首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

2.
3.
A new microbial cyclic dipeptide (diketopiperazine), cyclo(d ‐Tyr‐d ‐Phe) was isolated for the first time from the ethyl acetate extract of fermented modified nutrient broth of Bacillus sp. N strain associated with rhabditid Entomopathogenic nematode. Antibacterial activity of the compound was determined by minimum inhibitory concentration and agar disc diffusion method against medically important bacteria and the compound recorded significant antibacterial against test bacteria. Highest activity was recorded against Staphylococcus epidermis (1 µg/ml) followed by Proteus mirabilis (2 µg/ml). The activity of cyclo(d ‐Tyr‐d ‐Phe) against S. epidermis is better than chloramphenicol, the standard antibiotics. Cyclo(d ‐Tyr‐d ‐Phe) recorded significant antitumor activity against A549 cells (IC50 value: 10 μM) and this compound recorded no cytotoxicity against factor signaling normal fibroblast cells up to 100 μM. Cyclo(d ‐Tyr‐d ‐Phe) induced significant morphological changes and DNA fragmentation associated with apoptosis in A549 cells. Acridine orange/ethidium bromide stained cells indicated apoptosis induction by cyclo(d ‐Tyr‐d ‐Phe). Flow cytometry analysis showed that the cyclo(d ‐Tyr‐d ‐Phe) did not induce cell cycle arrest. Effector molecule of apoptosis such as caspase‐3 was found activated in treated cells, suggesting apoptosis as the main mode of cell death. Antioxidant activity was evaluated by free radical scavenging and reducing power activity, and the compound recorded significant antioxidant activity. The free radical scavenging activity of cyclo(d ‐Tyr‐d ‐Phe) is almost equal to that of butylated hydroxyanisole, the standard antioxidant agent. We also compared the biological activity of natural cyclo(d ‐Tyr‐d ‐Phe) with synthetic cyclo(d ‐Tyr‐d ‐Phe) and cyclo(l ‐Tyr‐l ‐Phe). Natural and synthetic cyclo(d ‐Tyr‐d ‐Phe) recorded similar pattern of activity. Although synthetic cyclo(l ‐Tyr‐l ‐Phe) recorded lower activity. But in the case of reducing power activity, synthetic cyclo(l ‐Tyr‐l ‐Phe) recorded significant activity than natural and synthetic cyclo(d ‐Tyr‐d ‐Phe). The results of the present study reveals that cyclo(d ‐Tyr‐d ‐Phe) is more bioactive than cyclo(l ‐Tyr‐l ‐Phe). To the best of our knowledge, this is the first time that cyclo(d ‐Tyr‐d ‐Phe) has been isolated from microbial natural source and also the antibacterial, anticancer, and antioxidant activity of cyclo(d ‐Tyr‐d ‐Phe) is also reported for the first time. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The cell-free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain six bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (LCMS, FABMS, 1H NMR, 13C NMR, 1H ?1H COSY, 1H ?13C HMBC) and Marfey’s method. The compounds were identified as cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), cyclo (L-Pro-D-Phe), cyclo (L-Pro-L-Val), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene, respectively. Compounds recorded antibacterial activity against all four tested bacteria strains of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. 3,5-dihydroxy-4-isopropylstilbene recorded activity only against Gram-positive bacteria while cyclo(L-Pro-L-Val) recorded no antibacterial activity. Best antibacterial activity was recorded by 3,5-dihydroxy-4-ethyl-trans-stilbene (4 μg/ml) against Escherichia coli. The six compounds recorded significant antifungal activities against five fungal strains tested (Aspergillus flavus, Candida albicans, Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum) and they were more effective than bavistin, the standard fungicide. The activity of cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene against Candida albicans was better than amphotericin B. To the best of our knowledge, this is the first report of antifungal activity of the bioactive compounds against the plant pathogenic fungi Fusarium oxysporum, Rhizoctonia solani, and Penicillium expansum. We conclude that the Bacillus cereus strain associated with entomopathogenic nematode is a promising source of natural bioactive secondary metabolites which may receive great benefit as potential sources of new drugs in the agricultural and pharmacological industry.  相似文献   

