首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Red alder (Alnus rubra Bong.) stands in the Pacific Northwest are the common first stage in succession following disturbance. These stands are highly productive and contribute a large amount of N to the soils as a result of their N2-fixing symbiosis with Frankia. As these alder stands age, the soils not only increase in total N, but concentrations of NO 3 increase and pH decreases as a result of nitrification. The objective of this study was to determine how the nodulation capacity of Frankia varies as red alder stands age and if differences in nodulation capacity are related to changes in soil properties. Nodulation capacity was determined by a red alder seedling bioassay for soils from red alder stands in the Oregon coast range covering a wide range of ages. Six chronosequences were sampled, each containing a young, an intermediate, and an older alder stand. Soil total N, total C, NO 3, NH+ 4, and pH were measured on the same soil samples. These factors as well as alder stand characteristics were compared with nodulation capacity in an attempt to identify soil characteristics typical in developing alder stands that most strongly affect nodulation capacity. Soil pH and NO 3 concentration were highly correlated with nodulation capacity and with each other. Cluster analysis of the sites using these two variables identified two groups with distinctly different nodulation capacities. The cluster with the higher nodulation capacity was lower in NO 3 and higher in pH than the other cluster, which included the majority of sites. There was substantial overlap in the age ranges for the two clusters and there was no significant correlation between age and nodulation capacity. Thus nodulation capacity appears to be most closely related to soil properties than to stand age.  相似文献   

2.
The occurrence and character of different types of ectomycorrhizas of birch seedlings were investigated in soils from three naturally regenerating birch stands: a forest site, a clear-cut site, and a site recently disturbed by plowing. Birch grown in soil from an evergreen broad-leaved forest without birch was also studied. The rate of ectomycorrhizal formation in the soil from the evergreen broad-leaved forest was lower than that in the soil from the other three sites. The ectomycorrhizal formation of seedlings grown in soil from the clear-cut and plowed sites were the same as or higher than that in soil from the birch forest site. The largest number of ectomycorrhizal types were formed in soil from the birch forest site. In the soil from the plowed site, only one type of ectomycorrhiza was formed, and it was different from the dominant type formed in soils from the birch forest site and the clear-cut site. The results of this investigation showed that equal levels of ectomycorrhizas were formed in soils from the different birch stands, but the types formed were different among those sites. It is likely that the different ectomycorrhizal fungi were better adapted to the soil conditions at each of those sites.  相似文献   

3.
To understand the relationships between the distribution of Chosenia arbutifolia and Salix sachalinensis and their mycorrhizal colonization, changes in the quality and types of ectomycorrhizas and arbuscular mycorrhizas of the seedlings of two species were studied at five different sites with different soil conditions in the floodplain of the Satsunai River, Hokkaido. High ectomycorrhizal and low arbuscular mycorrhizal colonization were found in roots of both plants. Ectomycorrhizal colonization of S. sachalinensis in wet sandy or muddy soil conditions was at the same level as that in dry gravelly sites. In contrast, ectomycorrhizal colonization of C. arbutifolia seedlings was lower from wet sandy sites than that from dry gravelly sites. In all study sites, the same three morphological types of ectomycorrhizas were dominant.  相似文献   

4.
Ectomycorrhizal and endophytic fungi of Betula platyphylla Sukatchev var. japonica Hara seedlings were investigated by bioassay using soils from sites where the surface layer had been removed by destructive disturbances. Soil samples were taken from sites A, B, C and D, where 1, 2–3, 4–5, and 7–8 years, respectively had passed since disturbance. Naturally regenerated B. platyphylla var. japonica seedlings grew at sites C and D, but not at sites A or B. The percentages of ectomycorrhizal formation in seedlings were significantly lower in the soils from site A (4%) and site B (13%), compared to those in the soils from site C (53%) and site D (37%). The numbers of ectomycorrhizal morphologic types in sites A, B, C, and D were eight, five, one, and seven, respectively. The same dominant type of ectomycorrhiza was found in sites C and D, and this type was different from those in sites A and B. The frequencies of colonization of seedling roots by endophytic fungi, especially Mycelium radicis atrovirens Melin (MRA) in soils from sites A and B were 31 and 33%, respectively; these frequencies were significantly higher than those for site C (0%) and site D (2%). During the initial stage of establishment of vegetation following disturbance, the quantities and types of ectomycorrhizal fungi in the field that have the potential to associate with B. platyphylla var. japonica might rapidly change after invasion of the host plant. Ectomycorrhizal fungi seemed to compete with endophytic MRA fungi for colonization of the roots of B. platyphylla var. japonica seedlings.  相似文献   

