首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cyclic nucleotide phosphodiesterase (3':5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) systems of many tissues show multiple physical and kinetic forms. In contrast, the soluble rat uterine phosphodiesterase exists as a single enzyme form with non-linear Lineweaver-Burk kinetics for cyclic AMP (app. Km of approx. 3 and 20 microM) and linear kinetics for cyclic GMP (app. Km of approx. 3 microM) since the two hydrolytic activities are not separated by a variety of techniques. In uterine cytosolic fractions, cyclic AMP is a non-competitive inhibitor of cyclic GMP hydrolysis (Ki approx. 32 microM). Also, cyclic GMP is a non-competitive inhibitor of cyclic AMP hydrolysis (Ki approx 16 microM) at low cyclic GMP/cyclic AMP substrate ratios. However, cyclic GMP acts as a competitive inhibitor of cyclic AMP phosphodiesterase (Ki approx 34 microM) at high cyclic GMP/cyclic AMP substrate ratios. When a single hydrolytic form of uterine phosphodiesterase, separated initially by DEAE anion-exchange chromatography, is treated with trypsin (0.5 microgram/ml for 2 min) and rechromatographed on DEAE-Sephacel, two major forms of phosphodiesterase are revealed. One form elutes at 0.3 M NaOAc- and displays anomalous kinetics for cyclic AMP hydrolysis (app. Km of 2 and 20 microM) and linear kinetics for cyclic GMP (app. Km approx. 5 microM), kinetic profiles which are similar to those of the uterine cytosolic preparations. A second form of phosphodiesterase elutes at 0.6 M NaOAc- and displays a higher apparent affinity for cyclic AMP (app. Km approx. 1.5 mu) without appreciable cyclic GMP hydrolytic activity. These data provide kinetic and structural evidence that uterine phosphodiesterase contains distinct catalytic sites for cyclic AMP and cyclic GMP. Moreover, they provide further documentation that the multiple forms of cyclic nucleotide phosphodiesterase in mammalian tissues may be conversions from a single enzyme species.  相似文献   

2.
Murine adrenal cortex tumor Y-1 cells contained both soluble and particulate forms of cyclic nucleotide phosphodiesterase (3',5'-cyclic AMP 5'-nucleotide hydrolase, EC 3.1.4.17). The soluble forms of the enzyme comprised 80% of total cellular phosphodiesterase activity. The soluble enzyme(s) hydrolyzed both cyclic AMP and cyclic GMP, with apparent Km values of 125 and 30 microM, respectively. Soluble cyclic AMP phosphodiesterase showed marked inhibition by the calcium chelator, ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), and the anticalmodulin drugs, chlorpromazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), and calmidazolium. No alteration in soluble cyclic GMP phosphodiesterase activity was observed when cyclic AMP was added to the assay. Resolution of the soluble enzymatic activity by DEAE-cellulose chromatography in the presence of calcium showed two peaks of phosphodiesterase activity. Further purification of one of these peaks on DEAE-cellulose in the presence of EGTA yielded a phosphodiesterase activity peak that was stimulated fivefold by calmodulin. The particulate form of the enzyme hydrolyzed both cyclic AMP anc cyclic GMP; the apparent Km values for these substrates were similar (90 and 100 microM, respectively). Hydrolysis of cyclic GMP by the particulate enzyme was inhibited by cyclic AMP in a concentration-dependent manner with an apparent half-maximal inhibitory concentration of 100 microM. The particulate form of phosphodiesterase was not inhibited by EGTA or anticalmodulin drugs.  相似文献   

3.
Cyclic nucleotide phosphodiesterase activity towards cyclic AMP and cyclic GMP was studied in extracts of rat islets of Langerhans. Biphasic Eadie plots [Eadie (1942) J. Biol. Chem. 146, 85-93] were obtained with either substrate suggesting the presence of both 'high'- and 'low'-Km components. The apparent Km values were 6.2 +/- 0.5 (n = 8) microM and 103.4 +/- 13.5 (6) microM for cyclic AMP and 3.6 +/- 0.3 (12) microM and 61.4 +/- 7.5 (13) microM for cyclic GMP. With cyclic AMP as substrate, phosphodeisterase activity was increased by calmodulin and Ca2+ and decreased by trifluoperazine, a specific inhibitor of calmodulin. With cyclic GMP as substrate, phosphodiesterase activity was decreased by omission of Ca2+ or addition of trifluoperazine. Addition of exogenous calmodulin had no effect on activity. The data suggest that Ca2+ may influence the islet content of cyclic AMP and cyclic GMP via effects on calmodulin-dependent cyclic nucleotide phosphodiesterase(s).  相似文献   

