首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To identify where gibberellin (GA) biosynthesis and signaling occur, we analyzed the expression of four genes involved in GA biosynthesis, GA 20-oxidase1 and GA 20-oxidase2 (OsGA20ox1 and OsGA20ox2), and GA 3-oxidase1 and GA 3-oxidase2 (OsGA3ox1 and OsGA3ox2), and two genes involved in GA signaling, namely, the gene encoding the alpha-subunit of the heterotrimeric GTP-binding protein (Galpha), and SLENDER RICE1 (SLR1), which encodes a repressor of GA signaling. At the vegetative stage, the expression of OsGA20ox2, OsGA3ox2, Galpha, and SLR1 was observed in rapidly elongating or dividing organs and tissues, whereas the expression of OsGA20ox1 or OsGA3ox1 could not be detected. At the inflorescence or floral stage, the expression of OsGA20ox2, OsGA3ox2, Galpha, and SLR1 was also observed in the shoot meristems and stamen primordia. The overlapping expression of genes for GA biosynthesis and signaling indicates that in these tissues and organs, active GA biosynthesis occurs at the same site as does GA signaling. In contrast, no GA-biosynthesis genes were expressed in the aleurone cells of the endosperm; however, the two GA-signaling genes were actively expressed, indicating that the aleurone does not produce bioactive GAs, but can perceive GAs. The expression of OsGA20ox1 and OsGA3ox1 was observed only in the epithelium of the embryo and the tapetum of the anther. Based on the specific expression pattern of OsGA20ox1 and OsGA3ox1 in these tissues, we discuss the unique nature of the epithelium and the tapetum in terms of GA biosynthesis. The epithelium and the tapetum are considered to be an important source of bioactive GAs for aleurone and other organs of the flower, respectively.  相似文献   

3.
Gibberellins are phytohormones that regulate growth and development of plants. Gibberellin homeostasis is maintained by feedback regulation of gibberellin metabolism genes. To understand this regulation, we manipulated the gibberellin pathway in tobacco and studied its effects on the morphological phenotype, gibberellin levels and the expression of endogenous gibberellin metabolism genes. The overexpression of a gibberellin 3-oxidase (biosynthesis gene) in tobacco (3ox-OE) induced slight variations in phenotype and active GA(1) levels, but we also found an increase in GA(8) levels (GA(1) inactivation product) and a conspicuous induction of gibberellin 2-oxidases (catabolism genes; NtGA2ox3 and -5), suggesting an important role for these particular genes in the control of gibberellin homeostasis. The effect of simultaneous overexpression of two biosynthesis genes, a gibberellin 3-oxidase and a gibberellin 20-oxidase (20ox/3ox-OE), on phenotype and gibberellin content suggests that gibberellin 3-oxidases are non-limiting enzymes in tobacco, even in a 20ox-OE background. Moreover, the expression analysis of gibberellin metabolism genes in transgenic plants (3ox-OE, 20ox-OE and hybrid 3ox/20ox-OE), and in response to application of different GA(1) concentrations, showed genes with different gibberellin sensitivity. Gibberellin biosynthesis genes (NtGA20ox1 and NtGA3ox1) are negatively feedback regulated mainly by high gibberellin levels. In contrast, gibberellin catabolism genes which are subject to positive feedback regulation are sensitive to high (NtGA2ox1) or to low (NtGA2ox3 and -5) gibberellin concentrations. These two last GA2ox genes seem to play a predominant role in gibberellin homeostasis under mild gibberellin variations, but not under large gibberellin changes, where the biosynthesis genes GA20ox and GA3ox may be more important.  相似文献   

4.
5.
Phytoplasmas are phloem‐inhabiting, cell wall‐less bacteria that cause numerous plant diseases worldwide. Plants infected by phytoplasmas often exhibit various symptoms indicative of hormonal imbalance. In this study, we investigated the effects of potato purple top (PPT) phytoplasma infection on gibberellin homeostasis in tomato plants. We found that PPT phytoplasma infection caused a significant reduction in endogenous levels of gibberellic acid (GA3). The decrease in GA3 content in diseased plants was correlated with down regulation of genes responsible for biosynthesis of bioactive GAs ( GA20ox1 and GA3ox1) and genes involved in formation of GA precursors [geranyl diphosphate synthase (GPS) and copalyldiphosphate synthase (CPS)]. Exogenous application of GA3 at 200 µmol L?1 was able to restore the GA content in infected plants to levels comparable to those in healthy controls, and to attenuate the characteristic ‘big bud’ symptoms induced by the phytoplasma. The interesting observation that PPT phytoplasma‐infected plants had prolonged low expression of key GA biosynthesis genes GA20ox1 and GA3ox1 under GA deficiency conditions led us to hypothesise that there was a diminished sensitivity of the GA metabolism feedback regulation, especially GA biosynthesis negative feedback regulation, in those affected plants, and such diminished sensitization in early stages of infection may represent a central element of the phytoplasma‐induced disruption of GA homeostasis and pathogenesis.  相似文献   

