a certain dose of LHRH antiserum but FSH release was not affected. Diurnal patterns of LHRH, FSH and prolactin were studied but no clear cyclic changes were shown. LHRH and LH levels in the serum were completely dissociated. We suggest that negative feedback systems play a more critical role than hypothalamic LHRH in the release of LH.  相似文献   

4.
Studies were conducted to determine the influence of some LHRH analogues on gonadotropic hormone (GtH) secretion in two species of trout. The observations indicated that synthetic LHRH and various stimulatory LHRH analogues are approximately equipotent in these fish. This is an unexpected result considering the superactive properties of these analogues demonstrated in mammals. An inhibitory LHRH analogue was also tested in the trout with the result that powerful inhibition of LHRH induced GtH release was obtained.  相似文献   

5.
N Fujihara  M Shiino 《Life sciences》1980,26(10):777-781
Corticosterone alone was not able to stimulate release of luteinizing hormone (LH) from anterior pituitary cells invitro, but corticosterone in combination with luteinizing hormone releasing hormone (LHRH) augmented the release of LH into the culture media. These results may indicate that corticosterone may have the capacity to activate membrane receptors for LHRH in the gonadotrophs.  相似文献   

6.
Twelve lactating sows were used at 22.4 +/- 0.8 days postpartum to determine whether endogenous opioid peptides (EOP) are involved in the suckling-induced inhibition of luteinizing hormone (LH) secretion. Four sows each received either 1, 2, or 4 mg/kg body weight of naloxone (NAL), an opiate antagonist, in saline i.v. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. All sows were then given 100 micrograms gonadotropin-releasing hormone (GnRH) in saline i.v., and blood samples were collected for an additional h. Pigs were weaned after blood sampling. At 40 h after weaning, sows were treated and blood samples collected as during suckling. Serum concentrations of LH after treatment with NAL were similar for all doses; therefore, the data were pooled across doses. During suckling, serum concentrations of LH were 0.41 +/- 0.04 ng/ml before NAL treatment, increased to 0.65 +/- 0.08 ng/ml at 30 min after NAL treatment, and remained elevated above pretreatment concentrations for 120 min (p less than 0.05). Naloxone failed to alter serum concentrations of LH after weaning. These data indicate that EOP may be involved in the suckling-induced suppression of LH secretion and that weaning may either decrease opioid inhibition of LH secretion or decrease pituitary LH responsiveness to endogenous GnRH released by NAL.  相似文献   

7.
After dissociating equine gonadotropins as a function of time at pH 3, we examined them by radioligand assay and sodium dodecyl sulfate polyacrylamide gel electrophoresis under nondissociating conditions (low, 0.1% SDS). Equine follicle-stimulating hormone (FSH) rapidly lost its receptor-binding activity, and low SDS-polyacrylamide gels demonstrated dissociation into subunits. Maximum dissociation occurred after 20–30 min of pH 3 incubation. Equine luteinizing hormone (LH), however, retained most biologic activity and was largely intact after 72 h of pH 3 incubation. Dose-response curves of acid-treated equine LH and FSH and intact equine LH and FSH were compared in five types of radioligand receptor assays. LH and FSH receptor-binding activities of equine LH were unaffected by pH 3. Equine LH showed 19- and 32-times more activity in the rat testis FSH assay than it did in chicken or horse FSH assays, respectively, directly demonstrating the intrinsic FSH receptor-binding activity of equine LH and the relative lack of specificity for these hormone preparations of the rat FSH receptor. Acid-treated equine FSH lost 95% of its biologic activity in FSH assays. In LH assays, the slight (0.2%) activity of equine FSH was relatively unaffected by acid treatment, suggesting that contamination by equine LH accounts for this activity.  相似文献   