4.
Separation of multiple forms of cyclic nucleotide phosphodiesterase from the soluble supernatant fraction of rat neostriatum by isoelectric focusing yielded five separate peaks of cyclic nucleotide hydrolysing activity. Each separated enzyme form displayed a complex kinetic pattern for the hydrolysis of both cyclic AMP and cyclic GMP, and there were two apparent Km's for each nucleotide. At 1 microM substrate concentration, four enzyme forms exhibited higher activity with cyclic AMP than with cyclic GMP, while one form yielded higher activity with cyclic GMP than with cyclic AMP. Cyclic AMP and cyclic GMP were both capable of almost complete inhibition of the hydrolysis of the other nucleotide in all the peaks separated by isoelectric focusing; the IC50's for this interaction correlated well with the relative rates of hydrolysis of each nucleotide in each peak. The ratio of activity at 1 microM substrate concentration for the five enzyme forms separated by isoelectric focusing was 10:10:5:15:1 for cyclic AMP hydrolysis; and 6:6:4:8:2 for cyclic GMP hydrolysis; and the isoelectric points of the five peaks were 4.3, 4.45, 4.7, 4.85, and 5.5, respectively. Known phosphodiesterase inhibitors did not preferentially inhibit any of the separated forms of activity for either cyclic AMP or cyclic GMP hydrolysis, at either high (100 microM) or low (1 microM) substrate concentrations. Preliminary examination of the subcellular distribution of the different forms of enzyme activity indicated a different degree of attachment of the various forms to particulate tissue components. Isoelectric focusing of the soluble supernatant of rat cerebellum gave rise to a slightly different pattern of isoelectric forms from the neostriatum, indicating a different cellular distribution of the isoelectric forms of PDE in rat brain. Polyacrylamide disc gel electrophoresis of the soluble supernatant of rat neostriatum also generated a characteristic pattern of five separate peaks of cyclic nucleotide phosphodiesterase activity, each of which hydrolysed both cyclic AMP and cyclic GMP. Polyacrylamide gel electrophoresis of single enzyme forms previously separated by isoelectric focusing gave single peaks, with a marked correspondence between the enzyme forms produced by isoelectric focusing and those produced by gel electrophoresis, suggesting that both protein separation procedures were isolating the same enzyme forms. The results indicate the existence of multiple isoelectric forms of cyclic nucleotide phosphodiesterase in the soluble supernatant fraction of rat neostriatum, all of which exhibit similar properties. In this tissue a single kinetic form of this enzyme appears to exist displaying complex kinetic behaviour indicative of negative cooperativity and hydrolysing both cyclic AMP and cyclic GMP, with varying affinities.  相似文献   

5.
The cyclic nucleotide phosphodiesterase (EC 3.4.16) activities of a rat liver particulate fraction were analyzed after solubilization by detergent or by freeze-thawing. Analysis of the two extracts by DEAE-cellulose chromatography revealed that they contain different complements of phosphodiesterase activities. The detergent-solubilized extract contained a cyclic GMP phosphodiesterase, a low affinity cyclic nucleotide phosphodiesterase whose hydrolysis of cyclic AMP was activated by cyclic GMP and a high affinity cyclic AMP phosphodiesterase. The freeze-thaw extract contained a cyclic GMP phosphodiesterase and two high affinity cyclic AMP phosphodiesterase, but no low affinity cyclic nucleotide phosphodiesterase. The cyclic AMP phosphodiesterase activities from the freeze-thaw extract and from the detergent extract all had negatively cooperative kinetics. One of the cyclic AMP phosphodiesterases from the freeze-thaw extract (form A) was insensitive to inhibition by cyclic GMP; the other freeze-thaw solubilized cyclic AMP phosphodiesterase (form B) and the detergent-solubilized cyclic AMP phosphodiesterase were strongly inhibited by cyclic GMP. The B enzyme appeared to be converted into the A enzyme when the particulate fraction was stored for prolonged periods at -20 degrees C. The B form was purified extensively, using DEAE-cellulose, a guanine-Sepharose column and gel filtration. The enzyme retained its negatively cooperative kinetics and high affinity for both cyclic AMP and cyclic GMP throughout the purification, although catalytic activity was always much greater for cyclic AMP. Rabbit antiserum was raised against the purified B enzyme and tested via a precipitin reaction against other forms of phosphodiesterase. The antiserum cross-reacted with the A enzyme and the detergent-solubilized cyclic AMP phosphodiesterase from rat liver. It did not react with the calmodulin-activated cyclic GMP phosphodiesterase of rat brain, the soluble low affinity cyclic nucleotide phosphodiesterase of rat liver or a commercial phosphodiesterase preparation from bovine heart. These results suggest a possible interrelationship between the high affinity cyclic nucleotide phosphodiesterase of rat liver.  相似文献   

