首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.  相似文献   

2.
Climate change may influence the relationship between arctic plants and their symbiotic mycorrhizal fungi. The benefit of the symbiosis for the host plant affects vegetation succession and may be a key parameter in predicting vegetation responses to warming. We investigated the mycorrhizal benefit in the low arctic perennial herbs Potentilla crantzii and Ranunculus acris in symbiosis with the arbuscular mycorrhizal fungus Glomus claroideum. Temperature response in the mycorrhiza-mediated acquisition of nitrogen (N) and phosphorus (P), growth, and photosynthetic nutrient-use efficiency were determined. Near the average natural soil temperature (12°C), mycorrhiza did not improve plant nutrient capture but significantly enhanced plant P capture at 17°C. Photosynthetic nitrogen-use efficiency was higher at 17°C than at 12°C and was further increased by mycorrhiza at 17°C. Photosynthetic phosphorus-use efficiency was not affected by temperature or mycorrhiza. Increasing the growing temperature by 5°C increased the relative shoot growth rate by 15%. Mycorrhizal symbiosis did not enhance plant growth rate, but the plants gained between 20% and 90% more mycorrhiza-mediated P when grown at higher temperature. The results suggest that these low arctic species have good potential to respond positively to increasing temperatures.  相似文献   

3.
The foraging success of predators depends on how their consumption of prey is affected by prey density under different environmental settings. Here, we measured prey capture rates of drift-feeding juvenile brown trout and European grayling at different prey densities in an artificial stream channel at 5 and 11?°C. Capture rates were lower at 5 than at 11?°C, and the difference was most pronounced at high prey densities. At high prey densities, we also observed that European grayling had higher capture rates than brown trout. Type III functional response curves, i.e. sigmoidal relationships between capture rates and prey densities, fitted the data better than type I (linear) and II (hyperbolic) curves for all four combinations of temperatures and species. These results may explain the dominance of grayling in stream habitats with low water velocities and results such as these may be of use when developing foraging-based food web models of lotic ecosystems that include drift-feeding salmonids.  相似文献   

4.
5.
Xylotrechus arvicola Olivier (Coleoptera: Cerambycidae) has become a new expanding pest in grape (Vitis spp.) crops. To better improve control tactics, the consequences of 11 constant (12, 15, 18, 21, 24, 27, 30, 32, 34, 35 and 36°C) and nine variable temperatures (with equal mean temperatures at each of the nine constant rates ranging from 15 to 35°C) on survival and embryonic development were studied. The eggs were able to complete development at constant temperatures between 15 and 35°C, with mortality rates at the extremes of the range of two and 81.5%, respectively. Using variable temperatures a mortality rate of 38.9% at a mean temperature of 15°C and 99% at 35°C was observed. The range of time for embryonic development was 29.5 d at 15°C to 6 d at 32°C at constant temperatures, and from 29.6 d at 15°C to 7.2 d at 32°C at variable temperatures. The goodness-of-fit of different development models was evaluated for the relationship between the development rate and temperature. The models that gave the best fit were the Logan type III for constant temperatures and the Brière for variable temperatures. Optimum temperatures were estimated to be from 31.7 to 32.9°C. The models that best described embryo development under natural field conditions were the Logan type III model for constant temperatures (98.7% adjustment) and the Lactin model for variable temperatures (99.2% adjustment). Nonlinear models predicted faster development at constant temperatures and slower development at variable ones when compared with real field development, whereas the linear model always predicted faster development than what actually took place.  相似文献   

