首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 900 毫秒
1.
How does range expansion affect genetic diversity in species with different ecologies, and do different types of genetic markers lead to different conclusions? We addressed these questions by assessing the genetic consequences of postglacial range expansion using mitochondrial DNA (mtDNA) and nuclear restriction site‐associated DNA (RAD) sequencing in two congeneric and codistributed rodents with different ecological characteristics: the desert kangaroo rat (Dipodomys deserti), a sand specialist, and the Merriam's kangaroo rat (Dipodomys merriami), a substrate generalist. For each species, we compared genetic variation between populations that retained stable distributions throughout glacial periods and those inferred to have expanded since the last glacial maximum. Our results suggest that expanded populations of both species experienced a loss of private mtDNA haplotypes and differentiation among populations, as well as a loss of nuclear single‐nucleotide polymorphism (SNP) private alleles and polymorphic loci. However, only D. deserti experienced a loss of nucleotide diversity (both mtDNA and nuclear) and nuclear heterozygosity. For all indices of diversity and differentiation that showed reduced values in the expanded areas, D. deserti populations experienced a greater degree of loss than did D. merriami populations. Additionally, patterns of loss in genetic diversity in expanded populations were substantially less extreme (by two orders of magnitude in some cases) for nuclear SNPs in both species compared to that observed for mitochondrial data. Our results demonstrate that ecological characteristics may play a role in determining genetic variation associated with range expansions, yet mtDNA diversity loss is not necessarily accompanied by a matched magnitude of loss in nuclear diversity.  相似文献   

2.
Abstract. Among samples collected from nineteen localities in Papua New Guinea, we have identified six species within the Anopheles punctulatus complex of mosquitoes, by means of cellulose acetate allozyme electrophoresis. An.punctulatus Dönitz sensu stricto was collected from seven villages in the Madang area and from Buksak, Sausi Mission and an area 18 km SW of Tari; An.koliensis Owen from eight villages in the Madang area, from Popondetta and Brown River near Karema; and An.farauti No. 1 from ten coastal areas including Madang, Lorengau, Popondetta, Port Moresby, Rabaul and Wewak. Three newly recognized species, reported here for the first time, are designated as An.farauti No. 4 from Gonoa and Hudini, Madang area; An.farauti No. 5 from Ketarabo near Goroka; and An.farauti No. 6 from Hiwanda near Tari. Three other known members of the complex, An.clowi Rozeboom & Knight, An.farauti No. 2 (Bryan, 1973) and An.farauti No. 3 (Mahon & Meithke, 1982) were not detected in Papua New Guinea. Problems arising with morphological characters for the identification of species in this group are discussed.  相似文献   

3.
Aim To test whether marine biogeographical patterns observed at the community level are also important within species. It is postulated that historical hydrogeographic barriers have driven in situ diversification. Location The intertidal and shallow subtidal zones of southern Australia, New Zealand and nearby islands. Australia's temperate marine communities are characterized by a high degree of endemism and show strong biogeographical structure along an east–west axis. Methods Phylogeographical analysis of the widespread asteriid sea‐star Coscinasterias muricata Verrill across southern Australia and New Zealand. Forty‐two samples from 27 locations were included in phylogenetic analyses of mitochondrial (CO1; control region) and nuclear (ITS2) DNA sequences. Results Analysis of mtDNA revealed a deep phylogenetic split within Australian C. muricata, strongly correlated with latitude. ‘Northern’ haplotypes (latitude ≤ 37.6° S, nine sites, 15 samples) were 7.3–9.4% divergent from ‘southern’ haplotypes (latitude ≥ 37.6° S, 19 sites, 27 samples), consistent with late Pliocene separation. Eastern and western representatives of the ‘northern’ clade were 0.5–1.0% divergent, probably reflecting Pleistocene isolation. The ‘southern’ clade of Australia is also represented in New Zealand, indicating Pleistocene oceanic dispersal. Nuclear DNA (ITS2) sequences yielded relatively little phylogenetic resolution, but were generally congruent with mtDNA‐based groupings. Main conclusions The phylogeographical pattern detected within Australian C. muricata closely resembles marine biogeographical groupings proposed on the basis of community and species distributions. Recurring evolutionary patterns may have been driven by the hydrographic history of southern Australia. Specifically, we suggest that Plio‐Pleistocene temperature change and the repeated opening and closure of Bass Strait promoted allopatric divergence and perhaps cryptic speciation in C. muricata.  相似文献   