6.
The soluble supernatant fraction of bovine heart homogenates may be fractionated on a DEAE cellulose column into two cyclic nucleotide phosphodiesterases (EC 3.1.4.-):PI and PII phosphodiesterases, in the order of emergence from the column. In the presence of free Ca2+, the PI enzyme may be activated several fold by the protein activator which was discovered by Cheung((1971) J. Biol. Chem. 246, 2859-2869). The PII enzyme is refractory to this activator, and is not inhibited by the Ca2+ chelating agent, ethylene glycol bis (beta-aminoethyl ether)-N, N'-tetraacetate (EGTA). The activated activity of PI phosphodiesterase may be further stimulated by imidazole or NH+4, and inhibited by high concentrations of Mg2+. These reagents have no significant effect on either the PII enzyme or the basal activity of PI phosphodiesterase. Although both forms of phosphodiesterase can hydrolyze either cyclic AMP or cyclic GMP, they exhibit different relative affinities towards these two cyclic nucleotides. The PI enzyme appears to have much higher affinities toward cyclic GMP than cyclic AMP. Km values for cyclic AMP and cyclic GMP are respectively 1.7 and 0.33 mM for the non-activated PI phosphodiesterase; and 0.2 and 0.007 mM for the activated enzyme. Each cyclic nucleotide acts as a competitive inhibitor for the other with Ki values similar to the respective Km values. In contrast with PI phosphodiesterase, PII phosphodiesterase exhibits similar affinity toward cyclic AMP and cyclic GMP. The apparent Km values of cyclic AMP and cyclic GMP for the PII enzyme are approx. 0.05 and 0.03 mM, respectively. The kinetic plot with respect to cyclic GMP shows positive cooperativity. Each cyclic nucleotide acts as a non-competitive inhibitor for the other nucleotide. These kinetic properties of PI and PII phosphodiesterase of bovine heart are very similar to those of rat liver cyclic GMP and high Km cyclic AMP phosphodiesterases, respectively (Russel, Terasaki and Appleman, (1973) J. Biol. Chem. 248, 1334).  相似文献   

7.
Buffalo sperm heads contain more than 50% of the total cyclic AMP-phosphodiesterase activity (EC 3.1.4.17) present in spermatozoa. Its distribution in sperm heads revealed no activity in acrosome and other membrane structures present in the head. All the cyclic AMP-phosphodiesterase activity was found firmly bound to sperm chromatin which could not be solubilized. In addition to cyclic AMP, cyclic GMP was also hydrolysed by chromatin preparation. The rate of hydrolysis was 2.5-times more rapid with cyclic AMP than with cyclic GMP at their optimum pH of 7.5 and 8.0, respectively. The pH and heat stability profiles, inhibition studies and the effect of divalent metal ions indicated that the two activities are not associated with the same protein. Mixed substrate analysis showed two sites at which the hydrolysis of cyclic AMP and cyclic GMP is catalysed. Chromatin cyclic nucleotide phosphodiesterases exhibited kinetics typical of one enzyme species both for cyclic AMP (K m = 100 microM; V = 1.0 nmol/min per mg protein) and cyclic GMP (Km = 23 microM; V = 0.4 nmol/min per mg protein). Each cyclic nucleotide was found to be a competitive inhibitor of the hydrolysis of the other with a Ki value of 30.18 microM for cyclic AMP hydrolysis and 256 microM for cyclic GMP hydrolysis. Hill coefficients of 1.0 obtained in the presence of cyclic AMP for cyclic GMP hydrolysis and vice-versa indicated no allosteric interactions. It is suggested that chromatin cyclic nucleotide phosphodiesterase may have a role post fertilization in cell growth and differentiation with no role in sperm motility which is regulated by similar enzymes present in sperm flagella.  相似文献   

