共查询到20条相似文献,搜索用时 0 毫秒
1.
Vattoly J. Majo Victoria Arango Norman R. Simpson Jaya Prabhakaran Suham A. Kassir Mark D. Underwood Mihran Bakalian Peter Canoll J. John Mann J.S. Dileep Kumar 《Bioorganic & medicinal chemistry letters》2013,23(14):4191-4194
Radiosynthesis and in vitro evaluation of [18F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([18F]BMS-754807 or [18F]1) a specific IGF-1R inhibitor was performed. [18F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [18F]TBAF in DMSO at 170 °C at high radiochemical purity and specific activity (1–2 Ci/μmol, N = 10). The proof of concept of IGF-IR imaging with [18F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [18F]1 can be a potential PET tracer for monitoring IGF-1R. 相似文献
2.
S. Nag R. Krasikova A.J. Airaksinen R. Arakawa M. Petukhovd B. Gulyas 《Bioorganic & medicinal chemistry letters》2019,29(16):2270-2274
Despite of various PET radioligands targeting the translocator protein TSPO 18-KDa are used for the investigations of neuroinflammatory conditions associated with neurological disorders, development of new TSPO radiotracers is still an active area of the researches with a major focus on the 18F-labelled radiotracers. Here, we report the radiochemical synthesis of [18F]vinpocetine, fluorinated analogue of previously reported TSPO radioligand, [11C]vinpocetine. Radiolabeling was achieved by [18F]fluoroethylation of apovincaminic acid with [18F]fluoroethyl bromide. [18F]vinpocetine was obtained in quantities >2.7 GBq in RCY of 13% (non–decay corrected), and molar activity >60 GBq/µmol within 95 min synthesis time. Preliminary PET studies in a cynomolgus monkey and metabolite studies by HPLC demonstrated similar results by [18F]vinpocetine as for [11C]vinpocetine, including high blood-brain barrier permeability, regional uptake pattern and fast washout from the NHP brain. These results demonstrate that [18F]fluorovinpocetine warrants further evaluation as an easier accessible alternative to [11C]vinpocetine. 相似文献
3.
Huang HL Yeh CN Chang KW Chen JT Lin KJ Chiang LW Jeng KC Wang WT Lim KH Chen CG Lin KI Huang YC Lin WJ Yen TC Yu CS 《Bioorganic & medicinal chemistry letters》2012,22(12):3998-4003
[(18)F]Flurobutyl ethacrynic amide ([(18)F]FBuEA) was prepared from the precursor tosylate N-Boc-N-[4-(toluenesulfonyloxy)butyl]ethacrynic amide with a radiochemical yield of 3%, a specific activity of 48 GBq/μmol and radiochemical purity of 98%. Chemical conjugation of [(18)F]FBuEA with glutathione (GSH) via a self-coupling reaction and enzymatic conjugation under catalysis of glutathiontransferase alpha (GST-α) and π provided about 41% yields of radiochemical conjugated product [(18)F]FBuEA-GSH, 85% and 5-16%, respectively. The catalytic selectivity of this tracer toward GST-alpha was addressed. Positron emission tomography (PET) imaging of [(18)F]FBuEA in normal rats showed that a homogeneous pattern of radioactivity was distributed in the liver, suggesting a catalytic role of GST. By contrast, PET images of [(18)F]FBuEA in rats with thioacetamide-induced cholangiocarcinoma displayed a heterogeneous pattern of radioactive accumulation with cold spots in tumor lesions. PET imaging with [(18)F]FBuEA could be used for early diagnosis of hepatic tumor with a low GST activity as well as liver function. 相似文献
4.
Jaya Prabhakaran Stephen L. Dewey Richard McClure Norman R. Simpson Mohammed N. Tantawy J. John Mann Wellington Pham J.S. Dileep Kumar 《Bioorganic & medicinal chemistry letters》2017,27(4):941-943
In vivo evaluation of [18F]BMS-754807 binding in mice and rats using microPET and biodistribution methods is described herein. The radioligand shows consistent binding characteristics, in vivo, in both species. Early time frames of the microPET images and time activity curves of brain indicate poor penetration of the tracer across the blood brain barrier (BBB) in both species. However, microPET experiments in mice and rats show high binding of the radioligand outside the brain to heart, pancreas and muscle, the organs known for higher expression of IGF1R/1R. Biodistribution analysis 2 h after injection of [18F]BMS-754807 in rats show negligible [18F]defluorination as reflected by the low bone uptake and clearance from blood. Overall, the data indicate that [18F]BMS-754807 can potentially be a radiotracer for the quantification of IGF1R/IR outside the brain using PET. 相似文献
5.