6.
Temperature plays an important role in effective management of the alfalfa leafcutting bee [Megachile rotundata (F.); Megachilidae], the major commercial pollinator of seed alfalfa [Medicago sativa (L.); Fabaceae] in North America. To improve our understanding of threshold and optimum rearing temperatures of M. rotundata, we examined the effect of temperature on postwintering development by using a greater number of temperature treatments than applied in previous studies (19 versus eight or fewer) and analytical tools formulated to model nonlinear relationships between temperature and insect development rates. We also tested the hypothesis that rearing temperature influences adult body lipid content at emergence, which could affect adult survival, establishment and performance as a pollinator, and reproductive success. We found that the Lactin-2 and Briere-2 models provided the best fits to data and gave reasonable estimates of lower (16-18°C) and upper (36-39°C) developmental thresholds and optimum (33-34°C) rearing temperatures for maximizing development rate. Bees successfully emerged over a broad range of temperatures (22-35°C), but variation in development rate among individuals reared at the same temperature was lowest at 31-33°C. The optimum rearing temperature to maximize the proportion of body lipids in adults was 27-29°C. Our results are discussed in relation to previous findings and speak to the difficulties in designing practical rearing guidelines that simultaneously maximize development rate, survival, and adult condition, while synchronizing adult emergence with alfalfa bloom.  相似文献   

7.
Walking speeds were calculated for nine clones of the peach potato aphid Myzus persicae collected from three countries along a latitudinal cline of its European distribution from Sweden to Spain (Sweden, UK and Spain), and the effects of collection origin and intra and intergenerational acclimation were investigated. Walking speeds declined with decreasing temperature, with maximum performance at temperatures closest to acclimation temperature (fastest median walking speed of 5.8 cm min(-1) was recorded for clone UK 3, collected from the UK, at 25°C after acclimating to 25°C for one generation). Following acclimation at both 20°C and 25°C, walking ceased (as indicated by median walking speeds of 0.0 cm min(-1)) at temperatures as high as 7.5°C and 12.5°C. However, acclimation at 10°C enabled mobility to occur to temperatures as low as 0°C. There was no relationship between mobility and latitude of collection, suggesting that large scale mixing of aphids may occur across Europe. However, clonal variation was suggested, with clone UK 3 outperforming the majority of other clones across all temperatures at which mobility was maintained following acclimation at 10°C for one and three generations and at 25°C for one generation. The Scandinavian clones consistently outperformed their temperate and Mediterranean counterparts at the majority of temperatures following acclimation for three generations at 25°C.  相似文献   

8.
Terpenoids include structurally diverse antibiotics, flavorings, and fragrances. Engineering terpene synthases for control over the synthesis of such compounds represents a long sought goal. We report computational design, selections, and assays of a thermostable mutant of tobacco 5-epi-aristolochene synthase (TEAS) for the catalysis of carbocation cyclization reactions at elevated temperatures. Selection for thermostability included proteolytic digestion followed by capture of intact proteins. Unlike the wild-type enzyme, the mutant TEAS retains enzymatic activity at 65°C. The thermostable terpene synthase variant denatures above 80°C, approximately twice the temperature of the wild-type enzyme.  相似文献   

9.
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).  相似文献   

10.
The time-dependent diffusion and mechanical properties of gelatin in solution, in the gel state, and during the sol/gel transition were determined using fluorescence recovery after photobleaching (FRAP) and rheology. The parameters in the experimental design were 2% w/w and 5% w/w gelatin concentration; 15, 20, and 25 °C end quench temperatures; and Na(2)-fluorescein, 10 kDa FITC-dextran, and 500 kDa FITC-dextran as diffusion probes. The samples were monitored in solution at 60 °C, during quenching, for 75 min at end quench temperatures and after 1, 7, and 14 days of storage at the end quench temperature. The effect of temperature on the probe diffusion was normalized by determining the free diffusion of the probes in pure water for the different temperatures. The results gained by comparing FRAP and rheology showed that FRAP is able to capture structural changes in the gelatin before gelation occurs, which was interpreted as a formation of transient networks. This was clearly seen for 2% w/w gelatin and 20 and 25 °C end quench temperatures. The structural changes during sol/gel transition are detected only by the larger probes, giving information about the typical length scales in the gelatin structure. The normalized diffusion rate increased after 7 and 14 days of storage. This increase was most pronounced for fluorescein but was also seen for the larger probes.  相似文献   