6.
Insight into the role of sugars in bud burst under light in the rose   总被引:1,自引:0,他引:1  
Bud burst is a decisive process in plant architecture that requires light in Rosa sp. This light effect was correlated with stimulation of sugar transport and metabolism in favor of bud outgrowth. We investigated whether sugars could act as signaling entities in the light-mediated regulation of vacuolar invertases and bud burst. Full-length cDNAs encoding two vacuolar invertases (RhVI1 and RhVI2) were isolated from buds. Unlike RhVI2, RhVI1 was preferentially expressed in bursting buds, and was up-regulated in buds of beheaded plants exposed to light. To assess the importance of sugars in this process, the expression of RhVI1 and RhVI2 and the total vacuolar invertase activity were further characterized in buds cultured in vitro on 100 mM sucrose or mannitol under light or in darkness for 48 h. Unlike mannitol, sucrose promoted the stimulatory effect of light on both RhVI1 expression and vacuolar invertase activity. This up-regulation of RhVI1 was rapid (after 6 h incubation) and was induced by as little as 10 mM sucrose or fructose. No effect of glucose was found. Interestingly, both 30 mM palatinose (a non-metabolizable sucrose analog) and 5 mM psicose (a non-metabolizable fructose analog) promoted the light-induced expression of RhVI1 and total vacuolar invertase activity. Sucrose, fructose, palatinose and psicose all promoted bursting of in vitro cultured buds under light. These findings indicate that soluble sugars contribute to the light effect on bud burst and vacuolar invertases, and can function as signaling entities.  相似文献   

7.
Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome-interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA- and PHYB-dependent germination assays. Consistent with these gene-expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far-red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.  相似文献   

8.
赤霉素(Gibberellin)是一类非常重要的植物激素,在高等植物生命活动的整个周期都起着重要的调控作用。从毛竹Phyllostachys edulis基因组中共鉴定出23个赤霉素途径基因,包括赤霉素生物合成相关的8个GA20ox和1个GA3ox基因、降解相关的8个GA2ox基因、参与赤霉素感知的2个GID1基因以及信号转导的2个GID2基因和2个DELLA基因。拟南芥、水稻和毛竹的系统进化树和保守基序分析显示赤霉素的合成代谢与信号转导在这些物种中是高度保守的。利用外源赤霉素处理毛竹种子和幼苗,发现赤霉素能显著提高种子的萌发率和幼苗的茎秆伸长,并且有着最佳的作用浓度。在GA3处理后,毛竹体内赤霉素生物合成基因GA20ox和GA3ox表达量均下调而降解活性赤霉素的GA2ox基因表达量上调;赤霉素受体GID1和正调控基因GID2的转录水平显著提高而负调控基因DELLA的表达受到抑制。这些基因在竹笋茎秆的不同形态学位置表达差异明显,大部分赤霉素生物合成与降解的相关基因GA20ox、GA3ox和GA2ox以及赤霉素受体GID1和正调控基因GID2都在竹笋的形态学上端大量表达,而赤霉素信号转导的阻遏基因DELLA在笋体形态学底端大量积累而顶端基本不表达。  相似文献   

9.
Soybean is an important oilseed crop grown globally. However, two examples of environmental stresses that drastically regulate soybean growth are low light and high-temperature. Emerging evidence suggests a possible interconnection between these two environmental stimuli. Low light and high-temperature as individual factors have been reported to regulate plant hypocotyl elongation. However, their interactive signal effect on soybean growth and development remains largely unclear. Here, we report that gibberellins (GAs) and auxin are required for soybean hypocotyl elongation under low light and high-temperature interaction. Our analysis indicated that low light and high-temperature interaction enhanced the regulation of soybean hypocotyl elongation and that the endogenous GA3, GA7, indole-3-acetic acid (IAA), and indole-3-pyruvate (IPA) contents significantly increased. Again, analysis of the effect of exogenous phytohormones and biosynthesis inhibitors treatments showed that exogenous GA, IAA, and paclobutrazol (PAC), 2, 3, 5,-triiodobenzoic acid (TIBA) treatments significantly regulated soybean seedlings growth under low light and high-temperature interaction. Further qRT-PCR analysis showed that the expression level of GA biosynthesis pathway genes (GmGA3ox1, GmGA3ox2 and GmGA3) and auxin biosynthesis pathway genes (GmYUCCA3, GmYUCCA5 and GmYUCCA7) significantly increased under (i) low light and high-temperature interaction and (ii) exogenous GA and IAA treatments. Altogether, these observations support the hypothesis that gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature stress interaction.  相似文献   

