首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we have analysed the genetic variation and phylogeography in a global sample of the cellar fungus Coniophora puteana, which is an important destroyer of wooden materials indoor. Multilocus genealogies of three DNA regions (beta tubulin, nrDNA ITS and translation elongation factor 1alpha) revealed the occurrence of three cryptic species (PS1-3) in the morphotaxon C. puteana. One of the lineages (PS3) is apparently restricted to North America while the other two (PS1-2) have wider distributions on multiple continents. Interspecific hybridization has happened between two of the lineages (PS1 and PS3) in North America. In three dikaryotic isolates, two highly divergent beta tubulin alleles coexisted, one derived from PS1 and one from PS3. Furthermore, one isolate included a recombinant ITS sequence, where ITS1 resembled the ITS1 version of PS3 while ITS2 was identical to a frequent PS1 ITS2 version. This pattern must be due to hybridization succeeded by intralocus recombination in ITS. The results further indicated that introgression has happened between subgroups appearing in PS1. We hypothesize that the observed reticulate evolution is due to previous allopatric separation followed by more recent reoccurrence in sympatry, where barriers to gene flow have not yet evolved. A complex phylogeographical structure is observed in the morphotaxon C. puteana caused by (i) cryptic speciation; (ii) the interplay between natural migration and distribution patterns and probably more recent human mediated dispersal events; and (iii) hybridization and introgression.  相似文献   

2.
Coniophora arida and C. olivacea (Coniophoraceae, Boletales) are widespread wood-decay fungi in temperate and boreal regions, occurring both in buildings and natural environments. Genetic variation and geographic structure among isolates of C. arida and C. olivaceae were investigated in this study, with an emphasis on North America. Multilocus sequencing of three DNA regions revealed three main lineages in C. arida and six in C. olivacea, some of which might represent cryptic species. Most of the lineages are present in North America, mainly in allopatry, suggesting recent or ongoing geographic speciation. One of the C. arida isolates included a high number of heterozygous sites and might represent a hybrid between two cryptic C. arida lineages. The data indicate out-crossing reproductive modes in both C. arida and C. olivacea. Together with other recent investigations of Coniophora species our data suggest that the genus comprises a significant number of cryptic species and is much more diverse than previously deduced from morphological characteristics.  相似文献   

3.
The increasing availability of DNA sequence data enables exciting new opportunities for fungal ecology. However, it amplifies the challenge of how to objectively classify the diversity of fungal sequences into meaningful units, often in the absence of morphological characters. Here, we test the utility of modern multilocus Bayesian coalescent-based methods for delimiting cryptic fungal diversity in the orchid mycorrhiza morphospecies Serendipita vermifera. We obtained 147 fungal isolates from Caladenia, a speciose clade of Australian orchids known to associate with Serendipita fungi. DNA sequence data for 7 nuclear and mtDNA loci were used to erect competing species hypotheses by clustering isolates based on: (a) ITS sequence divergence, (b) Bayesian admixture analysis, and (c) mtDNA variation. We implemented two coalescent-based Bayesian methods to determine which species hypothesis best fitted our data. Both methods found strong support for eight species of Serendipita among our isolates, supporting species boundaries reflected in ITS divergence. Patterns of host plant association showed evidence for both generalist and specialist associations within the host genus Caladenia. Our findings demonstrate the utility of Bayesian species delimitation methods and suggest that wider application of these techniques will readily uncover new species in other cryptic fungal lineages.  相似文献   

4.
Molecular data from the cytochrome c oxidase subunit I (cox1) mitochondrial DNA gene and the second internal transcribed spacer (ITS2) nuclear rDNA region were used to test the current morphologically-based taxonomic hypothesis regarding species of Monorchiidae (Hurleytrematoides) from chaetodontid and tetraodontid fishes from six sites in the tropical Indo-West Pacific (TIWP): Heron and Lizard Islands off the Great Barrier Reef (GBR, Australia), Moorea (French Polynesia), New Caledonia, Ningaloo Reef (Australia) and Palau. The 16 morphospecies analysed differed from each other by a minimum of 55 bp (9.1%) over the mitochondrial cox1 and 8 bp (1.6%) over the ITS2 DNA regions. For two species, Hurleytrematoides loi and Hurleytrematoides sasali, specimens from the same host species in sympatry differed at levels comparable to those between pairs of distinct morphospecies for both cox1 and ITS2 sequences. We take this as evidence of the presence of combinations of cryptic species; however, we do not propose new species for these taxa because we lack identified morphological voucher specimens. For seven species, Hurleytrematoides coronatum, Hurleytrematoides deblocki, Hurleytrematoides faliexae, H. loi, Hurleytrematoides morandi, H. sasali and Hurleytrematoides sp. A, samples from some combinations of localities had base pair differences that were equal to or greater than differences between some pairs of distinct morphospecies for one or both cox1 and ITS2 sequences. For three species, H. coronatum, H. loi and H. morandi, one haplotype differed from every other haplotype by more than the morphospecies benchmark. In these cases morphological specimens could not be distinguished by morphology. These data suggest extensive cryptic richness in this genus. For the present we refrain from dividing any of the morphospecies. This is because there is a continuum of levels of intra- and interspecific genetic variation in this system, so that distinguishing the two would be largely arbitrary.  相似文献   