11.
The effect of constant temperatures on the development time from first instar to adult emergence was studied in Culex eduardoi Casal & García reared at 7, 10, 15, 20, 25, 30 or 33°C. Data were adjusted to the linear degree-day model and the nonlinear Briére model. According to the linear model, the development time was inversely related to the rearing temperatures between 7°C and 25°C. Maximum mortality (100%) was recorded at temperatures > 30°C. According to the linear model, the development threshold temperature and thermal constant were 5.7°C and 188.8 degree days, respectively. The lower and upper threshold temperatures and the optimum temperature for the nonlinear model were -2.3, 30.0 and 28.1°C, respectively.  相似文献   

12.
Air temperatures have risen over the past 50 yr along the Antarctic Peninsula, and it is unclear what impact this is having on Antarctic plants. We examined the growth response of the Antarctic vascular plants Colobanthus quitensis (Caryophyllaceae) and Deschampsia antarctica (Poaceae) to temperature and also assessed their ability for thermal acclimation, in terms of whole-canopy net photosynthesis (P(n)) and dark respiration (R(d)), by growing plants for 90 d under three contrasting temperature regimes: 7°C day/7°C night, 12°C day/7°C night, and 20°C day/7°C night (18 h/6 h). These daytime temperatures represent suboptimal (7°C), near-optimal (12°C), and supraoptimal (20°C) temperatures for P(n) based on field measurements at the collection site near Palmer Station along the west coast of the Antarctic Peninsula. Plants of both species grown at a daytime temperature of 20°C had greater RGR (relative growth rate) and produced 2.2-3.3 times as much total biomass as plants grown at daytime temperatures of 12° or 7°C. Plants grown at 20°C also produced 2.0-4.1 times as many leaves, 3.4-5.5 times as much total leaf area, and had 1.5-1.6 times the LAR (leaf area ratio; leaf area:total biomass) and 1.1-1.4 times the LMR (leaf mass ratio; leaf mass:total biomass) of plants grown at 12° or 7°C. Greater RGR and biomass production at 20°C appeared primarily due to greater biomass allocation to leaf production in these plants. Rates of P(n) (leaf-area basis), when measured at their respective daytime growth temperatures, were highest in plants grown at 12°C, and rates of plants grown at 20°C were only 58 (C. quitensis) or 64% (D. antarctica) of the rates in plants grown at 12°C. Thus, lower P(n) per leaf area in plants grown at 20°C was more than offset by much greater leaf-area production. Rates of whole-canopy P(n) (per plant), when measured at their respective daytime growth temperatures, were highest in plants grown at 20°C, and appeared well correlated with differences in RGR and total biomass among treatments. Colobanthus quitensis exhibited only a slight ability for relative acclimation of P(n) (leaf-area basis) as the optimal temperature for P(n) increased from 8.4° to 10.3° to 11.5°C as daytime growth temperatures increased from 7° to 12° to 20°C. There was no evidence for relative acclimation of P(n) in D. antarctica, as plants grown at all three temperature regimes had a similar optimal temperature (10°C) for P(n). There was no evidence for absolute acclimation of P(n) in either species, as rates of P(n) in plants grown at a daytime temperature of 12°C were higher than those of plants grown at daytime temperatures of 7° or 20°C, when measured at their respective growth temperatures. The poor ability for photosynthetic acclimation in these species may be associated with the relatively stable maritime temperature regime during the growing season along the Peninsula. In contrast to P(n), both species exhibited full acclimation of R(d), and rates of R(d) on a leaf-area basis were similar among treatments when measured at their respective daytime growth temperature. Our results suggest that in the absence of interspecific competition, continued warming along the Peninsula will lead to improved vegetative growth of these species due to (1) greater biomass allocation to leaf-area production (as opposed to improved rates of P(n) per leaf area) and (2) their ability to acclimate R(d), such that respiratory losses per leaf area do not increase under higher temperature regimes.  相似文献   