5.
Entomopathogenic nematodes (EPN) are well-known as biological control agents and are found to have associated bacteria which can produce a wide range of bioactive secondary metabolites. We report herewith isolation of six proline containing cyclic dipeptides cyclo(d-Pro-l-Leu), cyclo(l-Pro-l-Met), cyclo(d-Pro-l-Phe), cyclo(l-Pro-l-Phe), cyclo(l-Pro-l-Tyr) and cyclo(l-Pro-d-Tyr) from ethyl acetate extract of the Luria Broth (LB) cell free culture filtrate of Bacillus sp. strain N associated with a new EPN Rhabditis sp. from sweet potato weevil grubs collected from Central Tuber Crops Research Institute farm. Antimicrobial studies of these 2,5-diketopiperazines (DKPs) against both medicinally and agriculturally important bacterium and fungi showed potent inhibitory values in the range of μg/mL. Cyclic dipeptides showed significantly higher activity than the commercial fungicide bavistin against agriculturally important fungi, viz., Fusarium oxysporum, Rhizoctonia solani, and Pencillium expansum. The highest activity of 2 μg/mL by cyclo(l-Pro-l-Phe) was recorded against P. expansum, a plant pathogen responsible for causing post harvest decay of stored apples and oranges. To our knowledge, this is the first report on the isolation of these DKPs from Rhabditis EPN bacterial strain Bacillus sp.  相似文献   

6.
一株芽孢杆菌的分离和鉴定   总被引:3,自引:0,他引:3  
从中国农业科学院北京畜牧兽医研究所鸡舍附近土壤中分离到一株芽孢杆菌P-25,并进行了分子鉴定。通过形态鉴定、革兰氏染色、生理生化测定、16SrRNA序列分析和系统发育树构建,确定该菌株为蜡状芽孢杆菌(Bacillus cereus),其16SrRNAGenBank登录号为GU271135。  相似文献   

7.
目的 对一株产淀粉酶芽胞杆菌SY200进行鉴定及其对动物病原菌的生物拮抗试验。方法 提取芽胞杆菌SY200基因组DNA,采用细菌16S rRNA通用引物进行PCR扩增及对扩增到的目标片段的测序,将测序结果与NCBI上已知菌种的16S rRNA序列进行BLAST对比,并构建系统进化树进行分析。采用滤纸片法和牛津杯法分别研究该芽胞杆菌的全菌液及培养物上清液对3株病原菌的生物拮抗。结果 结合细菌形态观察及生理生化特性鉴定,最终确定菌株SY200为甲基营养型芽胞杆菌(Bacillus methylotrophicus);芽胞杆菌SY200全菌培养液和培养上清液对产肠毒素大肠埃希菌、鸡白痢沙门菌、金黄色葡萄球菌均有较强的生物拮抗作用,抑菌物质主要为细菌的代谢产物。结论 芽胞杆菌SY200被鉴定为甲基营养型芽胞杆菌,该菌株对3株动物性病原菌具有较强的生物拮抗作用。  相似文献   

8.
Abstract

A propanol-tolerant neutral protease was purified and characterized from Bacillus sp. ZG20 in this study. This protease was purified to homogeneity with a specific activity of 26,655?U/mg. The recovery rate and purification fold of the protease were 13.7% and 31.5, respectively. The SDS-PAGE results showed that the molecular weight of the protease was about 29?kDa. The optimal temperature and pH of the protease were 45?°C and 7.0, respectively. The protease exhibited a good thermal- and pH stability, and was tolerant to 50% propanol. Mg2+, Zn2+, K+, Na+ and Tween-80 could improve its activity. The calculated Km and Vmax values of the protease towards α-casein were 12.74?mg/mL and 28.57?µg/(min mL), respectively. This study lays a good foundation for the future use of the neutral protease from Bacillus sp. ZG20.  相似文献   

