共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphosphate Hydrolysis within Acidic Vacuoles in Response to Amine-Induced Alkaline Stress in the Halotolerant Alga Dunaliella salina 总被引:2,自引:2,他引:2
下载免费PDF全文

The location and mobilization of polyphosphates in response to an amine-induced alkaline stress were studied in the halotolerant alga Dunaliella salina. The following observations suggest that polyphosphates accumulate in acidic vacuoles: (a) Accumulation of large amounts of polyphosphates is manifested as intravacuolar dense osmiophilic bodies in electron micrographs. (b) Uptake of amines into the vacuoles induces massive hydrolysis of polyphosphates, demonstrated by in vivo 31P-nuclear magnetic resonance, and by analysis of hydrolytic products on thin layer chromatograms. The analysis indicates that: (a) Polyphosphate hydrolysis is kinetically correlated with amine accumulation and with the recovery of cytoplasmic pH. (b) The major hydrolytic product is tripolyphosphate. (c) The peak position of the tripolyphosphate terminal phosphate in nuclear magnetic resonance spectra is progressively shifted as the cells recover, indicating that the pH inside the vacuoles increases while the pH in the cytoplasm decreases. (d) In lysed cell preparations, in which vacuoles become exposed to the external pH, mild alkalinization in the absence of amines induces polyphosphate hydrolysis to tripolyphosphates. It is suggested that amine accumulation within vacuoles activates a specific phosphatase, which hydrolyzes long-chain polyphosphates to tripolyphosphates. The hydrolysis increases the capacity of the vacuoles to sequester amines from the cytoplasm probably by releasing protons required to buffer the amine, and leads to recovery of cytoplasmic pH. Thus, polyphosphate hydrolysis provides a high-capacity buffering system that sustains amine compartmentation into vacuoles and protects cytoplasmic pH. 相似文献
2.
Ion Content of the Halotolerant Alga Dunaliella salina 总被引:3,自引:0,他引:3
The intracellular concentration of the major ions in Dunaliellasalina cells were determined, following the removal of extracellularions by ion-exchange minicolumns. Log phase cells, grown inmedia containing 14 molar NaCl, contained 3050mM chloride and 200350 mM magnesium (5 mM in medium).Phosphorus, which is present intracellularly mostly as polyphosphate,was present in amounts of 60100 fmoles per cell, equivalentto a concentration of 6001,000 mM (0.2 mM in medium).Previous data indicated that such cells contained 2040mM Na+, 150300mM K+, 20mM SO24, and very low concentrationsof Ca2+ and charged nitrogenous compounds. Mg2+ and K+ seemto serve as the major counter ions for the intracellular negativecharge present in the massively accumulated polyphosphates.The former accounts for about 2/3 of the required positive charge.This is supported by the observation that limitation in thephosphate or K+ supply in the medium lead to a parallel decreasein the accumulation of intracellular phosphorus, Mg2+ or K+.
1Present address: Department of Vegetables, The Volcani Center,Bet-Dagan 50250, Israel. (Received June 13, 1988; Accepted August 25, 1988) 相似文献
3.
The unicellular, wall-less alga Dunaliella salina has been shown to contain an array of proteins modified by the covalent attachment of fatty acids. Myristic acid (14:0) comprised approximately 80% by weight of the protein-linked acyl groups in samples derived from cells cultured in medium containing 1.7 molar NaCl and 93% in samples from cells grown in medium containing 3.0 molar NaCl. Palmitic and stearic acids accounted for most of the remaining protein-bound acyl chains. Approximately 0.2% of the incorporated radioactivity was estimated to be in linkage with protein. The bulk of acyl chains (about 99%) were resistant to cleavage by alkali, indicating a preponderance of amide bonding. The sodium dodecyl sulfate-polyacrylamide electrophoresis labeling pattern of proteins from [3H]myristic-labeled cells was significantly different from that of proteins from cells exposed to [3H]palmitate. The appearance of radioactivity in certain proteins was also influenced by the salinity of the culture medium. Thus growth in moderate (1.7 molar) salt favored the acylation of a 48-kilodalton polypeptide whereas in high (3.0 molar) salt, a 17-kilodalton polypeptide was more heavily labeled. 相似文献
4.