5.
Serpula himantioides (Boletales, Basidiomycota) produces thin resupinate basidiocarps on dead coniferous wood worldwide and causes damage in buildings as well. In this study, we present evidence for the existence of at least three phylogenetically defined cryptic species (referred to as Sib I-III) within the morphospecies S. himantioides, a conclusion based on analyses of sequence data from four DNA regions and amplified fragment length polymorphisms (AFLPS). A low degree of shared sequence polymorphisms was observed among the three lineages indicating a long-lasting separation. The AFLPs revealed two additional subgroups within Sib III. Results from mating studies were consistent with the molecular data. In Sib III, no correspondence between genetic and geographical distance was observed among isolates worldwide, presumably reflecting recent dispersal events. Our results indicate that at least two of the lineages (Sib II and Sib III) have wide sympatric distributions. A population genetic analysis of Sib III isolates, scoring sequence polymorphisms as codominant SNP markers, indicates that panmictic conditions exist in the Sib III group. This study supports the view that cryptic speciation is a common phenomenon in basidiomycete fungi and that phylogenetic species recognition can be a powerful inference to detect cryptic species. Furthermore, this study shows that AFLP data are a valuable supplement to DNA sequence data in that they may detect a finer level of genetic variation.  相似文献   

6.
Taxonomical classification of higher fungi remains an important challenge and can benefit from the application of molecular analysis. We propose that the ectomycorrhizal (EM) fungal taxa might include a number of cryptic species because there are few morphological characteristics useful for distinguishing among these fungi. Previously, host specificity in most EM fungi was thought to be low, but we suspect that confusion of cryptic species has led to an underestimate of fungal host specificity. We analyzed both nuclear and mitochondrial DNA sequences from Strobilomyces fungi and obtained evidence that what were previously described as four species can be grouped into 14 distinct lineages, suggesting that these lineages might be distinct biological species. Moreover, we identified host plants for Strobilomyces via nucleotide sequencing of both fungal and plant DNA from EM samples. Most lineages of Strobilomyces tested in this study were associated only with Fagaceae trees, even though Strobilomyces species were previously thought to be generalists with regard to hosts. Thus, we present an approach useful for identifying cryptic species and detecting the true host range of a set of EM fungi in natural conditions.  相似文献   

7.
Over the past decade, numerous molecular phylogenetic studies uncovered cryptic diversity within the Copepoda, yet very few investigations focused on symbiotic copepods. Here we report mitochondrial DNA cytochrome oxidase I diversity in the cosmopolitan elasmobranch symbiont Nesippus orientalis off the KwaZulu-Natal coast of South Africa. Analysis of partial COI sequences of copepods sampled from a diversity of shark hosts, revealed the presence of two divergent clades. Diversity within the clades does not appear to be structured based on host species, host individual, geographic locality or time of sampling. However, divergence between the two clades seems to be related to host species. Phylogenetic analyses of representatives from the two clades, along with Nesippus spp., Caligus spp. and Lepeophtheirus spp. outgroups, further supports the distinction between the two clades. Future molecular phylogenetic investigations of widespread copepod symbionts most likely will reveal far greater levels of biodiversity than currently recognized.  相似文献   

8.
Molecular genetic methods can distinguish divergent evolutionary lineages in what previously appeared to be single species, but it is not always clear what functional differences exist between such cryptic species. We used a metabolomic approach to profile biochemical phenotype (metabotype) differences between two putative cryptic species of the earthworm Lumbricus rubellus. There were no straightforward metabolite biomarkers of lineage, i.e. no metabolites that were always at higher concentration in one lineage. Multivariate methods, however, identified a small number of metabolites that together helped distinguish the lineages, including uncommon metabolites such as Nε-trimethyllysine, which is not usually found at high concentrations. This approach could be useful for characterizing functional trait differences, especially as it is applicable to essentially any species group, irrespective of its genome sequencing status.  相似文献   