Aristeidis Chiotellis Adrienne Müller Karin Weyermann Dominique S. Leutwiler Roger Schibli Simon M. Ametamey Stefanie D. Krämer Linjing Mu 《Amino acids》2014,46(8):1947-1959
Amino acid transport is an attractive target for oncologic imaging. Despite a high demand of cancer cells for cationic amino acids, their potential as PET probes remains unexplored. Arginine, in particular, is involved in a number of biosynthetic pathways that significantly influence carcinogenesis and tumor biology. Cationic amino acids are transported by several cationic transport systems including, ATB0,+ (SLC6A14), which is upregulated in certain human cancers including cervical, colorectal and estrogen receptor-positive breast cancer. In this work, we report the synthesis and preliminary biological evaluation of a new cationic analog of the clinically used PET tumor imaging agent O-(2-[18F]fluroethyl)-l-tyrosine ([18F]FET), namely O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET). Reference compound and precursor were prepared by multi-step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [18F]fluorination in 16–20 % decay-corrected yields with radiochemical purity >99 %. The new tracer showed good stability in vitro and in vivo. Cell uptake assays demonstrated that FEMAET and [18F]FEMAET accumulate in prostate cancer (PC-3) and small cell lung cancer cells (NCI-H69), with an energy-dependent mechanism. Small animal PET imaging with NCI-H69 xenograft-bearing mice revealed good tumor visualization comparable to [18F]FET and low brain uptake, indicating negligible transport across the blood–brain barrier. In conclusion, the non-natural cationic amino acid PET probe [18F]FEMAET accumulates in cancer cells in vitro and in vivo with possible involvement of ATB0,+. 相似文献
6.
Limin Wang Wenchao Qu Brian Lieberman Karl Ploessl Hank F. Kung 《Bioorganic & medicinal chemistry letters》2010,20(12):3482-3485
Three new 18F labeled fluoroalkyl tyrosine derivatives, O-(2-[18F]fluoroethyl)-α-methyltyrosine (FEMT, [18F]2), O-(2-[18F]fluoroethyl)-2-l-azatyrosine (FEAT, [18F]3), O-(2-[18F]fluoroethyl)-l-tyrosineamide (FETA, [18F]4) have been synthesized and radiofluorinated with 5–34% decay-corrected yield. In vitro studies were carried out in U-138 MG human glioblastoma. Cellular uptake of new tracers was compared to clinically utilized imaging agent O-(2-[18F]fluoroethyl)-l-tyrosine (FET, [18F]1). The uptake of tracers followed the order of FET ([18F]1) > FEAT([18F]3) > FEMT ([18F]2) ≈ FETA ([18F]4). 相似文献
7.
Jaya Prabhakaran Vattoly J. Majo Matthew S. Milak Suham A. Kassir Mikael Palner Lyudmila Savenkova Pratap Mali Victoria Arango J. John Mann Ramin V. Parsey J.S. Dileep Kumar 《Bioorganic & medicinal chemistry letters》2010,20(12):3499-3501
Synthesis, in vitro and in vivo evaluation of [O-methyl-11C]dimethylamino-3(4-methoxyphenyl)-3H-pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-one (1), a potential imaging agent for mGluR1 receptors using PET are described. Synthesis of the corresponding desmethyl precursor 2 was achieved by demethylation of the methoxyphenyl compound 1 in 90% yield. Methylation using [11C]MeOTf in presence of NaOH afforded [11C]1 in 30% yield (EOS) with >99% chemical and radiochemical purities and with a specific activity of 3–5 Ci/μmol (n = 6). The total synthesis time was 30 min from EOB. The radiotracer selectively labeled mGluR1 receptors in slide-mounted sections of postmortem human brain containing cerebellum, hippocampus, prefrontal cortex and striatum as demonstrated by in vitro autoradiography using phosphor-imaging. PET studies in anesthetized baboon show that [11C]1 penetrates the BBB and accumulates in cerebellum, a region reported to have higher expression of mGluR1. These findings suggest [11C]1 is a promising PET radiotracer candidate for mGluR1. 相似文献
8.