Determination of Ion Content and Ion Fluxes in the Halotolerant Alga Dunaliella salina 总被引:5,自引:6,他引:5
下载免费PDF全文

A method to determine intracellular cation contents in Dunaliella by separation on cation-exchange minicolumns is described. The separation efficiency of cells from extracellular cations is over 99.9%; the procedure causes no apparent perturbation to the cells and can be applied to measure both fluxes and internal content of any desired cation. Using this technique it is demonstrated that the intracellular averaged Na+, K+, and Ca2+ concentrations in Dunaliella salina cultured at 1 to 4 molar NaCl, 5 millimolar K+, and 0.3 millimolar Ca2+ are 20 to 100 millimolar, 150 to 250 millimolar, and 1 to 3 millimolar, respectively. The intracellular K+ concentration is maintained constant over a wide range of media K+ concentrations (0.5-10 millimolar), leading to a ratio of K+ in the cells to K+ in the medium of 10 to 1,000. Severe limitation of external K+, induces loss of K+ and increase in Na+ inside the cells. The results suggest that Dunaliella cells possess efficient mechanisms to eliminate Na+ and accumulate K+ and that intracellular Na+ and K+ concentrations are carefully regulated. The contribution of the intracellular Na+ and K+ salts to the total osmotic pressure of cells grown at 1 to 4 molar NaCl, is 5 to 20%. 相似文献
5.
The Intracellular Na+ concentration in the halotolerant alga Dunaliella salina was measured in intact cells by 23Na-NMR spectroscopy, utilizing the dysprosium tripolyphosphate complex as a sodium shift reagent, and was found to be 88 ± 28 millimolar. Intracellular sodium ion content and intracellular volume were the same, within the experimental error, in cells adapted to grow in media containing between 0.1 and 4.0 molar NaCl. These values assume extracellular and intracellular NMR visibilities of the 23Na nuclei of 100 and 40%, respectively. The relaxation rate of intracellular sodium was enhanced with increasing salinity of the growth medium, in parallel to the intracellular osmosity due to the presence of glycerol, indicating that Na+ ions and glycerol are codistribbuted within the cell volume. 相似文献
6.
Partial Characterization of K and Ca Uptake Systems in the Halotolerant Alga Dunaliella salina
下载免费PDF全文

The uptake of K+ and Ca2+ in Dunaliella salina is mediated by two distinct carriers: a K+ carrier with a high selectivity against Na+, Li+, and choline+ but not towards Rb+, K+, Cs+, or NH4+, and a Ca2+ carrier with a high selectivity against Mg2+. The latter is specifically blocked by La3+ and by Cd2+. Apparent Km values for K+ and Ca2+ uptake are 2.5 and 0.8 millimolar, respectively, and their maximal calculated fluxes are 22 and 0.8 nanomoles per square meter per second, respectively. Effects of permeable ions and ionophores on K+ and Ca2+ uptake suggest that the driving force for their uptake is the transmembrane electrical potential. Inhibitors of ATP production, typical inhibitors of plasma membrane H+-ATPases and protonionophores inhibit K+ and Ca2+ uptake and accelerate K+ efflux. The results suggest that an H+-ATPase in the cell membrane provides the driving force for K+ and Ca2+ uptake. Efflux measurements from 86Rb+ and 45Ca2+ loaded cells suggest that part of the intracellular K+ and most of the intracellular Ca2+ is nonexchangeable with the extracellular pool. Correlations between phosphate and K+ contents and the effect of phosphate on K+ efflux suggest intracellular associations between K+ and polyphosphates. On the basis of these results, it is suggested that: (a) K+ and Ca2+ uptake in D. salina is driven by the transmembrane electrical potential which is generated by the action of an H+-ATPase of the plasma membrane. (b) Part of the intracellular K+ is associated with polyphosphate bodies, while most of the intracellular Ca2+ is accumulated in intracellular organelles in the algal cells. 相似文献
7.