9.
10.
Aquatic oligochaetes are well recognized bioindicators of quality of sediments and water in watercourses and lakes. However, the difficult taxonomic determination based on morphological features compromises their more common use in eco-diagnostic analyses. To overcome this limitation, we investigated molecular barcodes as identification tool for broad range of taxa of aquatic oligochaetes. We report 185 COI and 52 ITS2 rDNA sequences for specimens collected in Switzerland and belonging to the families Naididae, Lumbriculidae, Enchytraeidae and Lumbricidae. Phylogenetic analyses allowed distinguishing 41 lineages separated by more than 10 % divergence in COI sequences. The lineage distinction was confirmed by Automatic Barcode Gap Discovery (ABGD) method and by ITS2 data. Our results showed that morphological identification underestimates the oligochaete diversity. Only 26 of the lineages could be assigned to morphospecies, of which seven were sequenced for the first time. Several cryptic species were detected within common morphospecies. Many juvenile specimens that could not be assigned morphologically have found their home after genetic analysis. Our study showed that COI barcodes performed very well as species identifiers in aquatic oligochaetes. Their easy amplification and good taxonomic resolution might help promoting aquatic oligochaetes as bioindicators for next generation environmental DNA biomonitoring of aquatic ecosystems.  相似文献   

11.
Geosmithia is a genus of mitosporic filamentous fungi typically associated with phloeophagous bark beetles world-wide. During this study, the fungal associates of ambrosia beetles Cnesinus lecontei, Eupagiocerus dentipes, and Microcorthylus sp. from Costa Rica, were studied using morphology and DNA sequences. Fungal associates belonged to four undescribed Geosmithia species. Geosmithia eupagioceri sp. nov. and G. microcorthyli sp. nov. are evidently primary ambrosia fungi of their respective vectors E. dentipes and Microcorthylus species. They both have convergently evolved distinct morphological adaptations including the production of large, solitary and globose conidia, and yeast-like cells. Tunnels of C. lecontei contained an undescribed Geosmithia species, but its nutritional importance for its vector is unclear. An auxiliary ambrosia fungus, Geosmithia rufescens sp. nov., was found associated with both G. eupagioceri and the Geosmithia species associated with C. lecontei. G. microcorthyli is genetically quite similar to the phloem-associated Geosmithia sp. 8 from Europe. Large differences in morphology between these two species suggest the rapid co-evolution resulting from the close symbiosis of the former with its beetle host. The ITS rDNA sequences of G. microcorthyli and Geosmithia sp. 8 were not diagnostic, suggesting that alternative markers such as EF-1α, IGS rDNA or β-tubulin should be used, together with morphological and ecological data, for species delimitation in this genus. The primary ambrosia fungi described here are derived from phloem-associated ancestors, and represent two independent lineages of ambrosia fungi in the Hypocreales and a new ecological strategy within Geosmithia.  相似文献   

12.
Identification of Erythroxylum taxa by AFLP DNA analysis   总被引:1,自引:0,他引:1  
Erythroxylum coca, indigenous to the Andean region of South America, is grown historically as a source of homeopathic medicine. However, in the last century, cultivation of E. coca and several closely-related species for the production of illicit cocaine has become a major global problem. Two subspecies, E. coca var. coca and E. coca var. ipadu, are almost indistinguishable phenotypically; a related cocaine-bearing species also has two subspecies (E. novogranatense var. novogranatense and E. novogranatense var. truxillense) that are phenotypically similar, but morphologically distinguishable. The purpose of this research was to discover unique AFLP DNA patterns ("genetic fingerprinting") that characterize the four taxa and then, if successful, to evaluate this approach for positive identification of the various species of coca. Of seven different AFLP primer pairs tested, a combination of five proved optimal in differentiating the four taxa as well as a non-cocaine-bearing species, E. aerolatum. This method of DNA fragment separation was selective, and faster, for coca identification, compared with analyses based on flavonoid chemotaxonomy. Using the 5-primer AFLP approach, 132 known and unknown coca leaf accessions were evaluated. Of these, 38 were collected in 1997-2001 from illicit coca fields in Colombia, and all were genetically differentiated from coca originating in Peru and Bolivia. Based on the DNA profiling, we believe that the Colombian coca now represents a hybridization of E. coca var. ipadu. Geographical profiling within Colombia also seems feasible as new coca production areas are developed or new types of coca are introduced within traditional growing areas.  相似文献   