9.
[目的]对实验室分离到的菌株ZH-356进行鉴定并评价其对植物病原真菌的生物防治效果,为研发针对植物真菌病害的生防菌剂提供理论指导。[方法]通过平板对峙法确定菌株ZH-356抗菌谱,并通过16S rRNA基因序列分析确定其种属,利用离体枝条的苹果树腐烂病菌感染预防试验和患腐烂病苹果树的防治试验评价其生防效果。[结果]菌株ZH-356鉴定为链霉菌属,与直丝紫链霉菌(Streptomyces rectiviolaceus)相似性最高,为99.71%。抗菌谱试验表明,菌株ZH-356对苹果树腐烂病菌、小麦赤霉病菌、小麦根腐病菌和番茄早疫病菌等多种植物病原真菌均具有较强的抑制作用,这种抑制作用可导致苹果树腐烂病菌菌丝变粗、交叉扭曲、分支变少且容易断裂。此外,ZH-356产生的抑菌活性物质对温度和酸碱度具有高度稳定性,并且该活性物质只存在于其胞内,只有当ZH-356遇到植物病原真菌时才会被分泌出来以抑制它们的生长。在离体枝条的苹果树腐烂病菌感染预防试验中,ZH-356对苹果树腐烂病防效可达94%以上,而在患腐烂病苹果树的防治试验中,ZH-356菌制剂对苹果树腐烂病的防效高达100%。[结论]链霉菌ZH-356抑菌谱广,对多种植物病原真菌均具有良好的拮抗活性,可作为防治植物真菌病害的生防菌株,为基于ZH-356菌株的生防菌剂的开发和防治苹果树腐烂病等植物真菌病害奠定了基础。  相似文献   

10.
对曼陀罗(Datura stramonium L.)根际链霉菌Streptomyces sp.KIB-H1556的次级代谢产物进行研究,利用硅胶柱色谱、凝胶柱色谱和半制备HPLC等分离手段对其发酵产物进行分离纯化,采用MS和NMR等波谱学手段并结合文献数据鉴定了3个单体化合物的结构,分别为:Bafilomycin D(1)、Bafilomycin B1(2)和Bafilomycin B2(3)。初步抗植物病原真菌活性筛选发现化合物2和3具有广谱抗真菌活性,尤其对玉米病原真菌的抑制活性显著,可作为玉米病原真菌病害的潜在生物防治剂。  相似文献   

11.
A bleach-stable, thermotolerant, alkaline protease for detergent formulation from a newly isolated Bacillus SB5 is reported. Most (85%) activity of the enzyme was retained in the presence of 10% (v/v) H2O2 and 1% SDS (w/v) at 40°C, after 1 h. The enzyme was optimal at pH 10 and 60°C to 70°C. Enzyme activity was enhanced 30 to 80% in presence of ionic and non-ionic detergents, surfactants and commercial detergents or bleach.  相似文献   

12.
从养殖池污泥中分离筛选了1株优良的鲟源嗜水气单胞菌拮抗芽孢杆菌G1,其对鲟源嗜水气单胞菌S1产生的抑菌圈直径为18.50 mm。通过API50CH细菌鉴定系统以及16S rRNA序列分析法,菌株G1被鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens),GenBank登录号HM245965.1,其16S rRNA序列与基因库中芽孢杆菌属菌株的16S rRNA序列有99%100%的同源性,而且与解淀粉芽孢杆菌Ba-74501(GenBank登录号:DQ422953.1)的亲缘关系最近。菌株G1的最适生长pH值为7,最适生长温度为30°C,其在30°C、200 r/min条件下的生长曲线为:0 6 h为生长延迟期,6 54 h为对数生长期,54 90 h为稳定期,90 h以后为衰亡期。此外,菌株G1对其他实验选用的病原性嗜水气单胞菌也表现出良好的拮抗活性。本实验结果有利于填补嗜水气单胞菌拮抗菌在分类地位、生物学特性等方面的不足,为鲟鱼嗜水气单胞菌病的生物防控提供科学资料。  相似文献   