Identification of Low Molecular Mass GTP-Binding Proteins in Membranes of the Halotolerant Alga Dunaliella salina 总被引:1,自引:1,他引:1
下载免费PDF全文

A family of specific guanine nucleotide-binding proteins in Dunaliella salina was studied. Polypeptides of different subcellular fractions were separated by electrophoresis and transferred to nitrocellulose or Immobilon membranes. Incubation of the transfer blots with [35S]GTPγS or [α-32P]GTP showed no evidence for GTP-binding proteins in the chloroplast and cytosol fractions. However, two GTP-binding proteins with molecular masses of 28 and 30 kilodaltons were present in the plasma membrane and microsomal fractions. An additional 29 kilodalton GTP-binding protein was detected in the plasma membrane. The mitochondrial fraction contained significant amounts of only the 28 kilodalton GTP-binding protein. Binding of [32P]GTP to the protein blots was completely prevented by 10 micromolar GTP or guanosine 5′-O-(2-thiodiphosphate) (added in 3 × 104-fold excess), whereas ATP or CTP had no effect on the binding. The 28 kilodalton GTP-binding protein was recognized by polyclonal antibodies to the ras-related YPT1 protein of yeast but not by the anti-ras Y13-259 monoclonal antibody. GTP-binding proteins present in the microsomal fraction could not be solubilized by incubation of microsomes with 1 molar NaCl or 0.2 molar Na2CO3, but some GTP-binding activity was solubilized when microsomes were treated with 6 molar urea. These results indicate that D. salina GTP-binding proteins are tightly associated with the membranes. The covalent attachment of fatty acids to these proteins was also investigated. Electrophoresis followed by fluorography of delipidated microsomal proteins extracted from [3H]myristic acid-labeled cells showed an intense labeling of a 28 kilodalton protein. We conclude that D. salina contains proteins resembling the ras-related proteins found in animal cells and higher plants. 相似文献
8.
On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil 总被引:1,自引:0,他引:1
Dunaliella bardawil, a β-carotene-accumulating halotolerant alga, has been analyzed for the effect of various growth conditions on its pigment content, and compared with Dunaliella salina, a β-carotene nonaccumulating species. In D. bardawil, increasing light intensity and light period or inhibiting growth by various stress conditions such as nutrient deficiency or high salt concentration caused a decrease in the content of chlorophyll per cell and an increase in the amount of β-carotene per cell. As a result, the β-carotene-to-chlorophyll ratio increased from about 0.4 to 13 grams per gram and the alga changed its visual appearance from green to deep orange. D. salina grown similarly decreased in content of both chlorophyll and β-carotene per cell and the culture turned from green to yellowish. Low chlorophyll-containing cells of D. bardawil or D. salina exhibit very high photosynthetic rates when expressed on a chlorophyll basis (~600 micromoles O2 evolved per milligram chlorophyll per hour).
Variation of pigment content in D. bardawil by a large variety of environmental agents has been correlated with the integral irradiance received by the algal culture during a division cycle. The higher the integral irradiance per division cycle, the lower the chlorophyll content per cell; the higher the β-carotene content per cell, and therefore the higher the β-carotene-to-chlorophyll ratio. The results are interpreted as indicating a protecting effect of β-carotene against injury by high irradiance under conditions of impairment in chlorophyll content per cell.
相似文献9.
Na+/H+ exchange activity in whole cells of the halotolerant alga Dunaliella salina can be elicited by intracellular acidification due to addition of weak acids at appropriate external pH. The changes in both intracellular pH and Na+ were followed. Following a mild intracellular acidification, intracellular Na+ content increased dramatically and then decreased. We interpret the phase of Na+ influx as due to the activation of the plasma membrane Na+/H+ antiporter and the phase of Na+ efflux as due to an active Na+ extrusion process. The following observations are in agreement with this interpretation: (a) the Na+ influx phase was sensitive to Li+, which is an inhibitor of the Na+/H+ antiporter, did not require energy, and was insensitive to vanadate; (b) the Na+ efflux phase is energy-dependent and sensitive to the plasma membrane ATPase inhibitor, vanadate. Following intracellular acidification, a drastic decrease in the intracellular ATP content is observed that is reversed when the cells regain their neutral pH value. We suggest that the intracellular acidification-induced change in the internal Na+ concentration is due to a combination of Na+ uptake via the Na+/H+ antiporter and an active, ATPase-dependent, Na+ extrusion. The Na+/H+ antiporter seems, therefore, to play a principal role in internal pH regulation in Dunaliella. 相似文献
10.