8.
Although endogenous opioid peptides (EOP) are thought to alter pituitary release of luteinizing hormone (LH) by modifying the release of gonadotropin-releasing hormone (GnRH) from the brain, EOP may also directly affect the release of LH from pituitary cells. This hypothesis was tested using dispersed cells from the bovine anterior pituitary gland. Pituitaries were enzymatically dissociated, preincubated for 18 h and then cultured for either 2 or 24 h with GnRH, naloxone, methionine-enkephalin (Met-enk) or their combinations. Basal release of LH into media was 18.2 and 38.4 ng/100,000 cells after culture for 2 or 24 h, respectively. When cultured for 2 or 24 h with 10 nM GnRH, LH release was 296% and 131% of the basal release for each culture period. Cellular viability (75% vs 68%) and total (cells + medium) LH (128 vs 134 ng/100,000 cells) did not differ (P greater than .05) between cells cultured for 2 or 24 h. Naloxone (1 microM) increased (P less than .01) basal release of LH by 57% after 2 h of culture but not after 24 h of culture. Naloxone did not augment the amount of LH released in response to 10 nM GnRH. Addition of Met-enk (1 nM to 1 microM) suppressed (P less than .05) basal release of LH (23% to 62%) after 2 h of culture. Similar suppressive effects (8% to 49%) occurred in a dose-dependent manner (0.1 nM to 1 microM) after 24 h of culture. Met-enk (1 and 100 nM) antagonized (P less than .05) the stimulatory effect of naloxone and reduced (P less than .05) the amount of LH released in response to GnRH after 2 h of culture. In summary, the stimulatory effect of naloxone on the basal release of LH suggests that EOP may directly regulate pituitary cell function; the inhibitory effect of physiological concentrations of Met-enk on the basal in vitro release of LH suggests that EOP may directly affect the release of LH in vivo; the antagonism between the stimulatory effect of naloxone and the inhibitory effect of Met-enk is consistent with effects exerted through opioid receptors; and the stimulatory effect of GnRH may be partially reduced by Met-enk. These results are consistent with the hypothesis that opioids may directly modulate the release of LH at the pituitary level.  相似文献   

9.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

10.
The nature of secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) was followed in female rabbits on a daily basis from age 36 to 60 days by sequential 5-min blood sampling over 1- to 2-h periods each day. Both LH and FSH were found to be secreted in a pulsatile manner. The mean LH pulse amplitude over the 25 days was 0.95 +/- 0.32 ng/mL and for FSH it was 10.15 +/- 1.11 ng/mL. Mean plasma LH levels were significantly increased from 1.46 +/- 0.08 ng/mL in 36 to 42-day-old rabbits to 1.89 +/- 0.12 ng/mL in 43 to 50-day-old rabbits and remained elevated from 50 to 60 days. FSH levels during the same periods also rose significantly from 14.93 +/- 0.79 to 19.57 +/- 2.05 ng/mL. To examine the influence of endogenous opioid peptides on the release of LH and FSH in 36 to 60-day-old female rabbits, morphine sulfate at 0.2, 0.5, 2.0, and 5.0 mg/kg was administered subcutaneously after 30 min baseline sampling, and blood was taken for another 60-120 min. Morphine at all doses and at all ages inhibited the amplitude and frequency of LH pulses but had no effect on FSH secretion. To determine whether the effects of morphine on LH secretion could be reversed with naloxone, females aged 82-114 days were used. Naloxone administered 1 h after morphine reversed the inhibitory effects of morphine, whereas the simultaneous administration of naloxone with morphine had variable effects but seemed to delay the LH increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of central nervous system administration of morphine on secretion of luteinizing hormone (LH), follicle-stimulating hormone, and prolactin were investigated in ovariectomized gilts stereotaxically implanted with lateral ventricular cannulas. In Experiment 1, mean serum LH and follicle-stimulating hormone concentrations and serum LH pulse frequency were unaffected by artificial cerebrospinal fluid administration (P greater than 0.1), but decreased (P less than 0.01) in 8 of 11 gilts when 500 micrograms of morphine were given 3 hr later. Serum LH pulse amplitude was unaffected (P greater than 0.1) by cerebrospinal fluid or morphine injection. In Experiment 2, luteinizing hormone concentrations decreased (P less than 0.0001) and prolactin concentrations increased (P less than 0.0001), but follicle-stimulating hormone concentrations did not change (P greater than 0.1) after 500 micrograms of morphine. Gonadotropin responses to 10 micrograms of gonadotropin-releasing hormone, given 2 hr after intraventricular injection, were similar (P greater than 0.1) for morphine- and cerebrospinal fluid-treated gilts. These results indicate that morphine inhibits LH secretion at the level of the central nervous system, and are consistent with the concept that endogenous opioid peptides participate in the regulation of gonadotropin and prolactin release in pigs.  相似文献   