4.
The water rat (Hydromys chrysogaster) is well adapted to a semiaquatic life and is endemic to dispersed regions of Australia and New Guinea. To analyse the genetic diversity of water rat populations, polymorphic microsatellite markers were developed. A partial genomic library was screened for microsatellite sequences. Following isolation of the microsatellite sequences, primers were designed to amplify seven loci and of these loci, five were polymorphic. The sample tested for polymorphisms came from areas across Australia and New Guinea. Between three and 13 alleles were detected for each locus. In addition the primers amplified two loci in Mus musculus and Rattus rattus.  相似文献   

5.
To investigate the origins and relationships of Australian and Melanesian populations, 611 males from 18 populations from Australia, Melanesia, and eastern/southeastern Asia were typed for eight single-nucleotide polymorphism (SNP) loci and seven short tandem-repeat loci on the Y chromosome. A unique haplotype, DYS390.1del/RPS4Y711T, was found at a frequency of 53%-69% in Australian populations, whereas the major haplotypes found in Melanesian populations (M4G/M5T/M9G and DYS390.3del/RPS4Y711T) are absent from the Australian populations. The Y-chromosome data thus indicate independent histories for Australians and Melanesians, a finding that is in agreement with evidence from mtDNA but that contradicts some analyses of autosomal loci, which show a close relationship between Australian and Melanesian (specifically, highland Papua New Guinean) populations. Since the Australian and New Guinean landmasses were connected when first colonized by humans > or =50,000 years ago but separated some 8,000 years ago, a possible way to reconcile all the genetic data is to infer that the Y-chromosome and mtDNA results reflect the past 8,000 years of independent history for Australia and New Guinea, whereas the autosomal loci reflect the long preceding period of common origin and shared history. Two Y-chromosome haplotypes (M119C/M9G and M122C/M9G) that originated in eastern/southeastern Asia are present in coastal and island Melanesia but are rare or absent in both Australia and highland Papua New Guinea. This distribution, along with demographic analyses indicating that population expansions for both haplotypes began approximately 4,000-6,000 years ago, suggests that these haplotypes were brought to Melanesia by the Austronesian expansion. Most of the populations in this study were previously typed for mtDNA SNPs; population differentiation is greater for the Y chromosome than for mtDNA and is significantly correlated with geographic distance, a finding in agreement with results of similar analyses of European populations.  相似文献   

6.
Species 6 of the Australasian Anopheles farauti sibling species complex (Diptera: Culicidae) is described and formally named Anopheles oreios Bangs & Harbach, sp. n. Adult, pupal and fourth‐instar larval specimens collected in the Baliem Valley, Papua Province, Indonesia, are characterized and compared with those of Anopheles farauti, Anopheles hinesorum, Anopheles irenicus and Anopheles torresiensis (formerly informally denoted as species 1, 2, 7 and 3, respectively). The variable wings of adult females, the male genitalia, the pupa and the fourth‐instar larva of An. oreios are illustrated and DNA sequence data are included for regions coding for sections of the mitochondrial COI and COII genes. The biology of An. oreios and its relation to malaria transmission are discussed in detail and contrasted with the biology and disease relations of some members of the An. farauti and Anopheles punctulatus sibling species complexes.  相似文献   

7.
Abstract. Electrophoretic keys are given for the six species of the Anopheles punctulatus complex (Diptera: Culicidae) known from Papua New Guinea plus An.farauti No. 2 and No. 3 from Australia. The categories ‘faster’, ‘standard’ and ‘slower’ are used in keys to relate allozyme band migration following cellulose acetate electrophoresis to the standard pattern. Alternative keys are given depending on the availability of different species for use as standards.  相似文献   