13.
We asked whether climate change might affect the geographic distributions of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). We tested the effects of temperature, diet and the presence of congeneric species on the performance of immature stages of these two aedine species in the laboratory. Mosquitoes in three different species-density combinations were reared at four constant temperatures (20 °C, 25 °C, 30 °C, 35 °C) on low- or high-level diets. Of the four temperatures tested, mortality increased only at 35 °C in both species. Mortality was higher on the high-level diet than on the low-level diet at 35 °C, but not at other temperatures. The presence of congeneric species had a significant positive effect on mortality in Ae. albopictus, but not in Ae. aegypti. Both species developed more quickly at higher temperatures within the range of 20-30 °C; development was not enhanced at 35 °C. Population growth of Ae. albopictus was more stable, regardless of diet and temperature; that of Ae. aegypti varied more according to these two factors. These species-specific attributes may help to explain the latitudinal distribution of the mosquitoes and degree of species dominance where they are sympatric.  相似文献   

14.
Developmental times and survivorship of tarnished plant bug nymphs, Lygus lineolaris (Palisot de Beauvois), and longevity and reproduction of adult tarnished plant bug adults reared on green beans were studied at multiple constant temperatures. The developmental time for each life stage and the total time from egg to adult decreased with increasing temperature. Eggs required the longest time to develop followed by fifth instars and then first-instars. Total developmental time from egg to adult was shortest at 32°C, requiring 18.0 ± 0.3 d and 416.7 ± 31.3 DD above 7.9°C, the estimated minimum temperature for development from egg to adult. Sex did not affect total developmental times and did not affect median survival time. Adults lived significantly fewer days at high temperatures (30-32°C: 17-19 d) compared with temperatures below 30°C (range: 24.5-39.4 d) and the number of eggs laid per day increased from ≈ 4 at 18°C to a maximum of 9.5 eggs per day at 30°C. Total egg production over the lifetime of female tarnished plant bugs increased with temperature reaching a maximum of 175 eggs on average at 27°C, total egg production declined at temperatures above 27°C (30°C: 110.8, 32°C: 77.3 eggs per female). The highest net reproductive rate 74.5 (R(0)) was obtained from insects maintained at 27°C. The intrinsic rate of natural increase (r(m)) increased linearly with temperature to a maximum value of 0.1852 at 30°C, and then decreased at 32°C. Generation and doubling times of the population were shortest at 30°C, 21.0 and 3.7 d, respectively.  相似文献   

15.
The aim of this study was to determine the survival of Campylobacter jejuni in chicken meat samples at frozen temperatures and given length of incubation and to determine the impact of aerobic bacteria on the survival of C. jejuni. The chicken meat samples were inoculated with C. jejuni NCTC 11351 suspensions and stored in bags at temperatures of -20°C and -70°C. The mean value of C. jejuni from meat samples decreased from 7.52 log10 CFU/g after 30 minutes of incubation at ambient temperature, to 3.87 log10 CFU/g on the eighth week of incubation at -20°C, and to 3.78 log10 CFU/g at incubation at -70°C after the same incubation period. Both freezing temperatures, -20°C and -70°C, decreased the number of campylobacters. The presence of aerobic mesophilic bacteria did not influence the survival of C. jejuni in chicken meet samples. Keeping poultry meat at freezing temperatures is important for the reduction of C. jejuni, which has a strong influence on the prevention of occurrence of campylobacteriosis in humans.  相似文献   

16.
Anthropogenic disturbances affect temperature in river systems. Temperature potentially affects life histories of macroinvertebrates and alters behavior and biological functions. Temperature preferences and tolerance ranges for key taxa are therefore critical for understanding impacts of human-induced changes to water temperatures on river ecosystems. The objective of this study was to examine the effect of water temperature on growth rate and behavior of Epeorus albertae (McDunnough) nymphs. Nymphs were collected from the Umatilla River in eastern Oregon, and exposed to temperatures of 18, 22, and 28 °C. Nymphs held at 28 °C exhibited increased growth rates compared with individuals held at 18 and 22 °C. However, at 28 °C the accumulation of nymphal tissues was not consistent with that of nymphs held in lower temperatures; ratios of head capsule width to total body length were significantly lower in individuals at 28 °C compared with those held at the lower temperatures. This indicates that the nymphs held at the high temperature had longer total body length relative to the developmental stage, represented by head capsule width, when compared with insects in cooler temperatures. To examine the effect of water temperature on behavior, active drift of mayflies was examined in experimental chambers held at 12, 18, 22, and 28 °C. The number of drifting insects observed was significantly higher at 28 °C compared with 22, 18, and 12 °C. These results indicate that temperature is a factor influencing growth and behavior of E. albertae and is likely to lead to limitations in habitat use of this mayfly.  相似文献   