12.
Two experiments were conducted to test the working hypothesis that mean plasma concentrations of luteinizing hormone (LH) increase as a result of an increase in the frequency and amplitude of the pulsatile releases of LH in postpubertal boars after removal of gonadal steroid hormones by castration. It was further hypothesized that these changes in secretion of LH would be the result of changes in sensitivity of the pituitary to gonadotropin releasing hormone (GnRH). In Experiment 1, plasma LH was monitored in 10 postpubertal crossbred boars (13 to 14 mo old and weighing 159 +/- 6.0 kg) at 12-min intervals for 6 h before and 1 h after GnRH (375 ng/kg of body weight) on Days -1, 7, 14, 21 and 29 relative to castration. In Experiment 2, plasma LH was monitored in four castrated and five intact postpubertal boars (11 to 12 mo old and weighing 150 +/- 5.1 kg) after each of three doses of GnRH (94, 188 and 375 ng/kg) were administered to each animal. Sample collection occurred 5 wk after castration. Mean LH and frequency of pulsatile releases of LH increased as a result of castration (P<0.0001), with changes evident by Day 7 after castration. However, the amplitude of the LH pulses increased minimally after castration (P<0.10). The response to exogenous GnRH increased throughout Experiment 1 (P<0.0001), even though the amplitude of the pulsatile releases of LH (response to endogenous GnRH) did not change. Castrated animals in Experiment 2 had a greater response of LH to GnRH stimulation than intact boars (P<0.05). The dose-response curve of castrated animals was not parallel (P<0.001) to that of intact boars, and indicated that sensitivity of the pituitary to GnRH had increased in the absence of gonadal steroids. Thus, the hypotheses stated above can be accepted with the exception that castration may have a minimal effect on LH pulse amplitude. Based on the results of these experiments, we suggest that gonadal steroid hormones modulate both the size of releasable stores of LH and pituitary sensitivity to GnRH in boars.  相似文献   

13.
Narcotics acutely depress serum testosterone levels in the male. Three mechanisms could be involved: an enhancement of the degradation of testosterone; a direct inhibition of testicular steroidogenesis; or, finally, an inhibition of the hypothalamic-pituitary-luteinizing hormone (LH) axis resulting in a reduction in LH-dependent testicular steroidogenesis. The currently available evidence indicates that narcotics do not affect the catabolism of testosterone by the liver or testicular steroidogenesis. Rather, the data favor a direct action on the hypothalamic--pituitary--LH axis, probably by inhibiting the secretion of LH-releasing hormone (LH-RH) from the hypothalamus. The effects of narcotics on serum LH appear to be mediated via specific opioid receptors, suggesting that a naturally occurring opioid-like substance exists that normally inhibits LH. In support of this conclusion, opiate receptor blockers markedly increase serum LH levels shortly after their subcutaneous administration. In addition, endogenous opioids also seem to participate in testosterone's negative feedback control of the hypothalamic--pituitary--LH axis. Thus, it appears that opiate drugs inhibit the function of the hypothalamic-pituitary-gonadal axis by occupying opiate receptors in the hypothalamus and, moreover, that endogenous opioids exist that normally bind to these receptors and regulate activity in this axis.  相似文献   

14.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors' previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary.  相似文献   

15.
Active immunization of ram lambs and bull calves against highly purified LH results in the production of antibodies which bind radiolabeled ovine LH. Antibody titers were not dependent upon the dose (0.1 or 1.0 mg) of antigen given but were found to be greater when the antigen consisted of LH conjugated to a carrier protein; in this case human serum globulin (hSG). The presence of LH antibodies in ram sera seemed of little consequence. The presence of antibodies in sera of immunized bulls, however, appeared to neutralize endogenous LH sufficiently to suppress serum testosterone and reduce testicular size. Androgen deficiency, produced by immunization against oLH-hSG, resulted in atrophy of the testes, seminal vesicles and epithelial cells lining both epididymides and seminal vesicles. Reduced weight gain and lack of development of the secondary sexual characteristics were at levels expected of surgical castrates (steers). In summary, active immunization of young beef bulls against LH and in particular, oLH-hSG, results in a castration-like response which has been compared with that achieved in other species by luteinizing hormone releasing hormone (LHRH) immunocastration. The success of LH immunocastration in field trials with young bulls and investigations aimed toward reversibility are yet to be determined.  相似文献   

16.
The time course for LH induction of luteinizing hormone (LH) receptors as reflected in binding of 125l-labeled hCG was investigated in hypophysecto-mized adult male rats. A low dose of oLH (10 μg) was administered to hypophysectomized adult male rats following pretreatments with prolactin, follicle-stimulating hormone (FSH), growth hormone (GH), or saline. Testicular binding of hCG was determined at different times following the LH injection using Leydig cell membrane preparations from a testicular homogenate. Seven days after hypophysectomy, hCG binding was at a nadir of 19 ± 7% (mean ± SD) of control values. Pretreatment with prolactin (100 μg/day) for 7 days was associated with a nonsignificantly different hCG binding that was 30 ± 5% of control values. Prolactin pretreatment plus a single 10 μg LH i.p. injection increased 125l hCG binding up to 56 ± 10% of control values within 30 minutes of the LH injection. Luteinizing hormone-induced hCG binding persisted at a high level (51 ± 4% of control values) for 2 hours but returned to hypophysectomized control levels 6 hours after the i.p. LH injection. Seven days pretreatment with FSH or GH at 100 μg/day plus 10-μg LH injections was also tested. Neither FSH nor GH had a statistically significant effect on hCG binding nor could they mimic the ability of prolactin to allow for LH induction of hCG binding in the hypophysectomized adult male rats. These studies suggest that the induction or “up-regulation” of Leydig cell hCG binding by ovine LH is rapid and specifically dependent upon pre-exposure to prolactin.  相似文献   