10.
11.
White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare 'Betzes'). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8'OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8'OH1 in dormancy release. Reduced HvABA8'OH1 expression in transgenic HvABA8'OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.  相似文献   

12.
13.
Optimal plant growth performance requires that the presence and action of growth signals, such as gibberellins (GAs), are coordinated with the availability of photo-assimilates. Here, we studied the links between GA biosynthesis and carbon availability, and the subsequent effects on growth. We established that carbon availability, light and dark cues, and the circadian clock ensure the timing and magnitude of GA biosynthesis and that disruption of these factors results in reduced GA levels and expression of downstream genes. Carbon-dependent nighttime induction of gibberellin 3-beta-dioxygenase 1 (GA3ox1) was severely hampered when preceded by reduced daytime light availability, leading specifically to reduced bioactive GA4 levels, and coinciding with a decline in leaf expansion rate during the night. We attributed this decline in leaf expansion mostly to reduced photo-assimilates. However, plants in which GA limitation was alleviated had significantly improved leaf expansion, demonstrating the relevance of GAs in growth control under varying carbon availability. Carbon-dependent expression of upstream GA biosynthesis genes (Kaurene synthase and gibberellin 20 oxidase 1, GA20ox1) was not translated into metabolite changes within this short timeframe. We propose a model in which the extent of nighttime biosynthesis of bioactive GA4 by GA3ox1 is determined by nighttime consumption of starch reserves, thus providing day-to-day adjustments of GA responses.

GA-sugar matching occurs specifically at night and determines day to day adjustment of GA levels and subsequent growth.  相似文献   

14.
Zhang Y  Zhu Y  Peng Y  Yan D  Li Q  Wang J  Wang L  He Z 《Cell research》2008,18(3):412-421
The rice Eui (ELONGATED UPPERMOST INTERNODE) gene encodes a cytochrome P450 monooxygenase that deactivates bioactive gibberellins (GAs). In this study, we investigated controlled expression of the Eui gene and its role in plant development. We found that Eui was differentially induced by exogenous GAs and that the Eui promoter had the highest activity in the vascular bundles. The eui mutant was defective in starch granule development in root caps and Eui overexpression enhanced starch granule generation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Experiments using embryoless half-seeds revealed that RAmy1A and GAmyb were highly upregulated in eui aleurone cells in the absence of exogenous GA. In addition, the GA biosynthesis genes GA3ox1 and GA20ox2 were downregulated and GA2ox1 was upregulated in eui seedlings. These results indicate that EUI is involved in GA homeostasis, not only in the internodes at the heading stage, but also in the seedling stage, roots and seeds. Disturbing GA homeostasis affected the expression of the GA signaling genes GID1 (GIBBERELLIN INSENSITIVE DWARF 1), GID2 and SLR1. Transgenic RNA interference of the Eui gene effectively increased plant height and improved heading performance. By contrast, the ectopic expression of Eui under the promoters of the rice GA biosynthesis genes GA3ox2 and GA20ox2 significantly reduced plant height. These results demonstrate that a slight increase in Eui expression could dramatically change rice morphology, indicating the practical application of the Eui gene in rice molecular breeding for a high yield potential.  相似文献   

15.
In recent years, several genetic components of vegetative axillary bud development have been defined in both monocots and eudicots, but our understanding of environmental inputs on branching remains limited. Recent work in sorghum ( Sorghum bicolor ) has revealed a role for phytochrome B (phyB) in the control of axillary bud outgrowth through the regulation of Teosinte Branched1 ( TB1 ) gene. In maize ( Zea mays ), TB1 is a dosage-dependent inhibitor of axillary meristem progression, and the expression level of TB1 is a sensitive measure of axillary branch development. To further explore the mechanistic basis of branching, the expression of branching and cell cycle-related genes were examined in phyB-1 and wild-type sorghum axillary buds following treatment with low-red : far-red light and defoliation. Although defoliation inhibited bud outgrowth, it did not influence the expression of sorghum TB1 ( SbTB1 ), whereas changes in SbMAX2 expression, a homolog of the Arabidopsis ( Arabidopsis thaliana ) branching inhibitor MAX2 , were associated with the regulation of bud outgrowth by both light and defoliation. The expression of several cell cycle-related genes was also decreased dramatically in buds repressed by defoliation, but not by phyB deficiency. The data suggest that there are at least two distinct molecular pathways that respond to light and endogenous signals to regulate axillary bud outgrowth.  相似文献   