5.
The survival, development and mycorrhizal efficiency of a selected strain of Laccaria bicolor along with naturally occurring ectomycorrhizal fungi in a young plantation of Douglas fir was examined. Symbionts were identified and their respective colonization abilities were determined. Eight species of symbiotic fungi, which may have originated in adjacent coniferous forests, were observed on the root systems. Mycorrhizal diversity differed between inoculated (5 taxa) and control (8 taxa) seedlings. Ectomycorrhizal fungi which occurred naturally in the nursery on control seedlings (Thelephora terrestris and Suillus sp.) did not survive after outplanting. Both inoculated and naturally occurring Laccaria species, as well as Cenococcum geophilum, survived on the old roots and colonized the newly formed roots, limiting the colonization by other naturally occurring fungi. Other fungi, such as Paxillus involutus, Scleroderma citrinum and Hebeloma sp. preferentially colonized the old roots near the seedling's collar. Russulaceae were found mainly in the middle section of the root system. Mycorrhizal colonization by Laccaria species on inoculated seedlings (54%) was significantly greater than on controls (13%) which were consequently dominated by the native fungi. Significant differences (up to 239%) were found in the growth of inoculated seedlings, especially in root and shoot weight, which developed mainly during the second year after outplanting. Seedling growth varied with the species of mycorrhizae and with the degree of root colonization. Competitiveness and effectiveness of the introduced strain on improving growth performances of seedlings are discussed.  相似文献   

6.
Summary Black alder seedlings were grown from seed for 7 weeks in six soils limed to various pH levels and inoculated withFrankia in two inoculation-seeding time combinations (inoculated and seeded concurrently; inoculated then seeded 5 weeks after inoculation). Three mine soils and three non-mine soils were used. Soil pHs in the study ranged from 3.6 to 7.6. In the second inoculation-seeding time combination, a series of soil samples at each of the pH levels below 7.0 were relimed to pH 7.0 immediately prior to seeding. The purpose of the study was to examine the effects of soil acidity on the nodulation of black alder byFrankia and the viability ofFrankia in acid soils. Based on the average number of nodules established per seedling, soil pH was determined to be a significant factor affecting nodulation in the mine soils. The highest levels of nodulation occurred between soil pH 5.5 and 7.2. Below pH 5.5, nodulation was reduced. There was also evidence of decreased viability of the endophyte below pH 4.5.  相似文献   

7.
Control of Nitrification by Tree Species in a Common-Garden Experiment   总被引:1,自引:0,他引:1  
We studied the effect of tree species on nitrification in five young plantations and an old native beech coppice forest at the Breuil experimental site in central France. The potential net nitrification (PNN) of soil was high in beech, Corsican pine, and Douglas fir plantations (high nitrifying stands denoted H) and low in spruce and Nordmann fir plantations as well as in native forest stands (low nitrifying stands denoted L). We hypothesized that tree species would stimulate or inhibit nitrification in transplanted soil cores within a few years after the cores were transplanted between stands. We first initiated a transplant experiment where soil cores were exchanged between all stands. The PNN remained high in soil cores from H transferred to H and low in soil cores from L transferred to L. The PNN increased considerably after 16 months in soil cores transferred from L to H, whereas the transfer of soil cores from H to L decreased the PNN only slightly after 28 months. In a second transplant experiment, forest floor material was exchanged between the Douglas fir (H) and the native forest (L) stand. Six months later, the forest floor from the native forest had increased the PNN of the Douglas fir soil considerably, whereas the forest floor from Douglas fir did not affect the PNN of the soil in the native forest stand. It was concluded that beech, Corsican pine, and Douglas fir rapidly stimulate soil nitrification by either activation of suppressed nitrifier communities and/or colonization by new nitrifier communities. Conversely, the slow and irregular reduction of nitrification in spruce, Nordmann fir, and native forest was probably due to the low and heterogeneously distributed flux of inhibiting substances per volume of soil. Our experiments suggest that the inhibition of nitrification is not tightly connected to forest floor leachates, but that the forest floor both reflects and maintains the major ongoing processes. In the long term, humus build up and the production of inhibiting substances may completely block the nitrification activity.  相似文献   

8.
Pinus banksiana andPicea glauca inoculated or not with the ectomycorrhizal fungusSuillus luteus were grown in a sandy loam soil containing a range of Cd, Cu, Ni, Pb and Zn concentrations. Ectomycorrhizal colonization rates were significantly reduced on Pinus and Picea seedlings by the heavy metals, particularly Cd and Ni. Needle tissue metal concentrations were lower in ectomycorrhizal seedlings at low soil metal concentrations. However, at higher soil concentrations, heavy metal concentrations of needle tissue were similar in ectomycorrhizal and nonmycorrhizal plants. The growth of nonmycorrhizal seedlings exposed to heavy metals was reduced compared to those inoculated withSuillus luteus. Apparently ectomycorrhizal colonization can protect Pinus and Picea seedlings from heavy metal toxicity at low or intermediate soil concentrations of Cd, Cu, Ni, Pb and Zn.  相似文献   