13.
刘柱  华颖  江波  沐万孟 《微生物学通报》2008,35(9):1420-1425
从亚洲传统发酵食品--虾酱中筛选到一株产纤维蛋白溶解酶能力较强的菌株,通过形态和常规生理生化性质鉴定,发现该菌株与芽孢杆菌属细菌的特征很相近,结合16S rDNA序列分析,构建系统发育树,确定其分类地位,由中国典型培养物保藏中心定名为Bacillus sp.nov.SK006(CCTCC No.M 205071),并优化了发酵培养基组成及培养条件,本研究为该菌株的深入研究和广泛应用提供了理论依据.  相似文献   

14.
一株芽孢杆菌胞外多糖的分离纯化及其抗氧化性测定   总被引:3,自引:0,他引:3  
基于实验室从新疆罗布泊沙漠筛选到一株芽孢杆菌, 研究了该菌胞外多糖的分离纯化工艺及其抗氧化性质。发酵液经离心, 抽滤等预处理后, 使用Sevag试剂除蛋白, 并以无水乙醇作提取溶剂, 通过正交实验确定最佳提取条件为: pH为7.0, 温度为4°C, 时间为1.5 h, 料液比为1:4。粗多糖溶解后上活性炭柱(1.5 cm ′ 24 cm), 用蒸馏水、60%乙醇及95%乙醇洗脱, 分离得到主要部分, 再经Sephadex G-100凝胶柱, 用0.2 mol/L的NaCl溶液洗脱, 硫酸苯酚法和考马斯亮蓝  相似文献   

15.
The nucleotide sequences of three independent fragments (designated no. 3, 4, and 9; each 15–20 kb in size) of the genome of alkaliphilic Bacillus sp. C-125 cloned in a λ phage vector have been determined. Thirteen putative open reading frames (ORFs) were identified in sequenced fragment no. 3 and 11 ORFs were identified in no. 4. Twenty ORFs were also identified in fragment no. 9. All putative ORFs were analyzed in comparison with the BSORF database and non-redundant protein databases. The functions of 5 ORFs in fragment no. 3 and 3 ORFs in fragment no. 4 were suggested by their significant similarities to known proteins in the database. Among the 20 ORFs in fragment no. 9, the functions of 11 ORFs were similarly suggested. Most of the annotated ORFs in the DNA fragments of the genome of alkaliphilic Bacillus sp. C-125 were conserved in the Bacillus subtilis genome. The organization of ORFs in the genome of strain C-125 was found to differ from the order of genes in the chromosome of B. subtilis, although some gene clusters (ydh, yqi, yer, and yts) were conserved as operon units the same as in B. subtilis. Received: April 17, 1998 / Accepted: June 23, 1998  相似文献   

16.
【背景】蛋白酶广泛应用于制革行业中,酶法脱毛对环境污染较小,但蛋白酶对化学试剂的不稳定性及胶原降解活性限制了其工业应用。【目的】克隆芽孢杆菌(Bacillussp.)N1基因组的碱性蛋白酶基因,实现其在大肠杆菌中的异源表达,并对重组酶酶学性质及脱毛作用进行研究。【方法】利用基因组文库法克隆获得蛋白酶基因aprG,构建重组大肠杆菌(Escherichiacoli)BL21(DE3)pLysS/pET-28a-aprG。异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达该重组酶,以福林酚显色法对其酶学性质进行研究,并将AprG作用于羊皮、兔皮和羽毛。【结果】克隆得到蛋白酶基因aprG,并实现其在大肠杆菌中的表达。重组酶AprG最适反应温度为50°C,最适反应pH为10.0。各种金属离子对AprG活性影响较小,且AprG对表面活性剂和氧化剂、还原剂的耐受性较强。底物特异性分析表明,该酶胶原活性较低。AprG对羊皮和兔皮作用显著,且降解羽毛效果明显。【结论】蛋白酶AprG在制革行业中具有良好的应用前景。  相似文献   

17.
A strain of bacterium producing antifungal antibiotic was isolated and identification of the strain was attempted. We could identify the bacterium as being a Bacillus sp., based on morphological observation, physiological characteristics, and 16S rDNA sequence analysis, thus leading us to designate the strain as Bacillus sp. AH-E-1. The strain showed potent antibiotic activity against phytopathogenic and human pathogenic fungi by inducing mycelial distortion and swelling and inhibiting spore germination. The antibiotic metabolite produced by the strain demonstrated excellent thermal and pH (2-11) stability, but was labile to autoclaving. From these results, we could find a broader antifungal activity of Bacillus genus. Isolation and characterization of the active agent produced by the strain are under progress.  相似文献   