13.
One of the key hypotheses of paleoceanography is that planktonic foraminiferal morphospecies record reasonably stable and homogeneous oceanographic and climatic characteristics over their geographic and stratigraphic ranges. The discovery of numerous genetically-defined cryptic species challenges the morphospecies concept in planktonic foraminifera and paleoceanographic interpretations based on them. Here, we present a combined genetic and biometric analysis of Orbulina universa specimens in the Atlantic, Indian and Pacific Oceans. Our study is based on shells retained after DNA extractions. On those genotyped shells, we perform biometric analyses (shell size and thickness, inner porosity and pore surface distribution). Our genetic data confirm the presence of three cryptic species of O. universa in the world ocean, whose distributions are primarily correlated to the productivity of the surface waters. The Mediterranean species of O. universa is most abundant in the vertically mixed and nutrient-rich areas of the low to mid-latitudes, whereas the Caribbean and Sargasso species occur in stratified and oligotrophic subtropical waters. Our biometric data show no correlation between shell size and inner porosity within each cryptic species of O. universa. Combining Principal Component Analyses with MANOVAs performed on shell pore surface distribution, we demonstrate that the three different cryptic species are characterized by significant morphological differentiation. The Caribbean species typically exhibits large pores and higher porosity values, while the Mediterranean and Sargasso species are characterized by smaller pore areas and shell porosity. A model based upon pore surface distribution correctly assigns 60% to 90% of the specimens to their corresponding genotype. Although the inner shell surface of the Sargasso species resembles that of the Mediterranean species, our model demonstrates that the pore surface distributions of these two cryptic species can be distinguished. Finally, the Sargasso species exhibits significantly thinner shells than the two other cryptic species.  相似文献   

14.
Hart MW  Sunday J 《Biology letters》2007,3(5):509-512
The generality of operational species definitions is limited by problematic definitions of between-species divergence. A recent phylogenetic species concept based on a simple objective measure of statistically significant genetic differentiation uses between-species application of statistical parsimony networks that are typically used for population genetic analysis within species. Here we review recent phylogeographic studies and reanalyse several mtDNA barcoding studies using this method. We found that (i) alignments of DNA sequences typically fall apart into a separate subnetwork for each Linnean species (but with a higher rate of true positives for mtDNA data) and (ii) DNA sequences from single species typically stick together in a single haplotype network. Departures from these patterns are usually consistent with hybridization or cryptic species diversity.  相似文献   

15.
Claviceps purpurea is an important pathogen of grasses and source of novel chemical compounds. Three groups within this species (G1, G2 and G3) have been recognized based on habitat association, sclerotia and conidia morphology, as well as alkaloid production. These groups have further been supported by Random Amplification of Polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers, suggesting this species may be more accurately described as a species complex. However, all divergent ecotypes can coexist in sympatric populations with no obvious physical barriers to prevent gene flow. In this study, we used both phylogenetic and population genetic analyses to test for speciation within C. purpurea using DNA sequences from ITS, a RAS-like locus, and a portion of beta-tubulin. The G1 types are significantly divergent from the G2/G3 types based on each of the three loci and the combined dataset, whereas the G2/G3 types are more integrated with one another. Although the G2 and G3 lineages have not diverged as much as the G1 lineage based on DNA sequence data, the use of three DNA loci does reliably separate the G2 and G3 lineages. However, the population genetic analyses strongly suggest little to no gene flow occurring between the different ecotypes, and we argue that this process is driven by adaptations to ecological habitats; G1 isolates are associated with terrestrial grasses, G2 isolates are found in wet and shady environments, and G3 isolates are found in salt marsh habitats.  相似文献   

16.
The about 31 species of Fosterella L.B. Sm. (Bromeliaceae) are terrestrial herbs with a centre of diversity in the central South American Andes. To resolve infra- and intergeneric relationships among Fosterella and their putative allies, we conducted a phylogenetic analysis based on sequence data from four chloroplast DNA regions (matK gene, rps16 intron, atpB-rbcL and psbB-psbH intergenic spacers). Sequences were generated for 96 accessions corresponding to 60 species from 18 genera. Among these, 57 accessions represented 22 of the 31 recognized Fosterella species and one undescribed morphospecies. Maximum parsimony and Bayesian inference methods yielded well-resolved phylogenies. The monophyly of Fosterella was strongly supported, as was its sister relationship with a clade comprising Deuterocohnia, Dyckia and Encholirium. Six distinct evolutionary lineages were distinguished within Fosterella. Character mapping indicated that parallel evolution of identical character states is common in the genus. Relationships between species and lineages are discussed in the context of morphological, ecological and biogeographical data as well as the results of a previous amplified fragment length polymorphism (AFLP) study.  相似文献   