《Bioorganic & medicinal chemistry letters》2014,24(7):1846-1850
Two novel small molecule gonadotropin-releasing hormone (GnRH) receptor antagonists (12 and 13) of the furamide-class were synthesized and evaluated in vitro for their receptor binding affinities for the rat GnRH receptor. Radiolabeling with no carrier added fluorine-18 of the appropriate precursors was investigated in a one-step reaction. Log P (Octanol/PBS pH 7.4) and serum stability of the compounds were investigated. The antagonists showed low nM affinity for the rat GnRH receptor. 18F-radiolabled compounds were obtained in high radiochemical purity (>95%) and specific activity (>75 GBq/μmol). These findings suggest this class of compounds holds promise as potential probes for PET targeting of GnRH-receptor expression. 相似文献
9.
Radiosynthesis of [18F]Lu29-024: a potential PET ligand for brain imaging of the serotonergic 5-HT2 receptor 总被引:1,自引:0,他引:1
Sobrio F Amokhtari M Gourand F Dhilly M Dauphin F Barré L 《Bioorganic & medicinal chemistry》2000,8(10):2511-2518
In a previous work, Lu29-024 (2,5-dimethyl-3-(4-fluorophenyl)-1-(1-methyl-4-piperidinyl)-1H-indole), a selective 5-HT2A receptor antagonist with nanomolar affinity and high selectivity, was labeled with carbon-11 to evaluate its behavior as a potential PET ligand for the serotonergic 5-HT2A receptor in the central nervous system. Administration of this tracer to rats was followed by a good brain uptake, no brain labeled metabolites but no specific, regio-selective, binding at 20 and 40 min post injection. Despite this, the data noted at 20 and 40 min suggest that this tracer, if associated with a radioactive emitter with a longer half-life than that of carbon-11, could be useful for the quantification of 5HT2A receptors. For these reasons, we chose to label this compound, bearing a fluorine atom, with [18F]fluoride, in order to perform rat studies over a more prolonged time-scale. The precursor for the radiosynthesis of [18F]Lu29-024 was obtained in an overall yield of 20% by a multi-step synthesis including an acetonylation reaction followed by a Fisher indole reaction. The radiotracer was prepared by an aromatic substitution with activated [18F]fluoride followed by a decarbonylation reaction that employed Wilkinson's catalyst. The radiosynthesis of [18F]Lu29-024 required approximatively 110 min with an overall radiochemical yield of 20-35% and specific activities of 37GBq/micromol. Fluorine-labeled Lu29-024 may thus be envisaged as a potentially useful PET tracer that can be applied to a wide range of neurological and psychiatric diseases. 相似文献
10.
《Bioorganic & medicinal chemistry letters》2020,30(12):127200
In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/μmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging. 相似文献
11.
《Bioorganic & medicinal chemistry》2020,28(15):115577
c-MET-positive NSCLC is an important subtype accounting for about 5%~22% of lung cancer. NSCLC patients with activating c-MET are intensively sensitive to c-MET selective receptor tyrosine kinase (RTK) inhibitors, so we aimed to develop a specific PET probe targeting to c-MET-positive NSCLC for potential patients screened by PET/CT. Herein, PET tracer 18F-radiolabeled crizotinib derivative ([18F]FPC) was successfully achieved through a simple one-step 18F-labeling method. [18F]FPC PET imaging on c-MET-positive (as well as blocking group) and negative NSCLC models were further evaluated, and results showed that [18F]FPC was effective as a PET imaging probe that targeted c-MET-positive tumor. Therefore, [18F]FPC could be a potential PET imaging probe for NSCLC tumor which was sensitive to c-MET-TKIs. By virtue of this property, it will benefit NSCLC patients for c-MET-TKI treatment. 相似文献
12.