8.
Two enzymes displaying cyclic GMP-stimulated cyclic AMP phosphodiesterase activity were purified from rat liver to apparent homogeneity: a 'particulate enzyme' found as an integral membrane protein associated with the plasma membrane, and a 'soluble' enzyme found in the cytosol. The physical properties of these enzymes were very similar, being dimers of Mr 134,000, composed in each instance of two subunits of Mr = 66,000-67,000. Both enzymes showed similar kinetics for cyclic AMP hydrolysis. They are both high-affinity enzymes, with kinetic constants for the particulate enzyme of Km = 34 microM and Vmax. = 4.0 units/mg of protein and for the cytosolic enzyme Km = 40 microM and Vmax. = 4.8 units/mg of protein. In both instances hydrolysis of cyclic AMP appeared to show apparent positive co-operativity, with Hill coefficients (happ.) of 1.5 and 1.6 for the particulate and cytosolic enzymes respectively. However, in the presence of 2 microM-cyclic GMP, the hydrolysis of cyclic AMP obeyed Michaelis kinetics (happ. = 1) for both enzymes. The addition of micromolar concentrations of cyclic GMP had little effect on the Vmax. for cyclic AMP hydrolysis, but lowered the Km for cyclic AMP hydrolysis to around 20 microM in both cases. However, at low cyclic AMP substrate concentrations, cyclic GMP was a more potent activator of the particulate enzyme than was the soluble enzyme. The activity of these enzymes could be selectively inhibited by cis-16-palmitoleic acid and by arachidonic acid. In each instance, however, the hydrolysis of cyclic AMP became markedly more sensitive to such inhibition when low concentrations of cyclic GMP were present. Tryptic peptide maps of iodinated preparations of these two purified enzyme species showed that there was considerable homology between these two enzyme forms.  相似文献   

9.
A low-Km cyclic nucleotide phosphodiesterase solubilised from rat liver membranes by mild proteolysis with chymotrypsin has been purified to apparent homogeneity. The purification included chromatography on cellulose phosphate, Ecteola-cellulose, hydroxyapatite, a theophylline affinity matrix and HPLC on a DEAE-substituted column. The purified enzyme has linear kinetic plots with a Km of 0.24 microM and a Vmax of 6.2 mumol mg-1 min-1 with cyclic AMP as a substrate. It also hydrolyses cyclic GMP with a Km of 0.17 microM and a Vmax which is about a third of that with cyclic AMP. Cyclic GMP is also a competitive inhibitor of cyclic AMP hydrolysis with a Ki of 0.18 microM. The proteolytically solubilised enzyme has a subunit molecular mass of 73 kDa by SDS gel electrophoresis and of 130 kDa by HPLC size-exclusion chromatography, suggesting that it exists as a dimer. A partially purified preparation of this enzyme was used to raise antiserum in a sheep. The antiserum immunoprecipitated activity from liver and adipose tissue of rat and mouse. It had little activity against phosphodiesterase from other rat tissues or other species. Insulin-activated phosphodiesterase from both adipocytes and hepatocytes was immunoprecipitated by the antiserum suggesting that the purified enzyme was an insulin-sensitive phosphodiesterase.  相似文献   

10.
Cyclic AMP phosphodiesterase activity in bovine brain coated vesicles displayed a Km of approximately 22 microM for cyclic AMP, a Vmax of 3.2 nmol/min/mg protein, and a Hill coefficient of 1.5, suggesting positive cooperativity. The enzyme activity was stimulated by cyclic GMP with maximal indexes of stimulation ranging between 40 and 300%. Both basal and stimulated phosphodiesterase activities were immunotitrated with polyclonal antibodies against clathrin attached to heat-inactivated, formaldehyde-fixed Staphylococcus aureus cells. The main form of phosphodiesterase activity present in the immunoprecipitated brain coated vesicle preparation also is stimulated by cyclic GMP. The allosteric behavior was modulated by cyclic GMP. All of these properties are typical of type II or cyclic GMP-sensitive phosphodiesterases in addition to their calcium and calmodulin independence. Competition experiments with a series of phosphodiesterase inhibitors, papaverine, 1-methyl-3-isobutylxanthine, and theophylline, showed inhibition of cyclic AMP hydrolysis. Trifluoperazine was inactive at the highest concentration used, 100 microM. These compounds also inhibited the cyclic GMP-stimulated cyclic AMP hydrolysis with trifluoperazine practically inactive. At 5 microM cyclic AMP none of the inhibitors was seen to stimulate the cyclic AMP hydrolytic activity. The presence of an enzyme for the breakdown of cyclic nucleotides in brain coated vesicles may suggest a role for these second messengers in the in vivo functions of this organelle.  相似文献   