17.
18.
Mitochondrial DNA (mtDNA) sequencing has led to an unprecedented rise in the identification of cryptic species. However, it is widely acknowledged that nuclear DNA (nuDNA) sequence data are also necessary to properly define species boundaries. Next generation sequencing techniques provide a wealth of nuclear genomic data, which can be used to ascertain both the evolutionary history and taxonomic status of putative cryptic species. Here, we focus on the intriguing case of the butterfly Thymelicus sylvestris (Lepidoptera: Hesperiidae). We identified six deeply diverged mitochondrial lineages; three distributed all across Europe and found in sympatry, suggesting a potential case of cryptic species. We then sequenced these six lineages using double‐digest restriction‐site associated DNA sequencing (ddRADseq). Nuclear genomic loci contradicted mtDNA patterns and genotypes generally clustered according to geography, i.e., a pattern expected under the assumption of postglacial recolonization from different refugia. Further analyses indicated that this strong mtDNA/nuDNA discrepancy cannot be explained by incomplete lineage sorting, sex‐biased asymmetries, NUMTs, natural selection, introgression or Wolbachia‐mediated genetic sweeps. We suggest that this mitonuclear discordance was caused by long periods of geographic isolation followed by range expansions, homogenizing the nuclear but not the mitochondrial genome. These results highlight T. sylvestris as a potential case of multiple despeciation and/or lineage fusion events. We finally argue, since mtDNA and nuDNA do not necessarily follow the same mechanisms of evolution, their respective evolutionary history reflects complementary aspects of past demographic and biogeographic events.  相似文献   

19.
While molecular analyses have provided insight into the phylogeny of ciliates, the few studies assessing intraspecific variation have largely relied on just a single locus [e.g., nuclear small subunit rDNA (nSSU-rDNA) or mitochondrial cytochrome oxidase I]. In this study, we characterize the diversity of several nuclear protein-coding genes plus both nSSU-rDNA and mitochondrial small subunit rDNA (mtSSU-rDNA) of five isolates of the ciliate morphospecies Chilodonella uncinata. Although these isolates have nearly identical nSSU-rDNA sequences, they differ by up to 8.0% in mtSSU-rDNA. Comparative analyses of all loci, including β-tubulin paralogs, indicate a lack of recombination between strains, demonstrating that the morphospecies C. uncinata consists of multiple cryptic species. Further, there is considerable variation in substitution rates among loci as some protein-coding domains are nearly identical between isolates, while others differ by up to 13.2% at the amino acid level. Combining insights on macronuclear variation among isolates, the focus of this study, with published data from the micronucleus of two of these isolates, indicates that C. uncinata lineages are able to maintain both highly divergent and highly conserved genes within a rapidly evolving germline genome.  相似文献   

20.
Tan, D. S. H., Ang, Y., Lim, G. S., Ismail, M. R. B. & Meier, R. (2010). From ‘cryptic species’ to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera). —Zoologica Scripta, 39, 51–61. The increased availability of DNA sequences has led to a surge of ‘cryptic species’ in the literature. These units are usually proposed based on finding genetically distinct lineages within species that were initially defined based on morphological characters. However, few authors attempt to confirm whether these ‘cryptic’ units are species and even fewer authors are explicit about which species concept is applied. Here, we use an example from Sepsidae (Diptera) to demonstrate how cryptic species can be validated by an iterative process involving several data sources and an evaluation of the data under different species concepts. A phylogeographic analysis based on 50 specimens for five species of the flavimana group revealed deep mitochondrial splits within Sepsis flavimana which was suggestive of a cryptic species. We resolve the initial conflict between DNA sequences and morphology by adding new morphological data as well as behavioural evidence and tests for reproductive isolation. One cryptic species is confirmed and Sepsis pyrrhosoma, a former synonym of S. flavimana, is here shown to be a valid species under most species concepts. We can thus document that the same data can lead to similar conclusions under conflicting concepts once different kinds of data are integrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号