18.
AIMS: To investigate antifungal activity of a novel compound (named as CF66I provisionally) against plant pathogenic fungi, mainly including Fusarium sp., Colletotrichum lindemuthianum, Rhizoctonia solani, etc. METHODS AND RESULTS: Minimal inhibition concentrations (MIC) and minimal fungicidal concentrations (MFC) of CF66I for each fungi were determined using serial broth dilution method. The data demonstrated MIC ranged from 2.5 to 20.0 microg ml(-1) and MFC were shown at levels of < or =7.5 microg ml(-1) except Fusarium sp. With reverse microscopy, profound morphological alterations of fungal cells were observed after exposure to CF66I. Conidiospores were completely inhibited, and protoplasm aggregated to form chalamydospores because of the changes of cell permeability. Some chalamydospores were broken, suggesting the compound probably possessed strong ability of damaging the cell wall. In addition, CF66I was investigated for its antifungal stability against Curvularia lunata. The results showed CF66I kept strong fungi-static activity over-wide pH range (pH 4-9) and temperature range (from -70 to 120 degrees C). CONCLUSIONS: The compound CF66I exhibited strong and stable broad-spectrum antifungal activity, and had a significant fungicidal effect on fungal cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Results from prebiocontrol evaluations performed to date are probably useful in the search for alternative approaches to controlling serious plant pathogens.  相似文献   

19.
Bacillus sp. NTU-06 was used to produce xylanase, which is an important industrial enzyme used in the pulp and paper industry. The enzyme was purified by fast protein liquid chromatography (FPLC) and had a molecular mass of 24 kDa. The enzyme was active over a concentration range of 0–20% sodium chloride in culture broth, although its activity was optimal in 5% sodium chloride. A salinity stability test showed that 43% of the enzyme activity was retained after 4 h in 20% sodium chloride. Xylanase activity was maximal at pH 8.0 and 40°C. The enzyme was somewhat thermostable, retaining 20% of the original activity after incubation at 70°C for 4 h. The xylanase had Km and Vmax values of 3.45 mg mL−1 and 387.3 µmol min−1mg−1, respectively. The deduced internal amino acid sequence of Bacillus sp. NTU-06 xylanase resembled the sequence of beta-1,4-endoxylanase, which is a member of glycoside hydrolase family 11. Some of the novel characteristics that make this enzyme potentially effective in xylan biodegradation are discussed.  相似文献   

20.
Fungal and bacterial pathogens infect a diverse range of hosts including various plant and animal species. Fungal and bacterial diseases, especially of plants and aquatic animals, such as fish, lead to significant damage to crops and aquaculture, respectively, worldwide. The present study was conducted to isolate and characterize potent Bacillus strains with significant antagonistic activity against the major plant and fish pathogenic fungi and bacteria. We randomly collected 22 isolates of Bacillus from the soil, rhizosphere, and sediment from different parts of Bangladesh. Initial characterization, based on in vitro antagonistic activity on the culture plate, resulted in the selection of four gram-positive Bacillus sp. isolates. Among these, the isolate BC01, obtained from soil demonstrated the highest broad-spectrum anti-bacterial and anti-fungal activities. We confirmed the genus of BC01 to be Bacillus by morphological and biochemical tests as well as using molecular data analysis tools, including the study of 16s rDNA, phylogenetic relationship, and evolutionary divergence scores. The isolate significantly inhibited the mycelial growth of the plant pathogen, Penicillium digitatum and fish pathogen, Aphanomyces invadans in vitro. The anti-bacterial effect of the isolate was also evaluated against Pseudomonas spp. and Xanthomonas spp., the two deadliest plant pathogens, and Aeromonas veronii, Pseudomonas fluorescens, and Streptococcus iniae, three major fish pathogens that are primarily responsible for global aquaculture loss. The results of the present study could pave the way for developing potent drugs to combat microbial infection of plants and fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号