8.
Biogeographic barriers potentially restrict gene flow but variation in dispersal or vagility can influence the effectiveness of these barriers among different species and produce characteristic patterns of population genetic structure. The objective of this study was to investigate interspecific and intraspecific genetic structure in two closely related species that differ in several life‐history characteristics. The grey teal Anas gracilis is geographically widespread throughout Australia with a distribution that crosses several recognized biogeographic barriers. This species has high vagility as its extensive movements track broad‐scale patterns in rainfall. In contrast, the closely related chestnut teal A. castanea is endemic to the mesic southeastern and southwestern regions of Australia and is more sedentary. We hypothesized that these differences in life‐history characteristics would result in more pronounced population structuring in the chestnut teal. We sequenced five nuclear loci (nuDNA) for 49 grey teal and 23 chestnut teal and compared results to published mitochondrial DNA (mtDNA) sequences. We used analysis of molecular variance to examine population structure, and applied coalescent based approaches to estimate demographic parameters. As predicted, chestnut teal were more strongly structured at both mtDNA and nuDNA (ΦST= 0.163 and 0.054, respectively) than were grey teal (ΦST < 0.0001 for both sets of loci). Surprisingly, a greater proportion of the total genetic variation was partitioned among populations within species (ΦSC= 0.014 and 0.047 for nuDNA and mtDNA, respectively) than between the two species (ΦCT < 0.0001 for both loci). The ‘Isolation with Migration’ coalescent model suggested a late Pleistocene divergence between the taxa, but remarkably, a deeper divergence between the southeastern and southwestern populations of chestnut teal. We conclude that dispersal potential played a prominent role in the structuring of populations within these species and that divergent selection associated with ecology and life history traits likely contributed to rapid and recent speciation in this pair.  相似文献   

9.
A phylogenetic study of the members of the Anopheles punctulatus group was performed using structural and similarity-based DNA sequence alignments of the small ribosomal subunit (SSU) from both the nuclear and the mitochondrial genomes. The mitochondrial SSU gene (12S, 650 bp) proved to be highly restricted by its secondary structure and displayed little informative sequence variation. Consequently, it was considered unsuitable for a phylogenetic study of these closely related mosquito species. A structural alignment of the nuclear ribosomal DNA SSU (18S, 2000 bp) proved to be more informative than similarity-based alignments. Analyses showed the A. punctulatus group to be monophyletic with two major clades; a Farauti clade containing members displaying an all-black-scaled proboscis (A. farauti 1–3 and 5–7) and the Punctulatus clade containing members displaying extensive white scaling on the apical half of the proboscis (A. farauti 4, A. punctulatus, and An. sp. near punctulatus). Anopheles koliensis was positioned basal to the Farauti clade.  相似文献   

10.
There are many large, easy‐to‐observe anseriform birds (ducks, geese, and swans) in northern Australia and New Guinea and they often gather in large numbers. Yet, the structure of their populations and their regional movements are poorly understood. Lack of understanding of population structure limits our capacity to understand source‐sink dynamics relevant to their conservation or assess risks associated with avian‐borne pathogens, in particular, avian influenza for which waterfowl are the main reservoir species. We set out to assess present‐day genetic connectivity between populations of two widely distributed waterfowl in the Australo‐Papuan tropics, magpie goose Anseranas semipalmata (Latham, 1798) and wandering whistling‐duck Dendrocygna arcuata (Horsfield, 1824). Microsatellite data were obtained from 237 magpie geese and 64 wandering whistling‐duck. Samples were collected across northern Australia, and at one site each in New Guinea and Timor Leste. In the wandering whistling‐duck, genetic diversity was significantly apportioned by region and sampling location. For this species, the best model of population structure was New Guinea as the source population for all other populations. One remarkable result for this species was genetic separation of two flocks sampled contemporaneously on Cape York Peninsula only a few kilometers apart. In contrast, evidence for population structure was much weaker in the magpie goose, and Cape York as the source population provided the best fit to the observed structure. The fine scale genetic structure observed in wandering whistling‐duck and magpie goose is consistent with earlier suggestions that the west‐coast of Cape York Peninsula is a flyway for Australo‐Papuan anseriforms between Australia and New Guinea across Torres Strait.  相似文献   

