首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pathogenic HIV infections of humans and simian immunodeficiency virus (SIV) infections of rhesus macaques are characterized by generalized immune activation and progressive CD4(+) T cell depletion. In contrast, natural reservoir hosts for SIV, such as sooty mangabeys, do not progress to AIDS and show a lack of aberrant immune activation and preserved CD4(+) T cell populations, despite high levels of SIV replication. Here we show that sooty mangabeys have substantially reduced levels of innate immune system activation in vivo during acute and chronic SIV infection and that sooty mangabey plasmacytoid dendritic cells (pDCs) produce markedly less interferon-alpha in response to SIV and other Toll-like receptor 7 and 9 ligands ex vivo. We propose that chronic stimulation of pDCs by SIV and HIV in non-natural hosts may drive the unrelenting immune system activation and dysfunction underlying AIDS progression. Such a vicious cycle of continuous virus replication and immunopathology is absent in natural sooty mangabey hosts.  相似文献   

3.

Background

Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown.

Results

We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner.

Conclusions

The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.  相似文献   

4.
The innate immune system, in particular the type I interferon (IFN) response, is a powerful defence against virus infections. In turn, many if not all viruses have evolved various means to circumvent, resist, or counteract this host response to ensure efficient replication and propagation. Influenza viruses are no exception to this rule, and several viral proteins have been described to possess IFN‐antagonistic functions. Although the viral nonstructural protein 1 appears to be a major antagonist in influenza A and B viruses (IAV and IBV), we have previously shown that a specific motif in the IAV polymerase proteins exerts an IFN‐suppressive function very early in infection. The question remained whether a similar function would also exist in IBV polymerases. Here, we show that indeed a specific amino acid position (A523) of the PB1 protein in the IBV polymerase complex confers IFN‐antagonistic properties. Mutation of this position leads to enhanced activation of the IFN‐mediated signalling pathway after infection and subsequent reduction of virus titres. This indicates that inhibition of innate immune responses is a conserved activity shared by polymerase proteins of IAV and IBV.  相似文献   

5.
6.
Type I interferon (IFN) contributes significantly to innate immune responses to pathogen infections in macrophages. Our previous studies demonstrate that Ubp43, an ISG15-specific isopeptidase, is highly expressed in macrophages and noncatalytically inhibits Type I IFN signaling. To understand the effect of Type I IFN and Ubp43 in macrophage activation, we analyzed the expression of IFN-beta stimulated genes in wild-type and Ubp43(-/-) bone marrow derived macrophages (BMMs). Here, we show that Ubp43 regulates IFN-beta stimulated genes at genome level. IFN hypersensitivity of Ubp43(-/-) BMMs resulted in the identification of 749 unique genes that are upregulated by IFN-beta, including a large group of previously unidentified IFN-stimulated genes. Functional analyses of these genes showed that Type I IFN strongly induced the expression of a group of immune response related genes, including genes for antigen presentation, antiviral responses, and chemokine and cytokine production. These results provide excellent biochemical support for the high resistance of viral and bacterial infection of Ubp43 knockout mice, suggesting that Ubp43 is a potential therapeutic target for the enhancement of immune responses against infections.  相似文献   

7.
Variability in the susceptibility to HIV-1 infection and disease progression depends on both virus and host determinants. Some exposed individuals remain HIV-1-uninfected and HIV-1-infected subjects develop disease at varying intervals with a small percentage remaining long-term non-progressors. As innate immunity is the earliest response to microbial entry and injury, host factors that impact innate immunity may play a role in viral infectivity and pathogenesis. In the pediatric population the interactions between the virus and the host may be of particular relevance due to the still developing adaptive immune system. Data indicate that genetic variants of defensins and Toll-Like Receptors (TLRs), key elements of innate immunity, play a role in mother-to-child transmission (MTCT) of HIV-1, and in the outcome of pediatric HIV-1 disease. Although the mechanisms by which these genetic variants influence HIV-1 interactions with the host are still largely unknown, defensins and TLRs, along with their link with regulatory T cells (Tregs), may play a critical role in the onset and persistence of immune activation, a hallmark of HIV-1 disease.  相似文献   