9.
The ectomycorrhizal fungal associations of Douglas fir ( Pseudotsuga menziesii D. Don) and bishop pine ( Pinus muricata D. Don) were investigated in a mixed forest stand. We identified fungi directly from field-collected ectomycorrhizal (ECM) root tips using PCR-based methods. Sixteen species of fungi were found, of which twelve associated with both hosts. Rhizopogon parksii Smith was specific to Douglas fir. Three other species colonized only one of the hosts, but were too infrequent to draw conclusions about specificity. Seventy-four percent of the biomass of ECM root tips sampled in the stand were colonized by members of the Thelephoraceae and Russulaceae. All 12 species of fungi that associated with both tree species did so within a 10×40 cm soil volume, suggesting that individual fungal genotypes linked the putatively competing tree hosts.  相似文献   

10.
This study determined nitrification activity and nitrifier community composition in soils under stands of red alder (Alnus rubra) and Douglas fir (Pseudotsuga menziesii) at two sites in Oregon. The H.J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon, has low net N mineralization and gross nitrification rates. Cascade Head Experimental Forest, in the Coast Range, has higher net N mineralization and nitrification rates and soil pH is lower. Communities of putative bacterial [ammonia-oxidizing bacteria (AOB)] and archaeal [ammonia-oxidizing archaea (AOA)] ammonia oxidizers were examined by targeting the gene amoA, which codes for subunit A of ammonia monooxygenase. Nitrification potential was significantly higher in red alder compared with Douglas-fir soil and greater at Cascade Head than H.J. Andrews. Ammonia-oxidizing bacteria amoA genes were amplified from all soils, but AOA amoA genes could only be amplified at Cascade Head. Gene copy numbers of AOB and AOA amoA were similar at Cascade Head regardless of tree type (2.3-6.0 x 10(6)amoA gene copies g(-1) of soil). DNA sequences of amoA revealed that AOB were members of Nitrosospira clusters 1, 2 and 4. Ammonia-oxidizing bacteria community composition, determined by terminal restriction fragment length polymorphism (T-RFLP) profiles, varied among sites and between tree types. Many of the AOA amoA sequences clustered with environmental clones previously obtained from soil; however, several sequences were more similar to clones previously recovered from marine and estuarine sediments. As with AOB, the AOA community composition differed between red alder and Douglas-fir soils.  相似文献   

11.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

12.
《新西兰生态学杂志》2011,35(3):280-286
We compared establishment of Douglas fir (Pseudotsuga menziesii) and Corsican pine (Pinus nigra) seedlings in kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium) shrubland to test the hypothesis that Douglas fir, because of its greater shade tolerance, is better able to establish in woody communities than pine species. Seed of the conifer species was sown under a range of canopy covers at six sites, the cover being low-statured vegetation in openings between stands, stand edges, and moderate and dense canopies. After three growing seasons, survival of Corsican pine seedlings was greatest in the open and declined progressively as canopy cover increased. This contrasted with Douglas fir, where survival was greatest at the canopy edge. Survival of Douglas fir seedlings significantly exceeded that of Corscican pine seedlings under dense canopy positions. Seedling numbers of both species declined significantly with increasing leaf area index of manuka, but not kanuka stands, where seedling numbers were lower. Leaf area index of manuka stands accounted for substantially greater variation in number and survival of Corsican pine than Douglas fir seedlings. It is concluded that Douglas fir is better able to establish in shaded environments in woody communities than Corsican pine; however, further monitoring is required to confirm the long-term survival of both species under the moderate and dense canopy positions in this trial.  相似文献   

13.
Members of the Pinaceae family have complex chemical defense strategies. Conifer defenses associated with specialized cell types of the bark involve constitutive and inducible accumulation of phenolic compounds in polyphenolic phloem parenchyma cells and oleoresin terpenoids in resin ducts. These defenses can protect trees against insect herbivory and fungal colonization. The phytohormone ethylene has been shown to induce the same anatomical and cellular defense responses that occur following insect feeding, mechanical wounding, or fungal inoculation in Douglas fir (Pseudotsuga menziesii) stems (Hudgins and Franceschi in Plant Physiol 135:2134–2149, 2004). However, very little is known about the genes involved in ethylene formation in conifer defense or about the temporal and spatial patterns of their protein expression. The enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO) catalyzes the final step in ethylene biosynthesis. We cloned full-length and near full-length ACO cDNAs from three conifer species, Sitka spruce (Picea sitchensis), white spruce (P. glauca), and Douglas fir, each with high similarity to Arabidopsis thaliana ACO proteins. Using an Arabidopsis anti-ACO antibody we determined that ACO is constitutively expressed in Douglas fir stem tissues and is up-regulated by mechanical wounding, consistent with the wound-induced increase of ethylene levels. Immunolocalization showed cytosolic ACO is predominantly present in specialized cell types of the wound-induced bark, specifically in epithelial cells of terpenoid-producing cortical resin ducts, in polyphenolic phloem parenchyma cells, and in ray parenchyma cells.J.W. Hudgins and Steven G. Ralph contributed equally to this work.  相似文献   