11.
Aims We aimed to investigate the effects of historical land–sea boundary and vegetation dynamics in the Australo‐Papuan region on the genetic structure of palm cockatoo populations. In doing so, we also sought to clarify the intraspecific taxonomic status of palm cockatoos, and to examine the potential conservation implications of our results. Location New Guinea and northern Australia. Methods We examined mtDNA (domain III, control region) genetic structure in 71 palm cockatoos from 17 locations across their Australo‐Papuan range. Results Twenty polymorphic sites over 242‐base pairs defined 12 haplotypes that were arranged in a 95% confidence parsimony network of six one‐step clades. Half of these were linked in one clade that included birds from eastern New Guinea–Australia, and the other half included birds from western New Guinea. Nested clade analyses revealed strong and significant genetic structure between these two clades. The average nucleotide divergence between eastern and western birds is c. 3.3%. Within the western clade there was a non‐random distribution of haplotypes according to sampling location alone, but the locations did not cluster significantly, probably due to low sample sizes. A non‐random distribution of haplotypes emerged within one of the one‐step clades from the east of the range (once rare haplotypes were removed), although the historic mechanism that may have created this pattern is unclear. The underlying low nucleotide divergence (0.39%) among haplotypes within the eastern clade suggests relatively recent common ancestry. Main conclusions Our results suggest genetic isolation of the eastern and western clades sometime during the Pleistocene. The continual reappearance of land bridges associated with Pleistocene glacio‐eustatic cycles within the eastern part of the range provides an explanation for our results. We suggest that the occurrence of two deep marine troughs maintained a narrow mountainous barrier between eastern and western birds throughout much of the Pleistocene at a time when extensive land bridges formed elsewhere in the species’ range, and that this has maintained their genetic distinctiveness. Our results provide little support for the current accepted subspecies; the western clade is roughly congruent with Probosciger aterrimus goliath (with caveats), but the otherwise unstructured small genetic distances cast considerable doubt on the remaining subspecies. The eastern and western lineages are endemic to each area and should therefore be considered for independent conservation status and management.  相似文献   

12.
Dispersal triggers gene flow, which in turn strongly affects the ensuing genetic population structure of a species. Using nuclear microsatellite loci and mitochondrial DNA (mtDNA), we estimated the genetic population structure of the wasp Polistes olivaceus throughout Bangladesh. The level of population differentiation using nuclear markers (F ST) appeared to be much lower than that estimated using mtDNA haplotype sequences (ФST), even after correcting for effective population size differences between the two markers. These results suggest a philopatric tendency, in which gynes disperse less than males. We observed no isolation by distance among the study populations at either the nuclear or mtDNA level, suggesting nonequilibrium between gene flow and drift as a result of very frequent interpopulation movement. For the nuclear markers, an individual assignment test showed no genetically and geographically distinct groups. Instead, phylogenetic analyses as well as a minimum spanning network using mtDNA haplotypes consistently revealed two distinct lineages. The distribution of haplotypes indicated western populations with a single lineage and offered clear evidence for restricted gene flow across the Jamuna–Padma–Upper Meghna river system. Mismatch distributions exhibited a unimodal distribution, which along with a starlike haplotype network, suggested a population expansion in lineage I but not in lineage II. Overall, these results suggest that gene flow among populations of P. olivaceus was affected by both female philopatry and a major river system across Bangladesh.  相似文献   

13.
Aim Pacific biogeographical patterns in the widespread plant genus Melicope J.R. Forst. & G. Forst. (Rutaceae) were examined by generating phylogenetic hypotheses based on chloroplast and nuclear ribosomal sequence data. The aims of the study were to identify the number of colonization events of Melicope to the Hawaiian Islands and to reveal the relationship of Hawaiian Melicope to the Hawaiian endemic genus Platydesma H. Mann. The ultimate goal was to determine if the Hawaiian Islands served as a source area for the colonization of Polynesia. Location Nineteen accessions were sampled in this study, namely eight Melicope species from the Hawaiian Islands, four from the Marquesas Islands, one species each from Tahiti, Australia and Lord Howe Island, two Australian outgroups and two species of the Hawaiian endemic genus Platydesma. To place our results in a broader context, 19 sequences obtained from GenBank were included in an additional analysis, including samples from Australia, Papua New Guinea, New Zealand, Southeast Polynesia and Asia. Methods DNA sequences were generated across 19 accessions for one nuclear ribosomal and three chloroplast gene regions. Maximum parsimony analyses were conducted on separate and combined data sets, and a maximum likelihood analysis was conducted on the combined nuclear ribosomal and chloroplast data set. A broader nuclear ribosomal maximum parsimony analysis using sequences obtained from GenBank was also performed. Geographic areas were mapped onto the combined chloroplast and nuclear ribosomal tree, as well as onto the broader tree, using the parsimony criterion to determine the dispersal patterns. Results Phylogenetic analyses revealed that Platydesma is nested within Melicope and is sister to the Hawaiian members of Melicope. The Hawaiian Melicope + Platydesma lineage was a result of a single colonization event, probably from the Austral region. Finally, Marquesan Melicope descended from at least one, and possibly two, colonization events from the Hawaiian Islands. Main conclusions These data demonstrate a shifting paradigm of Pacific oceanic island biogeography, in which the patterns of long‐distance dispersal and colonization in the Pacific are more dynamic than previously thought, and suggest that the Hawaiian Islands may act as a stepping stone for dispersal throughout the Pacific.  相似文献   