8.
DNA damage response (DDR) is a sophisticated cellular network that detects and repairs DNA breaks. Viruses are known to activate the DDR and usurp certain DDR components to facilitate replication. Intriguingly, viruses also inhibit several DDR proteins, suggesting that this cellular network has both proviral and antiviral features, with the nature of the latter still poorly understood. In this study we show that irradiation of primary murine macrophages was associated with enhanced expression of several antiviral interferon (IFN)-stimulated genes (ISGs). ISG induction in irradiated macrophages was dependent on type I IFN signaling, a functional DNA damage sensor complex, and ataxia-telangiectasia mutated kinase. Furthermore, IFN regulatory factor 1 was also required for the optimal expression of antiviral ISGs in irradiated macrophages. Importantly, DDR-mediated activation of type I IFN signaling contributed to increased resistance to mouse gammaherpesvirus 68 replication, suggesting that the coordinate regulation of DDR and type I IFN signaling may have evolved as a component of the innate immune response to virus infections.  相似文献   

9.
There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon.  相似文献   

10.
11.
12.
The investigation of the dynamics and regulation of virus-triggered innate immune signaling pathways at a system level will enable comprehensive analysis of the complex interactions that maintain the delicate balance between resistance to infection and viral disease. In this study, we developed a delayed mathematical model to describe the virus-induced interferon (IFN) signaling process by considering several key players in the innate immune response. Using dynamic analysis and numerical simulation, we evaluated the following predictions regarding the antiviral responses: (1) When the replication ratio of virus is less than 1, the infectious virus will be eliminated by the immune system’s defenses regardless of how the time delays are changed. (2) The IFN positive feedback regulation enhances the stability of the innate immune response and causes the immune system to present the bistability phenomenon. (3) The appropriate duration of viral replication and IFN feedback processes stabilizes the innate immune response. The predictions from the model were confirmed by monitoring the virus titer and IFN expression in infected cells. The results suggest that the balance between viral replication and IFN-induced feedback regulation coordinates the dynamical behavior of virus-triggered signaling and antiviral responses. This work will help clarify the mechanisms of the virus-induced innate immune response at a system level and provide instruction for further biological experiments.  相似文献   

13.
Y Su  W Popik    P M Pitha 《Journal of virology》1995,69(1):110-121
We have examined the feasibility of using interferon (IFN) gene transfer as a novel approach to anti-human immunodeficiency virus type 1 (HIV-1) therapy in this study. To limit expression of a transduced HIV-1 long terminal repeat (LTR)-IFNA2 (the new approved nomenclature for IFN genes is used throughout this article) hybrid gene to the HIV-1-infected cells, HIV-1 LTR was modified. Deletion of the NF-kappa B elements of the HIV-1 LTR significantly inhibited Tat-mediated transactivation in T-cell lines, as well as in a monocyte line, U937. Replacement of the NF-kappa B elements in the HIV-1 LTR by a DNA fragment derived from the 5'-flanking region of IFN-stimulated gene 15 (ISG15), containing the IFN-stimulated response element, partially restored Tat-mediated activation of LTR in T cells as well as in monocytes. Insertion of this chimeric promoter (ISG15 LTR) upstream of the human IFNA2 gene directed high levels of IFN synthesis in Tat-expressing cells, while this promoter was not responsive to tumor necrosis factor alpha-mediated activation. ISG15-LTR-IFN hybrid gene inserted into the retrovirus vector was transduced into Jurkat and U937 cells. Selected transfected clones produced low levels of IFN A (IFNA) constitutively, and their abilities to express interleukin-2 and interleukin-2 receptor upon stimulation with phytohemagglutinin and phorbol myristate acetate were retained. Enhancement of IFNA synthesis observed upon HIV-1 infection resulted in significant inhibition of HIV-1 replication for a period of at least 30 days. Virus isolated from IFNA-producing cells was able to replicate in the U937 cells but did not replicate efficiently in U937 cells transduced with the IFNA gene. These results suggest that targeting IFN synthesis to HIV-1-infected cells is an attainable goal and that autocrine IFN synthesis results in a long-lasting and permanent suppression of HIV-1 replication.  相似文献   