A 150 Kilodalton Cell Surface Protein Is Induced by Salt in the Halotolerant Green Alga Dunaliella salina 总被引:8,自引:3,他引:8
下载免费PDF全文

Dunaliella salina is an extremely halotolerant, unicellular, green alga lacking a rigid cell wall. Osmotic adaptation to high salinities is based on the accumulation of glycerol. To uncover other functions responsible for halotolerance, protein profiles of algae continuously grown in different salinities were compared. A 150 kilodalton protein (p 150) increased in amount with salt concentration. Furthermore, when the cells were subjected to drastic hyperosmotic shocks, p150 started to rise long after completion of the osmotic response but coincident with reinitiation of cell proliferation. Cells with an initially higher level of p150 resumed growth faster than cells with a lower level of the protein. Addition of cycloheximide early after hyperosmotic shock prevented the rise in p150, indicating this rise was due to de novo synthesis of the protein. These observations suggest that p150 is a saltinduced protein required for proliferation of the cells in saline media. p150 was purified to homogeneity and found to be a detergent-soluble glycoprotein. Polyclonal antibodies against p150 recognized a single protein component in D. salina crude extracts. A high Mr cross-reacting protein was also observed in another Dunaliella strain, D. bardawil. Immunoelectron microscopy localized p150 to the cell surface. 相似文献
11.
The extremely halotolerant green alga, Dunaliella parva, tolerates salt concentrations from 0.3 to 3.0 M NaCl. Effects of long-term adaptation to five distinct salinities were analyzed. Salt-dependent differences of physiological parameters such as growth rate, pigments, quantitative protein contents, and gas exchange were measured; furthermore the qualitative protein composition in salt-adapted cells was investigated using SDS-polyacrylamide gel electrophoresis. Proteins of apparent molecular masses of 26, 35, 39, 50, and 63 kDa were induced or intensified with an increase in external sodium chloride concentration whereas proteins of 85 and 101 kDa were diminished in high salt algae. After selective staining, four modifications of glycoproteins were observed. A glycoprotein of 96 kDa was produced exclusively in low salt cells whereas glycosylations of 105, 135, and 260 kDa were induced by high salt concentrations. 相似文献
12.
根据藻类甘油醛3-磷酸脱氢酶(Glyceraldehyde-3-phosphate dehydrogenase,GAPDH)氨基酸高度保守序列设计简并引物,采用5',3'-RACE和巢式PCR的方法,得到了杜氏盐藻(Dunaliella salina)GAPDH cDNA全长序列.序列同源性比较和进化树等生物信息学分析结果表明,根据获得的盐藻GAPDH的核酸序列推导的氨基酸序列与其他已知物种的GAPDH有较高的同源性.定向克隆于原核表达载体的盐藻GAPDH cDNA在大肠杆菌中以融合蛋白的形式得到了高效表达,并成功构建了由盐藻GAPDH基因启动子驱动的cat(氯霉素乙酰转移酶)基因表达载体pUCGCat,为进一步研究杜氏盐藻GAPDH基因和启动子功能奠定了试验基础. 相似文献
13.
杜氏盐藻细胞质膜具有氧化NAD(P)H、还原Fe(CN)和O2的氧化还原系统。当Fe(CN)浓度为0.6mmol/L时,氧化NADH的Km为96μmol/L,Tmax为159nmol10-8cellsmin-1,最适pH为8.5。TritonX-100可促进NADH和Fe(CN)的氧化还原活性。NADH能促进藻细胞的氧吸收,最适PH为8.5。在无外源电子供体存在时,细胞质电子供体提供的电子使Fe(CN)还原。培养液PH影响正常呼吸链、交替氧化酶途径和质膜电子传递链的耗氧比例;当有外源NADH存在时,SHAM明显促进细胞的氧吸收,并且质膜电子传递链的耗氧比例增加。 相似文献
14.
15.
Plasma Membrane Sterols Are Essential for Sensing Osmotic Changes in the Halotolerant Alga Dunaliella 总被引:1,自引:0,他引:1
下载免费PDF全文

The halotolerant alga Dunaliella responds to hyperosmotic stress by synthesis of massive amounts of glycerol. The trigger for this osmotic response is the change in cell volume, but the mechanism that senses volume changes is not known. Preincubation of Dunaliella salina with tridemorph, a specific inhibitor of sterol biosynthesis, inhibits glycerol synthesis and volume recovery. The inhibition is associated with suppression of [14C]bicarbonate incorporation into sterols and is correlated with pronounced depletion of plasma membrane sterols. Incubation of sterol-depleted cells with cholesterol hemisuccinate restores the capacity for volume regulation in response to hyperosmotic stress. Tridemorph as well as lovastatin also inhibit volume changes that are induced by high light in Dunaliella bardawil, a species that responds to high light intensity by synthesis of large amounts of [beta]-carotene. These volume changes result from accumulation of glycerol and are associated with de novo synthesis of sterols. The major plasma membrane sterol in D. salina and the high-light-induced sterol in D. bardawil co-migrate with ergosterol on thin-layer chromatography and on reversed-phase high-performance liquid chromatography. These results suggest that the osmosensory mechanism in Dunaliella resides in the plasma membrane, and that sterols have an important role in sensing osmotic changes. 相似文献
16.