《Bioorganic & medicinal chemistry letters》2019,29(13):1624-1627
Carbon-11 labeled SL25.1188 is a promising reversible monoamine oxidase-B (MAO-B) radioligand that was recently translated for human positron emission tomography (PET) imaging. Herein, we report the development of a novel fluorinated derivative, namely, [18F](S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl)oxazolidin-2-one ([18F]FSL25.1188; [18F]6), as a candidate 18F-labeled MAO-B radioligand, and, its subsequent preclinical evaluation in non-human primates (NHP). [18F]6 was produced and isolated (>6 GBq) with high radiochemical purity (>99%), and molar activity (>100 GBq/µmol at time of injection). Autoradiography studies conducted in post-mortem human brain sections revealed [18F]6 binding in MAO-B rich regions. PET imaging study of [18F]6 in NHP showed high brain uptake (SUV > 2.5) as well as a regional brain radioactivity distribution in accordance with MAO-B expression. [18F]6 displayed favorable in vivo kinetics, with an early peak in the time-activity curve followed by progressive wash-out from the NHP brain. Specificity of [18F]6 was investigated in a pre-treatment study with l-deprenyl (1.0 mg/kg) wherein reduced radioligand uptake was observed in all MAO-B rich regions. Results from the current preclinical investigation suggests [18F]6 is a promising MAO-B PET radioligand. Further evaluation of [18F]6 and structurally related 18F-analogs are underway to identify an optimized candidate for clinical research studies. 相似文献
13.
Wang JQ Miller KD Sledge GW Zheng QH 《Bioorganic & medicinal chemistry letters》2005,15(19):4380-4384
N-[2-(Diethylamino)ethyl]-5-[(Z)-(5-[18F]fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide, a new potential positron emission tomography tracer for imaging cancer tyrosine kinase, has been prepared by the nucleophilic substitution of the nitro-precursor N-[2-(diethylamino)ethyl]-5-[(Z)-(5-nitro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide with K18F/Kryptofix 2.2.2 followed by a simple chromatography methodology combined solid-phase extraction with high-performance liquid chromatography purification procedures in 15-25% radiochemical yields. 相似文献
14.
Geng-Ying Li Daria D. Vaulina Jia-Je Li Olga S. Fedorova Hsin-Ell Wang Ren-Shyan Liu Raisa N. Krasikova Chuan-Lin Chen 《Bioorganic & medicinal chemistry letters》2017,27(15):3460-3463
Given the ever-present demand for improved PET radiotracer in oncology imaging, we have synthesized 2-(3,4-dimethoxyphenyl)-6-(2-[18F]fluoroethoxy)benzothiazole ([18F]FEDBT), a fluorine-18-containing fluoroethylated benzothiazole to explore its utility as a PET imaging tracer. [18F]FEDBT was prepared via kryptofix-mediated nucleophilic substitution of the tosyl group precursor. Fractionated ethanol-based solid-phase (SPE cartridge-based) purification afforded [18F]FEDBT in 60% radiochemical yield (EOB), with radiochemical purity in excess of 98% and the specific activity was 35 GBq/μmol. The radiotracer displayed clearly higher cellular uptake ratio in various breast cancer cell lines MCF7, MDA-MB-468 and MDA-MB-231. However, both biodistribution and microPET studies have showed an higher abdominal accumulation of [18F]FEDMBT and the tumor/muscle ratio of 1.8 was observed in the MDA-MB-231 xenograft tumors mice model. Further the lipophilic improvement is needed for the reducement of hepatobilliary accumulation and to promote the tumor uptake for PET imaging of breast cancer. 相似文献
15.
A D Windhorst H Timmerman R P Klok W M Menge R Leurs J D Herscheid 《Bioorganic & medicinal chemistry》1999,7(9):1761-1767
[18F]VUF 5000 was evaluated as a potential PET ligand for the histamine H3 receptor. In the rat a high uptake of [18F]VUF 5000 was observed in liver, lung and kidney and a low uptake in the brain. In order to explain these findings we determined the LogD(oct,7.2) of [18F]VUF 5000, studied the biodistribution in the presence of carrier VUF 5000, modified [18F]VUF 5000 chemically and studied the binding of [18F]VUF 5000 to human serum albumin. From the results of these experiments it was concluded that [18F]VUF 5000 is not suitable as a PET ligand for brain imaging of the histamine H3 receptor, since [18F]VUF 5000 hardly penetrates into the brain. 相似文献
16.