14.
The population structure and history of the cryptic malaria vector species, Anopheles punctulatus (Doenitz), was investigated throughout Papua New Guinea and the Solomon Islands with the aim of detailing genetic subdivisions and the potential for movement through this biogeographically complex region. We obtained larval collections from over 80 sites and utilised a diverse array of molecular markers that evolve through different processes. Individuals were initially identified to species and genotyped using the ribosomal DNA second internal transcribed spacer. DNA sequencing of a single copy nuclear ribosomal protein S9 and the mitochondrial cytochrome oxidase I loci were then investigated and 12 nuclear microsatellite markers were developed and analysed. Our data revealed three genetically distinct populations – one in Papua New Guinea, the second on Buka Island (Bougainville Province, Papua New Guinea), and the third on Guadalcanal Island (Solomon Islands). Genetic differentiation within Papua New Guinea was much lower than that found in studies of other closely related species in the region. The data does suggest that A. punctulatus has undergone a population bottleneck followed by a recent population and range expansion in Papua New Guinea. Humans and regional economic growth may be facilitating this population expansion, as A. punctulatus is able to rapidly occupy human modified landscapes and traverse unsealed roads. We therefore anticipate extensive movement of this species through New Guinea – particularly into the highlands, with a potential increase in malaria frequency in a warming climate – as well as relatively unrestricted gene flow of advantageous alleles that may confound vector control efforts.  相似文献   

15.
Anopheles melas is a brackish water–breeding member of the Anopheles gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analysed 15 microsatellite markers and 1161 bp of mtDNA in 11 A. melas populations collected throughout its range. Compared with its sibling species A. gambiae, A. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat that is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three A. melas clusters is on par with levels of divergence between other species of the A. gambiae complex, and no support for monophyly was observed in a maximum‐likelihood phylogenetic analysis. Finally, an approximate Bayesian analysis of microsatellite data indicates that Bioko Island A. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10 000–11 000 bp ). This study has exposed species‐level genetic divergence within A. melas and also has implications for control of this malaria vector.  相似文献   

16.
Studies of fragmented habitat, such as island archipelagos, provide insights into the microevolutionary processes that drive early stages of diversification. Here, we examined genetic variation and gene flow among populations of the widespread buff‐banded rail Gallirallus philippensis in Oceania to understand the factors that promote speciation associated within this bird lineage. We analysed mtDNA Control Region sequences and six microsatellite loci from a total of 152 individuals of buff‐banded rail on islands and continental areas. We used a phylogeographic model‐testing approach and a structured spatial design ranging from within to among archipelagoes in the south Pacific. Buff‐banded rail populations in the Philippines archipelago and nearby Palau and Wallacea had high genetic diversity while those in geographically distant Australia showed lower variation. Other archipelagos sampled were found to have less genetic diversity and included haplotypes closely related to Wallacea (Bismarck, Vanuatu, New Caledonia) or Australia (New Zealand, Samoa, Fiji, Cocos Islands). Nucleotide diversity and allele frequency declined with degree of geographic isolation but haplotype diversity remained more even. However, both nucleotide and haplotype diversities were positively correlated with land area. Microsatellite data for a subset of locations showed moderate to high genetic differentiation and significant pairwise FST despite a relatively high migration rate. Our results are mostly consistent with a model of abrupt genetic changes due to founder events with multiple dispersals into Australia from Wallacea and Bismarck. Australia has probably been the source of birds for islands in the Pacific. This is shown by decreasing genetic diversity and growing genetic differentiation when distances separating populations increased from Australia. A history of range expansion and divergent natural selection may help explain the existence of numerous sympatric Gallirallus island endemics.  相似文献   