16.
The physiological basis of thermoperiodic stem elongation is as yet poorly understood. Thermoperiodic control of gibberellin (GA) metabolism has been suggested as an underlying mechanism. We have investigated the influence of different day and night temperature combinations on GA levels, and diurnal steady-state expression of genes involved in GA biosynthesis (LS, LH, NA, PSGA20ox1, and PsGA3ox1) and GA deactivation (PsGA2ox1 and PsGA2ox2), and related this to diurnal stem elongation in pea (Pisum sativum L. cv Torsdag). The plants were grown under a 12-h light period with an average temperature of 17 degrees C. A day temperature/night temperature combination of 13 degrees C/21 degrees C reduced stem elongation after 12 d by 30% as compared to 21 degrees C/13 degrees C. This was correlated with a 55% reduction of GA1. Although plant height correlated with GA1 content, there was no correlation between diurnal growth rhythms and GA1 content. NA, PsGA20ox1, and PsGA2ox2 showed diurnal rhythms of expression. PsGA2ox2 was up-regulated in 13 degrees C/21 degrees C (compared to 21 degrees C/13 degrees C), at certain time points, by up to 19-fold. Relative to PsGA2ox2, the expression of LS, LH, NA, PSGA20ox1, PsGA3ox1, and PsGA2ox1 was not or only slightly affected by the different temperature treatments. The sln mutant having a nonfunctional PsGA2ox1 gene product showed the same relative stem elongation response to temperature as the wild type. This supports the importance of PsGA2ox2 in mediating thermoperiodic stem elongation responses in pea. We present evidence for an important role of GA catabolism in thermoperiodic effect on stem elongation and conclude that PsGA2ox2 is the main mediator of this effect in pea.  相似文献   

17.
18.
We recently isolated two genes (OsGA3ox1 and OsGA3ox2) from rice (Oryza sativa) encoding 3beta-hydroxylase, which catalyzes the final step of active gibberellin (GA) biosynthesis (H. Itoh, M. Ueguchi-Tanaka, N. Sentoku, H. Kitano, M. Matsuoka, M. Kobayashi [2001] Proc Natl Acad Sci USA 98: 8909-8914). Using these cloned cDNAs, we analyzed the temporal and spatial expression patterns of the 3beta-hydroxylase genes and also an alpha-amylase gene (RAmy1A) during rice seed germination to investigate the relationship between GA biosynthesis and alpha-amylase expression. Northern-blot analyses revealed that RAmy1A expression in the embryo occurs before the induction of 3beta-hydroxylase expression, whereas in the endosperm, a high level of RAmy1A expression occurs 1 to 2 d after the peak of OsGA3ox2 expression and only in the absence of uniconazol. Based on the analysis of an OsGA3ox2 null mutant (d18-Akibare dwarf), we determined that 3beta-hydroxylase produced by OsGA3ox2 is important for the induction of RAmy1A expression and that the OsGA3ox1 product is not essential for alpha-amylase induction. The expression of OsGA3ox2 was localized to the shoot region and epithelium of the embryo, strongly suggesting that active GA biosynthesis occurs in these two regions. The synthesis of active GA in the epithelium is important for alpha-amylase expression in the endosperm, because an embryonic mutant defective in shoot formation, but which developed epithelium cells, induced alpha-amylase expression in the endosperm, whereas a mutant defective in epithelium development did not.  相似文献   

19.
In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.  相似文献   

20.
Gibberellin (GA) 20-oxidase catalyses consecutive steps late in GA biosynthesis in plants. In Arabidopsis, the enzyme is encoded by a gene family of at least three members (AtGA20ox1, AtGA20ox2 and AtGA20ox3) with differential patterns of expression. The genes are regulated by feedback from bioactive GAs, suggesting that the enzymes may be involved in regulating GA biosynthesis. To investigate this, we produced transgenic Arabidopsis expressing sense or antisense copies of each of the GA 20-oxidase cDNAs. Over-expression of any of the cDNAs gave rise to seedlings with elongated hypocotyls; the plants flowered earlier than controls in both long and short days and were 25% taller at maturity. GA analysis of the vegetative rosettes showed a two- to threefold increase in the level of GA4, indicating that GA 20-oxidase normally limits bioactive GA levels. Plants expressing antisense copies of AtGA20ox1 had short hypocotyls and reduced rates of stem elongation. This was reflected in reduced levels of GA4 in both rosettes and shoot tips. In short days, flowering was delayed and the reduction in the rate of stem elongation was greater. Antisense expression of AtGA20ox2 had no apparent effects in long days, but stem growth in one transgenic line grown in short days was reduced by 20%. Expression of antisense copies of AtGA20ox3 had no visible effect, except for one transgenic line that had short hypocotyls. These results demonstrate that GA levels and, hence, plant growth and development can be modified by manipulation of GA 20-oxidase expression in transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号