Wüst F Kniess T Kretzschmar M Bergmann R 《Bioorganic & medicinal chemistry letters》2005,15(5):1303-1306
The radiosynthesis and the radiopharmacological evaluation of pyrazolo steroid 2'-(4-fluorophenyl)-21-[18F]fluoro-20-oxo-11beta,17alpha-dihydroxy-pregn-4-eno[3,2-c]pyrazole [18F]-2 is described. The radiolabeling was accomplished in 3-4% decay-corrected radiochemical yield within 80 min at an specific radioactivity of 0.8-1.2 Ci/micromol. Biodistribution studies in male Wistar rats showed an initial brain uptake of 0.25+/-0.03% ID/g after 5 min, which remained constant over 60 min. The radiopharmacological evaluation of compound [18F]-2 was completed with autoradiography using rat brain sections and micro-PET imaging. 相似文献
17.
2-[(18)F]Fluoro-2-deoxy-D-glucose ([(18)F]FDG) as the most important PET radiotracer is available in almost every PET center. However, there are only very few examples using [(18)F]FDG as a building block for the synthesis of (18)F-labeled compounds. The present study describes the use of [(18)F]FDG as a building block for the synthesis of (18)F-labeled peptides and proteins. [(18)F]FDG was converted into [(18)F]FDG-maleimidehexyloxime ([(18)F]FDG-MHO), a novel [(18)F]FDG-based prosthetic group for the mild and thiol group-specific (18)F labeling of peptides and proteins. The reaction was performed at 100 degrees C for 15 min in a sealed vial containing [(18)F]FDG and N-(6-aminoxy-hexyl)maleimide in 80% ethanol. [(18)F]FDG-MHO was obtained in 45-69% radiochemical yield (based upon [(18)F]FDG) after HPLC purification in a total synthesis time of 45 min. Chemoselecetive conjugation of [(18)F]FDG-MHO to thiol groups was investigated by the reaction with the tripeptide glutathione (GSH) and the single cysteine containing protein annexin A5 (anxA5). Radiolabeled annexin A5 ([(18)F]FDG-MHO-anxA5) was obtained in 43-58% radiochemical yield (based upon [(18)F]FDG-MHO, n = 6), and [(18)F]FDG-MHO-anxA5 was used for a pilot small animal PET study to assess in vivo biodistribution and kinetics in a HT-29 murine xenograft model. 相似文献
18.
Stephenson KA van Oosten EM Wilson AA Meyer JH Houle S Vasdev N 《Neurochemistry international》2008,53(5):173-179
Cerebral beta-adrenergic receptors (beta-ARs) are of interest in several disorders including Parkinson's disease, Alzheimer's disease and in particular major depressive disorder. Development of a positron emission tomography (PET) ligand for imaging beta-ARs would allow the quantification of these receptors in the living human brain so as to better understand both the pathophysiology of depression and how to improve treatment. Currently there are no radioligands suitable for this purpose. In an attempt to achieve this goal, we prepared [(18)F]-labeled (2S)-1-(1-fluoropropan-2-ylamino)-3-(2-cyclohexylphenoxy)propan-2-ol (fluoro-Exaprolol; (2S)-1). Radiolabeling with fluorine-18 was accomplished via preparation of a precursor containing a tosyl leaving group (10), and utilizes the 2-oxazolidinone group to simultaneously protect both the amine and hydroxy groups. The oxazolidinone was readily removed with lithium aluminum hydride following a nucleophilic [(18)F]-fluoride for tosyl displacement to prepare [(18)F]-(2S)-1 in 31% radiochemical yield (uncorrected for decay), with >98% radiochemical purity in <1h. The specific activity of the formulated product was 927 mCi/micromol and the log P (pH 7.4) was 2.97. Preliminary biological evaluations in conscious rats indicated that [(18)F]-(2S)-1 had good brain uptake for imaging (0.8-1.3% injected dose/gram (% ID/g) of wet tissue, 5 min post-injection of the radiotracer) with a slow washout (>0.5% ID/g at 60 min post-injection) in all brain regions. Pharmacological challenges indicate that the binding is largely non-specific, as administration of Propranolol, authentic (2S)-1, or WAY 100635 prior to injection of [(18)F]-(2S)-1 did not block uptake of the radiotracer. These results indicate that [(18)F]-(2S)-1 is not a suitable candidate for PET imaging of cerebral beta-ARs. 相似文献
19.