17.
Upon capture in a bee ball (i.e., a dense cluster of Japanese honeybees forms in response to a predatory attack), an Asian giant hornet causes a rapid increase in temperature, carbon dioxide (CO?), and humidity. Within five min after capture, the temperature reaches 46°C, and the CO? concentration reaches 4%. Relative humidity gradually rises to 90% or above in 3 to 4 min. The hornet dies within 10 min of its capture in the bee ball. To investigate the effect of temperature, CO?, and humidity on hornet mortality, we determined the lethal temperature of hornets exposed for 10 min to different humidity and CO?/O? (oxygen) levels. In expiratory air (3.7% CO?), the lethal temperature was ≥ 2° lower than that in normal air. The four hornet species used in this experiment died at 44-46°C under these conditions. Hornet death at low temperatures results from an increase in CO? level in bee balls. Japanese honeybees generate heat by intense respiration, as an overwintering strategy, which produces a high CO? and humidity environment and maintains a tighter bee ball. European honeybees are usually killed in the habitat of hornets. In contrast, Japanese honeybees kill hornets without sacrificing themselves by using heat and respiration by-products and forming tight bee balls.  相似文献   

18.
The chaperonin GroEL binds to non-native substrate proteins via hydrophobic interactions, preventing their aggregation, which is minimized at low temperatures. In the present study, we investigated the refolding of urea-denatured rhodanese at low temperatures, in the presence of ox-GroEL (oxidized GroEL), which contains increased exposed hydrophobic surfaces and retains its ability to hydrolyse ATP. We found that ox-GroEL could efficiently bind the urea-unfolded rhodanese at 4°C, without requiring excess amount of chaperonin relative to normal GroEL (i.e. non-oxidized). The release/reactivation of rhodanese from GroEL was minimal at 4°C, but was found to be optimal between 22 and 37°C. It was found that the loss of the ATPase activity of ox-GroEL at 4°C prevented the release of rhodanese from the GroEL-rhodanese complex. Thus ox-GroEL has the potential to efficiently trap recombinant or non-native proteins at 4°C and release them at higher temperatures under appropriate conditions.  相似文献   

19.
The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses.  相似文献   

20.
Field measurements of photosynthesis of Vitis vinifera cv. Semillon leaves in relation to a hot climate, and responses to photon flux densities (PFDs) and internal CO(2) concentrations (c(i) ) at leaf temperatures from 20 to 40 °C were undertaken. Average rates of photosynthesis measured in situ decreased with increasing temperature and were 60% inhibited at 45 °C compared with 25 °C. This reduction in photosynthesis was attributed to 15-30% stomatal closure. Light response curves at different temperatures revealed light-saturated photosynthesis optimal at 30 °C but also PFDs saturating photosynthesis increased from 550 to 1200 μmol (photons) m(-2)s(-1) as temperatures increased. Photosynthesis under saturating CO(2) concentrations was optimal at 36 °C while maximum rates of ribulose 1,5-bisphosphate (RuBP) carboxylation (V(cmax)) and potential maximum electron transport rates (J(max)) were also optimal at 39 and 36 °C, respectively. Furthermore, the high temperature-induced reduction in photosynthesis at ambient CO(2) was largely eliminated. The chloroplast CO(2) concentration at the transition from RuBP regeneration to RuBP carboxylation-limited assimilation increased steeply with an increase in leaf temperature. Semillon assimilation in situ was limited by RuBP regeneration below 30 °C and above limited by RuBP carboxylation, suggesting high temperatures are detrimental to carbon fixation in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号