17.
Aim Hidden diversity within an invasive ‘species’ can mask both invasion pathways and confound management goals. We assessed taxonomic status and population structure of the monkey goby Neogobius fluviatilis across Eurasia, comparing genetic variation across its native and invasive ranges. Location Native populations were analysed within the Black and Caspian Sea basins, including major river drainages (Dnieper, Dniester, Danube, Don and Volga rivers), along with introduced locations within the upper Danube and Vistula river systems. Methods DNA sequences and 10 nuclear microsatellite loci were analysed to test genetic diversity and divergence patterns of native and introduced populations; phylogenetic analysis of mtDNA cytochrome b and nuclear RAG‐1 sequences assessed taxonomic status of Black and Caspian Sea lineages. Multivariate analysis of morphology was used to corroborate phylogenetic patterns. Population genetic structure within each basin was evaluated with mtDNA and microsatellite data using FST analogues and Bayesian assignment tests. Results Phylogenetic analysis of mitochondrial and nuclear sequences discerned a pronounced genetic break between monkey gobies in the Black and Caspian Seas, indicating a long‐term species‐level separation dating to c. 3 million years. This pronounced separation further was confirmed from morphological and population genetic divergence. Bayesian inference showed congruent patterns of population structure within the Black Sea basin. Introduced populations in the Danube and Vistula River basins traced to north‐west Black Sea origins, a genetic expansion pattern matching that of other introduced Ponto‐Caspian gobiids. Main conclusions Both genetic and morphological data strongly supported two species of monkey gobies that were formerly identified as subspecies: N. fluviatilis in the Black Sea basin, Don and Volga Rivers, and the Kumo‐Manych Depression, and Neogobius pallasi in the Caspian Sea and Volga River delta. Genetic origins of introduced N. fluviatilis populations indicated a common invasion pathway shared with other introduced Ponto‐Caspian fishes and invertebrates.  相似文献   

18.
Rodents of the Praomys daltoni complex are typical inhabitants of the Sudanian savanna ecosystem in western Africa and represent a suitable model for testing the effects of Quaternary climatic oscillations on extant genetic variation patterns. Phylogeographical analyses of mitochondrial DNA sequences (cytochrome b) across the distribution range of the complex revealed several well‐defined clades that do not support the division of the clade into the two species currently recognized on the basis of morphology, i.e. P. daltoni (Thomas, 1892) and Praomys derooi ( Van der Straeten & Verheyen 1978 ). The observed genetic structure fits the refuge hypothesis, suggesting that only a small number of populations repeatedly survived in distinct forest‐savanna mosaic blocks during the arid phases of the Pleistocene, and then expanded again during moister periods. West African rivers may also have contributed to genetic differentiation, especially by forming barriers after secondary contact of expanding populations. The combination of three types of genetic markers (mtDNA sequences, microsatellite loci, cytogenetic data) provides evidence for the presence of up to three lineages, which most probably represent distinct biological species. Furthermore, incongruence between nuclear and mtDNA markers in some individuals unambiguously points towards a past introgression event. Our results highlight the importance of combining different molecular markers for an accurate interpretation of genetic data.  相似文献   

19.
A long‐standing goal of evolutionary biology is to understand how paleoclimatic and geological events shape the geographical distribution and genetic structure within and among species. Using a diverse set of markers (cuticular hydrocarbons, mitochondrial and nuclear gene sequences, microsatellite loci), we studied Reticulitermes grassei and R. banyulensis, two closely related termite species in southwestern Europe. We sought to clarify the current genetic structure of populations that formed following postglacial dispersal from refugia in southern Spain and characterize the gene flow between the two lineages over the last several million years. Each marker type separately provided a fragmented picture of the evolutionary history at different timescales. Chemical analyses of cuticular hydrocarbons and phylogenetic analyses of mitochondrial and nuclear genes showed clear separation between the species, suggesting they diverged following vicariance events in the Late Miocene. However, the presence of intermediate chemical profiles and mtDNA introgression in some Spanish colonies suggests ongoing gene flow. The current genetic structure of Iberian populations is consistent with alternating isolation and dispersal events during Quaternary glacial periods. Analyses of population genetic structure revealed postglacial colonization routes from southern Spain to France, where populations underwent strong genetic bottlenecks after traversing the Pyrenees resulting in parapatric speciation.  相似文献   

20.
Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses show no evidence for genetic differentiation among populations (mtDNA control region sequences ΦST = -0.008; microsatellite loci FST = 0.003). A lack of evidence for regional or localized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes, reveals a pattern of high gene flow in P. ornatus throughout the South-East Asian Archipelago. This lack of genetic structure may be due to the oceanography-driven connectivity of the pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of genetic structure of P. ornatus population in the South-East Asian archipelago has important implications for the sustainable management of this lobster in that the species within the region needs to be managed as one genetic stock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号