11.
The addition of arachidonic acid at 250 muM to cultures of human embryo lung fibroblasts (IMR-90) increases cellular cyclic AMP levels within 5 minutes to approximately 15-fold over basal. Other unsaturated fatty acids, 11, 14, 17-eicosatrienoic, linoleic, 8, 11, 14-eicosatrienoic and oleic also cause similar rapid elevation of cellular cyclic AMP. During this time interval, no detectable conversion of the added linoleic or arachidonic acids to prostaglandin is observed. These cells produce prostaglandins at measurable concentrations in response to treatment with ascorbic acid or bradykinin. Saturated fatty acids have no influence on cyclic AMP levels in these cells. This effect of unsaturated fatty acids on cellular cyclic AMP levels varies with the cell type. For example, smooth muscle and endothelial cells obtained from the calf pulmonary artery show very little or no increase in cellular cyclic AMP upon exposure to arachidonic acid.  相似文献   

12.
We have separated and characterized a Ca2+- and calmodulin-insensitive cyclic nucleotide phosphodiesterase from rat liver supernatant as well as an analogous enzyme from HTC hepatoma cells. Chromatography of rat liver supernatant on DEAE-cellulose in the presence and subsequently in the absence of 0.1 mM-CaCl2 resulted in the separation of two distinct phosphodiesterase activities, both of which preferentially hydrolysed cyclic GMP rather than cyclic AMP. One enzyme, E-Ib, was activated in the presence of Ca2+ and calmodulin, and the other, E-Ia, was not. The E-Ia enzyme, which did not bind to calmodulin-Sepharose, had Mr 325 000 and displayed anomalous kinetic behaviour [Km (cyclic GMP) 1.2 microM; Km (cyclic AMP) 15.4 microM]. The E-Ib enzyme, which bound to calmodulin-Sepharose in the presence of Ca2+, had Mr 150 000 and exhibited Michaelis-Menten kinetics for hydrolysis of cyclic GMP [Km (basal) 6.5 microM; Km (activated) 12.0 microM]. E-Ia activity was diminished by incubation with alpha-chymotrypsin and was unaffected by the action of a rat kidney lysosomal proteinase. Partial hydrolysis of E-Ib enzyme by alpha-chymotrypsin or the kidney proteinase resulted in irreversible activation of the enzyme. The E-I enzyme isolated from HTC hepatoma cells was similar to the rat liver E-Ia enzyme in many respects. Its apparent Mr was 325 000. Its activity was unaffected by calmodulin in the presence of Ca2+ or by incubation with the kidney proteinase, and was decreased by digestion with alpha-chymotrypsin. Unlike the liver E-Ia enzyme, however, the hepatoma enzyme exhibited normal kinetic behaviour, with Km (cyclic GMP) 3.2 microM. Although HTC cells contain two other phosphodiesterases analogous to those in rat liver and a calmodulin-like activator of phosphodiesterase, no calmodulin-sensitive phosphodiesterase was detected.  相似文献   

13.
A high-speed supernatant of rat liver extract displayed multiple forms of cyclic nucleotide phosphodiesterase (EC 3.1.4.17). One of the forms catalyzed the hydrolysis of cyclic AMP and cyclic GMP, with approximately comparable facility. One salient feature of the enzyme is that at micromolar concentrations, cyclic GMP stimulated the hydrolysis of cyclic AMP, but not vice versa. Another is that the activity of phosphodiesterase varied as a function of enzyme concentration in the assayed system: the enzyme activity was higher at low than at high enzyme concentrations. A concentrated enzyme was not stimulated by cyclic GMP but was stimulated by cyclic GMP upon dilution of the enzyme. Conversely, stimulation of the enzyme by cyclic GMP could be reversed by increasing the enzyme concentration. The cyclic GMP-stimulated cyclic AMP phosphodiesterase was partially purified by a continuous sucrose density gradient. The apparent change of phosphodiesterase activity as a function of enzyme concentration was also observed after partial purification by the sucrose density gradient. High enzyme concentrations favored the aggregated form of phosphodiesterase, whereas low concentrations favored the dissociated form. Dilution of the enzyme shifted the equilibrium toward the dissociated form, which presumably exposed the cyclic GMP regulatory site on the enzyme molecule.  相似文献   