Li Liang Zhang Xiaochai He Ningfang Wang Xiaoyang Zhu Pengyue Ji Zhiyong 《Plant Molecular Biology Reporter》2019,37(5-6):421-435
Plant Molecular Biology Reporter - Due to the hypersaline environment cell of Dunaliella salina can change its morphology, growth, and pigment for adapting to the stress. Despite the fact D. salina... 相似文献
17.
杜氏盐藻是一种以甘油为渗透调节物质的单细胞海藻,能够在0.08~5.0mol/L NaGl的培养液中生长。当外界NaGl浓度从0.5mol/L上升到4.0mol/L时,藻细胞内的Na~+和K~+含量变化不大,甘油含量则从6.20Pg/cell上升到51.50pg/cell。当藻细胞承受2.0mol/L到3.0mol/L NaCl的高渗胁迫时,能通过增加细胞内甘油含量来恢复原有形态;同时,藻细胞的H~+分泌增加,ATP含量下降;20μmol/L Na_3VO_4抑制了这些变化。KGN处理虽降低藻细胞内的ATP含量,却增加K~+外流和Na~+内渗。 相似文献
18.
Involvement of the Plasma Membrane ATPase in the Osmoregulatory Mechanism of the Alga Dunaliella salina 总被引:4,自引:4,他引:4
下载免费PDF全文

The unicellular halotolerant alga Dunaliella salina recovers normally from a hypertonic shock even when suspended in NaCl and buffer only. Furthermore, addition of Cu2+, valinomycin and KCl, or permeable ions such as methyltriphenylphosphonium or thiocyanate, do not affect the recovery. However, treatment with two specific inhibitors of the plasma membrane adenosine triphosphatase (ATPase), diethylstilbestrol, or vanadate, fully inhibit the recovery. The inhibition is manifested by the inability of the cells to both synthesize glycerol and return to their original volume. The inhibitions are nonlethal, reversible and equally effective in the dark or the light. Since the plasma membrane ATPase is the only enzyme known to be inhibited by both diethylstilbestrol and vanadate, it is concluded that its activity is essential for the recovery of Dunaliella from a hypertonic shock. Mechanisms by which the plasma membrane ATPase may participate in the activation of glycerol production in the algae are discussed. 相似文献
19.
杜氏盐藻在适应外界盐浓度变化的过程中,甘油是其主要的渗透调节物质。低渗处理提高藻细胞的呼吸速率60%以上;高渗处理对呼吸无明显影响,但大大刺激光合放氧速率。呼吸链的细胞色素电子传递链抑制剂KCN和交替氧化酶抑制剂SHAM对杜氏藻渗透调节过程中的呼吸.胞内甘油、ATP、淀粉会量的变化有不同的抑制效果。低渗情况下,胞内甘油转化为淀粉,所需能量由正常呼吸链和交替氧化酶途径同时提供;高渗情况下.淀粉则降解为甘油,光下甘油合成的能量主要由光合电子链提供,暗中则由正常呼吸链提供。 相似文献
20.
锌对盐藻生长与物质积累的调控作用 总被引:1,自引:0,他引:1
实验研究了不同浓度的锌对盐藻细胞生长与物质积累的调控作用。结果表明,培养液中供给锌过多或过少都不利于盐藻细胞的生长与物质积累。以培养基中6 mg/L的锌浓度对盐藻细胞生长、蛋白质合成与β-胡萝卜素积累的促进作用最大。这一锌浓度可用于盐藻的生产性培养。当培养液中锌浓度较高(8 mg/L)或较低(2 mg/L)时,单个盐藻细胞中的蛋白质与β-胡萝卜素含量较高。但此时,因培养液中细胞密度较低,盐藻细胞积累的物质总量仍然较少。在锌浓度较高或较低的逆境条件下,盐藻可能通过适应性反应形成了逆境蛋白质与胡萝卜素等。 相似文献