17.
A method of extraction of synthetic LHRH is studied in human urines, using porous glass (Spherosil) and methanol. In the defined conditions the yield is greeter than 80%. It appears that the method is reproducible. The recovery varies essentially with the quantity of Spherosil and the pH of methanal. The use of methanol acidified at pH 3 increases the speed and the importance of labelled LHRH recovery.  相似文献   

18.
Nine adult female llamas were used to determine the time course for secretion of luteinizing hormone (LH) and estradiol-17beta (E(2)) following a single copulation (average 18 min), and progesterone (P(4)) during the development of the subsequent luteal phase. Heparinized blood samples were obtained through an indwelling jugular cannula at 15-min intervals for up to 24 h following copulation and then once daily for up to 10 d. Luteinizing hormone, assayed by radioimmunoassay (RIA) using a monoclonal antibody 518B7 against the beta subunit of bovine LH, was determined at 15 min intervals for 24 h following copulation. Estradiol-17beta was determined by RIA at 4-h intervals following copulation, then daily, while P(4) values were determined daily by enzyme immunoassay. A significant increase in LH concentration was observed by 15 min after the onset of copulation, with the peak of the preovulatory surge of LH occurring at 2 h; values were basal by 7 h after copulation. Estradiol-17beta values, unchanged through 18 h after copulation, tended to decline at 22 h (24 h, P<0.10) and were significantly lower than 18 h values by 48 h (P<0.05) after copulation. The first significant P(4) increase occurred at 3 d after copulation, with values increasing through 10 d. The LH surge observed subsequent to copulation is consonant with the llama being an induced ovulator.  相似文献   

19.
Adult male Sprague-Dawley rats, maintained under a controlled photoperiod of LD 14:10 (white lights on at 06:00 h, CST), were injected with lithium chloride and changes in the levels of plasma and pituitary homogenates of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) were examined to evaluate the effects of this anti-manic drug on reproductive function. Two groups of rats were injected with lithium chloride intraperitoneally, twice daily at 09:00 and 16:00 h, for 2 and 7 days at a dosage of 2.5 meg/Kg body weight. Plasma and pituitary levels of LH, FSH and PRL were measured by radioimmunoassay. Plasma levels of LH were significantly (P<0.05) increased after 2 days of lithium treatment. In contrast, a significant (P<0.005) reduction in plasma levels of LH was evident when lithium injections were continued for 7 days. The plasma levels of FSH remained unaffected by lithium treatment by either time period. Lithium administered for 2 days did not bring about any significant alteration in the plasma levels of PRL, although there was a significant (P<0.002) reduction in plasma PRL levels after 7 days treatment. The concentrations of pituitary LH, FSH and PRL remained unchanged after 2 and 7 days of lithium treatment.  相似文献   

20.
C S Rani  N R Moudgal 《Steroids》1978,32(4):435-451
The effect of neutralizing endogenous follicle stimulating hormone (FSH) or luteinizing hormone (LH) with specific antisera on the in vivo and in vitro synthesis of estrogen in the ovary of cycling hamster was studied. Neutralization of FSH or LH on proestrus resulted in a reduction in the estradiol concentration of the ovary on diestrus-2 and next proestrus, suggesting an impairment in follicular development. Injection of FSH antiserum at 0900 h of diestrus-2 significantly reduced the ovarian estradiol concentration within 6--7 h. Further, these ovaries on incubation with testosterone (T) in vitro at 1600 h of the same day or the next day synthesized significantly lower amounts of estradiol, compared to corresponding control ovaries. Although testosterone itself, in the absence of endogenous FSH, could stimulate estrogen synthesis to some extent, FSH had to be supplemented with T to restore estrogen synthesis to the level seen in control ovaries incubated with T. Lack of FSH thus appeared to affect the aromatization step in the estrogen biosynthetic pathway in the ovary of hamster on diestrus-2. In contrast to this, FSH antiserum given on the morning of proestrus had no effect on the in vivo and in vitro synthesis of estrogen, when examined 6--7 h later. The results suggest that there could be a difference in the need for FSH at different times of the cycle. Neutralization of LH either on diestrus-2 or proestrus resulted in a drastic reduction in estradiol concentration of the ovary. This block was at the level of androgen synthesis, since supplementing testerone alone in vitro could stimulate estrogen synthesis to a more or less similar extent as in the ovaries of control hamsters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号