14.
The activities of adenylate and guanylate cyclase and cyclic nucleotide 3':5'-phosphodiesterase were determined during the aggregation of human blood platelets with thrombin, ADP, arachidonic acid and epinephrine. The activity of guanylate cyclase is altered to a much larger degree than adenylate cyclase, while cyclic nucleotide phosphodiesterease activity remains unchanged. During the early phases of thrombin-and ADP-induced platelet aggregation a marked activation of the guanylate cyclase occurs whereas aggregation induced by arachidonic acid or epinephrine results in a rapid diminution of this activity. In all four cases, the adenylate cyclase activity is only slightly decreased when examined under identical conditions. Platelet aggregation induced by a wide variety of aggregating agents including collagen and platelet isoantibodies results in the "release" of only small amounts (1-3%) of guanylate cyclase and cyclic nucleotide phosphodiesterase and no adenylate cyclase. The guanylate cyclase and cyclic nucleotide phosphodiesterase activities are associated almost entirely with the soluble cytoplasmic fraction of the platelet, while the adenylate cyclase if found exclusively in a membrane bound form. ADP and epinephrine moderately inhibit guanylate and adenylate cyclase in subcellular preparations, while arachidonic and other unsaturated fatty acids moderately stimulate (2-4-fold) the former. It is concluded that (1) the activity of platelet guanylate cyclase during aggregation depends on the nature and mode of action of the inducing agent, (2) the activity of the membrnae adenylate cyclase during aggregation is independent of the aggregating agent and is associated with a reduction of activity and (3) cyclic nucleotide phosphodiesterase remains unchanged during the process of platelet aggregation and release. Furthermore, these observations suggest a role for unsaturated fatty acids in the control of intracellular cyclic GMP levels.  相似文献   

15.
Cyclic nucleotide phosphodiesterase activity (3', 5'-cyclic-nucleotide 5'-nucleotidohydrolase, 3.1.2.17) was studied in homogenates of WI-38 human lung fibroblasts using 0.1--200 microgram cyclic nucleotides. Activities were observed with low Km for cyclic AMP(2--5 micron) and low Km for cyclic GMP (1--2 micron) as well as with high Km values for cyclic AMP (100--125 micron) and cyclic GMP (75--100 micron). An increased low Km cyclic AMP phosphodiesterase activity was found upon exposure of intact fibroblasts to 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase activity in broken cell preparations, as well as to other agents which elevate cyclic AMP levels in these cells. The enhanced activity following exposure to 3-isobutyl-1-methylxanthine was selective for the low Km cyclic AMP phosphodiesterase since there was no change in activity of low Km cyclic GMP phosphodiesterase activity or in high Km phosphodiesterase activity with either nucleotide as substrate. The enhanced activity due to 3-isobutyl-1-methylxanthine appeared to involve de novo synthesis of a protein with short half-life (30 min), based on experiments involving cycloheximide and actinomycin D. This activity was also enhanced with increased cell density and by decreasing serum concentration. Studies of some biochemical properties and subcellular distribution of the enzyme indicated that the induced enzyme was similar to the non-induced (basal) low Km cyclic AMP phosphodiesterase.  相似文献   

16.
DEAE-cellulose chromatography demonstrated that the levels of the individual cyclic nucleotide phosphodiesterase were unchanged in the aorta and heart of the spontaneously hypertensive rat as compared with the normotensive control rat. Three peaks of cyclic nucleotide phosphodiesterase activity were observed in both heart and aorta. Peak I enzyme hydrolyzed predominantly cyclic GMP while peak III enzyme hydrolyzed predominantly cyclic AMP. Peak II enzyme was less specific but hydrolyzed more cyclic GMP than cyclic AMP The levels of phosphodiesterase activator in aorta and the responsiveness of peaks I and II from aorta and heart to activator were unchanged in the hypertensive rat. Therefore the decrease in cyclic AMP levels observed by others in aorta and heart of the spontaneously hypertensive rat were probably not due to altered phosphodiesterase activity.  相似文献   