14.
Herpes simplex viruses (HSV) are human pathogens responsible for a variety of diseases,including localized mucocutaneous lesions,encephalitis,and disseminated diseases.HSV infection leads to rapid induction of innate immune responses.A critical part of this host response is the type I IFN system including the induction of type I IFNs,IFN-mediated signaling and amplification of IFN response.This provides the host with immediate countermeasure during acute infection to limit initial viral replication and to facilitate an appropriate adaptive immune response.However,HSV has devised multiple strategies to evade and interfere with innate immunity.This review will focus on the induction of type I IFN response by HSV during acute infection and current knowledge of mechanisms by which HSV interferes with this induction process.  相似文献   

15.
Rhinovirus (RV) infection is a major cause of asthma exacerbations which may be due to a deficient innate immune response in the bronchial epithelium. We hypothesized that the pleiotropic cytokine, TGF-β, influences interferon (IFN) production by primary bronchial epithelial cells (PBECs) following RV infection. Exogenous TGF-β(2) increased RV replication and decreased IFN protein secretion in response to RV or double-stranded RNA (dsRNA). Conversely, neutralizing TGF-β antibodies decreased RV replication and increased IFN expression in response to RV or dsRNA. Endogenous TGF-β(2) levels were higher in conditioned media of PBECs from asthmatic donors and the suppressive effect of anti-TGF-β on RV replication was significantly greater in these cells. Basal SMAD-2 activation was reduced when asthmatic PBECs were treated with anti-TGF-β and this was accompanied by suppression of SOCS-1 and SOCS-3 expression. Our results suggest that endogenous TGF-β contributes to a suppressed IFN response to RV infection possibly via SOCS-1 and SOCS-3.  相似文献   

16.
17.
18.
Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-α/β) response is derived from several cell types and induced independently of TLR9. In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages and fibroblasts, where the virus was able to replicate, HSV-induced IFN-α/β production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of pathogen recognition are active, which operate in cell-type- and time-dependent manners to trigger expression of type I IFN and coordinate the antiviral response.  相似文献   

19.
In this study, we have analyzed the effect of human alpha interferon (IFN-alpha) on a single replication cycle of human immunodeficiency virus type 1 (HIV-1) infection in the lymphocytic cell line CEM-174, which is highly sensitive to the antiviral effects of IFN. Pretreatment of cells with 50 to 500 U of recombinant human IFN-alpha per ml resulted in a marked reduction in viral RNA and protein synthesis. The effect of IFN-alpha was dose dependent and was amplified in multiple infection cycles. IFN-induced inhibition of viral protein synthesis could be detected only when cells were treated with IFN-alpha prior to infection or when IFN-alpha was added up to 10 h postinfection, but not if IFN-alpha was added at the later stages of HIV-1 replication cycle or after the HIV-1 infection was already established. Analysis of the integrated HIV-1 provirus showed a marked decrease in the levels of proviral DNA in IFN-treated cells. Thus, in contrast to the previous studies on established HIV-1 infection in T cells, in which the IFN block appeared to be at the posttranslational level, during de novo infection, IFN-alpha interferes with an early step of HIV-1 replication cycle that occurs prior to the integration of the proviral DNA. These results indicate that the early IFN block of HIV-1 replication, which has been previously observed only in primary marcophages, can also be detected in the IFN-sensitive T cells, indicating that the early IFN block is not limited to macrophages.  相似文献   

20.
Type I IFN is key to the immune response to viral pathogens, however its role in bacterial infections is less well understood. Mice lacking the type I IFN receptor (IFNAR-/-) demonstrate enhanced resistance to infection with Listeriamonocytogenes. We have now determined that following infection with Listeria, the composition of innate cells recruited to the peritoneal cavity of IFNAR-/- mice reflects an increase in the frequency of neutrophils and a decrease in monocyte frequency compared to WT controls. These differences in inflammatory infiltrates could not be attributed to distinct bone marrow composition prior to infection or to level of apoptosis. We also observed no differences in neutrophil oxidative burst. However, blocking CXCR2 prevented enhanced neutrophil influx and hampered bacterial clearance. Taken together, these studies highlight a novel mechanism by which type I interferon signaling regulates the immune response to Listeria, through negative regulation of chemokines driving neutrophil recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号