van Waarde A Doorduin J de Jong JR Dierckx RA Elsinga PH 《Neurochemistry international》2008,52(4-5):729-733
Positron-emitting beta-adrenoceptor ligands for the CNS could allow determination of changes in beta-adrenoceptor availability after treatment of patients with norepinephrine reuptake inhibitors or tricyclic antidepressants, and differential diagnosis between multiple sclerosis and other brain disorders in an early stage of the disease. No ligands suitable for this purpose are available for human use. In order to prepare a tracer for human studies, we labeled the biologically active enantiomer of the beta-blocker exaprolol with (11)C. Exaprolol has the appropriate lipophilicity (log P + 1.6) for entry of the CNS and is claimed to be a very potent beta-adrenoceptor antagonist. (S)-Desisopropyl-exaprolol was synthesized by reaction of 2-hexylphenol with (S)-glycidyl-nosylate followed by ring opening using ammonia gas. The desisopropyl precursor was reacted with (11)C-acetone in methanol to produce (S)-[(11)C]-exaprolol. Radiochemical purification was performed with RP-HPLC and was followed by Sep-Pak formulation. The labeled product was i.v. injected into male Wistar rats. Brain images were acquired using a microPET Focus 220 and the biodistribution of (11)C was assessed. The radiochemical yield of (S)-[(11)C]-exaprolol was 7% with a total synthesis time of 30 min. Specific activities were >10 GBq/micromol. Brain uptake of the tracer reached a maximum after 15 min. Standardized uptake values were moderate (0.5-0.9) but sufficient for imaging. However, beta-blockade (propranolol, 2.5mg/kg body weight) did not lower tracer uptake in any CNS region and washout from the brain was not accelerated when propranolol was administered 40 min after injection of (S)-[(11)C]-exaprolol. Tracer binding in lung, spleen and erythrocytes was lowered after beta-blockade, but the myocardial uptake of radioactivity was not affected. These data indicate that (S)-[(11)C]-exaprolol is not a suitable beta-adrenoceptor ligand for PET, probably because the in vivo affinity of exaprolol to beta-adrenoceptors is in the nM rather than the sub-nM range. The observed inhibition of tracer uptake in lung, spleen and erythrocytes seems due to an interaction of propranolol with amine transporters rather than beta-adrenoceptors. 相似文献
20.
Jaya Prabhakaran Vattoly J. Majo Matthew S. Milak Pratap Mali Lyudmila Savenkova J. John Mann Ramin V. Parsey J.S. Dileep Kumar 《Bioorganic & medicinal chemistry letters》2010,20(12):3654-3657
Radiosynthesis and in vivo evaluation of [N-methyl-11C] 5-methyl-3-[4-(3-phenylallyl)-piperazin-1-ylmethyl]-3,3a,4,5-tetrahydroisoxazolo[4,3-c]quinoline (1), a potential PET tracer for alpha2-adrenergic receptors is described. Syntheses of nonradioactive standard 1 and corresponding desmethyl precursor 2 were achieved from 2-aminobenzaldehyde in 40% and 65% yields, respectively. Methylation using [11C]CH3I in presence of aqueous potassium hydroxide in DMSO afforded [11C]1 in 25% yield (EOS) with >99% chemical and radiochemical purities with a specific activity ranged from 3–4 Ci/μmol (n = 6). The total synthesis time was 30 min from EOB. PET studies in anesthetized baboon show that [11C]1 penetrates BBB and accumulates in alpha2A-AR enriched brain areas. 相似文献