17.
The effects of sodium alpha-tocopherol phosphate (TPNa), a new vitamin E derivative, on cyclic nucleotide phosphodiesterases from a soluble supernatant fraction of rat liver were investigated. TPNa produced a dose-dependent increase in cyclic AMP hydrolysis at a low substrate concentration (1 muM cyclic AMP), whereas the compound inhibited the hydrolytic activity at a high substrate level (100 muM cyclic AMP). Cyclic GMP phosphodiesterase activity was suppressed by TPNa regardless of the substrate concentration. The addition of TPNa did not change the apparent Km value (50 muM) of cyclic AMP phosphodiesterase at low substrate level (less than 5 muM). In contrast, at higher substrate concentration, the concave downward curve observed in a Lineweaver-Burk plot became straight in the presence of TPNa. Low concentrations of cyclic GMP, which are known to activate cyclic AMP hydrolysis, showed an additive effect on cyclic AMP phosphodiesterase only when a submaximal concentration of cyclic GMP was present in addition to TPNa. These and other data suggest that TPNa modifies cyclic AMP phosphodiesterase in all allosteric fashion.  相似文献   

18.
The addition of arachidonic acid at 250 μM to cultures of human embryo lung fibroblasts (IMR-90) increases cellular cyclic AMP levels within 5 minutes to approximately 15-fold over basal. Other unsaturated fatty acids, 11, 14, 17-eicosatrienoic, linoleic, 8, 11, 14-eicosatrienoic and oleic also cause similar rapid elevation of cellular cyclic AMP. During this time interval, no detectable conversion of the added linoleic or arachidonic acids to prostaglandin is observed. These cells produce prostaglandins at measurable concentrations in response to treatment with ascorbic acid or bradykinin. Saturated fatty acids have no influence on cyclic AMP levels in these cells. This effect of unsaturated fatty acids on cellular cyclic AMP levels varies with the cell type. For example, smooth muscle and endothelial cells obtained from the calf pulmonary artery show very little or no increase in cellular cyclic AMP upon exposure to arachidonic acid.  相似文献   

19.
The calmodulin-dependent cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase (EC 3.1.4.17) activity of rat pancreas was purified 280-fold by affinity chromatography on calmodulin-Sepharose 4B. It then accounted for 15% of the total cytosol cyclic GMP nucleotide phosphodiesterase activity, in the presence of Ca2+, and represented a minor component of proteins specifically adsorbed by the column. This activity was resolved on a DEAE-Sephacel column into two fractions, termed PI and PII, on the basis of their order of emergence. After this step, PI and PII were purified 5650- and 3700-fold respectively. The molecular weight of PI was 175 000 and that of PII was 116 000, by polyacrylamide-gradient-gel electrophoresis. Both forms of phosphodiesterase could hydrolyse cyclic AMP and cyclic GMP, although PII displayed a higher affinity toward cyclic GMP than toward cyclic AMP. PI and PII exhibited negative homotropic kinetics in the absence of calmodulin. Upon addition of calmodulin, both enzymes displayed Michaelis-Menten kinetics and a 5-9-fold increase in maximal velocity, at physiological concentrations of cyclic GMP and cyclic AMP. When a pancreatic extract freshly purified by affinity chromatography was immediately analysed by high-performance gel-permeation chromatography on a TSK gel G3000 SW column, PII represented as much as 78% of the eluted activity. This percentage decreased to 52% when the sample was stored at 0 degrees C for 20 h before analysis, suggesting that PII, possibly predominant in vivo, was converted into the heavier PI form upon storage.  相似文献   

20.
Approximatively 2–8% of the cyclic nucleotide phosphodiesterase activity of a crude 1000 g supernatant from rat heart was associated with the washed 105,000 g pellet fraction. This activity exhibited biphasic Lineweaver-Burk plots over a large range of cyclic nucleotides concentrations. Concave-Bownward plots were obtained with cyclic AMP as the assay substrate, while cyclic GMP gave rise to concave-upward plots. Treatment of this particulate fraction by freezing and thawing and then with 2% Lubrol PX released the major part of phosphodiesterase activity into the supernatant (70 and 90% for cyclic AMP and cyclic GMP phosphodiesterase activities respectively). Isoelectric focusing of the solubilized enzyme revealed a single peak of phosphodiesterase activity. While the Lineweaver-Burk plots of cyclic AMP phosphodiesterase activity were not markedly modified by detergent treatment kinetic plots of cyclic GMP phosphodiesterase activity underwent a drastic transformation during the overall solubilization procedure. The substantial increase in the cyclic GMP rate of hydrolysis observed at low substrate level might explain the difference in the apparent yield of solubilization between cyclic AMP and cyclic GMP phosphodiesterase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号