14.
Summary Ectomycorrhizal short roots, mycelia, rhizomorphs and mats from conifer soil were examined in relation to their hydrophobic properties. In some cases connected fruit bodies were included in the study. Mycorrhizal soils gathered from the forest and/or colonized in a laboratory rhizoscope were studied, as were mycelia in pure culture. Most forest-derived species were hydrophobic. The drought-resistant Cenococcum geophilum and the more ruderal and moisture-dependent Thelephora terrestris were both strongly hydrophilic. The hydrophobic mycelium seemed solely responsible for the water repellence properties, and adjacent soil and plant debris remained unaffected and hydrophilic. In hydrophobic fungi, mat formation was induced in the rhizoscope by hyphal contact with alder litter leaves. This stimulating effect was not found when the leaves were covered by water or when fresh, green alder leaves were used. Thelephora terrestris did not form such mats in vitro and spread sparsely in air pockets as well as in the adjacent water film. The possibility is discussed that many mycorrhizal fungi in the forest may partly control their soil environment via aeration created by their hydrophobia.  相似文献   

15.
In the present study ectomycorrhizal development of Laccaria bicolor, Rhizopogon luteolus and Suillus bovinus associated with Scots pine (Pinus sylvestris) seedings was studied as affected by primary stand humus, secondary stand humus, podsolic sandy soil or peat in perspex growth chambers. After 9 weeks, ectomycorrhizal development with S. bovinus was significantly greater in peat and primary stand humus than in secondary stand humus or podsolic sandy soil. Ectomycorrhizal development with R. luteolus in secondary stand humus was higher than in primary stand humus. Degree of ectomycorrhizal development of L. bicolor, R. lutuelus and S. bovinus on Scots pine was related to potassium concentration, organic matter content and pH of the soils suggesting that chemical composition of the soils affects ectomycorrhizal development.  相似文献   

16.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   

17.
倪秀雅  冯永霞  李如华  尚鹤  陈展 《生态学报》2023,43(17):7203-7215
不同林型土壤的酸化缓冲能力不同,真菌在土壤系统中扮演着重要的角色,而对土壤真菌群落结构和组成与土壤酸化的关系缺乏深入研究。以重庆铁山坪林场的马尾松纯林(Pi)和经马尾松纯林改造后的香樟纯林(Ci)、木荷纯林(Sc)、马尾松-香樟混交林(Pi_Ci)以及马尾松-木荷混交林(Pi_Sc)为研究对象,每个林型分别设置4个20 m×20 m的样地,分别采集腐殖质层(O层)和淋溶层(A层)土壤进行土壤性质及真菌群落分析,以探讨酸雨区森林土壤真菌群落与缓解土壤酸化的关系。研究表明:(1)与Pi相比,Ci土壤酸化明显缓解(高pH低NH4 : NO3),且能有效提高土壤全磷(TP)含量;而Sc虽然土壤pH值与Pi没有显著差异,但显著(P<0.05)提高了NH4 : NO3,且显著降低土壤TP和全钾(TK)含量(P<0.05);(2)不同林型土壤真菌群落多样性以Ci最为丰富,且表征土壤酸化的指标pH值、阳离子交换量(CEC)与真菌多样性显著正相关(P<0.05),NH4 : NO3与多样性显著负相关(P<0.05);(3)林型和土层都对真菌群落结构有显著影响(P<0.001),且林型的影响大于土层的影响;而土壤酸化程度将五个林型的土壤真菌群落区分成两个大类:Ci和Pi_Ci;Pi,Sc以及Pi_Sc。(4) Ci中有益菌(如Mortierella)更多,Pi以外生菌根真菌占优势(Russulaceae、Russula、Tomentella以及Sebacina);Sc以及Pi_Sc则含有更多的植物病原菌(Cladophialophora,Paecilomyces,Venturiales)、嗜酸菌及产酸菌(Paecilomyces,Penicillium)。在酸雨区受损马尾松林地种植香樟促进土壤真菌多样性提高,且产酸真菌、嗜酸菌丰度降低,而有益真菌丰度增加,可有效缓解土壤酸化;而种植木荷后土壤中的病原菌、嗜酸菌和产酸菌相对丰度增加,导致土壤进一步酸化。因此,通过将受酸雨损害严重的马尾松纯林改造成香樟纯林或马尾松-香樟混交林,有助于缓解土壤的酸化,实现酸雨区森林生态系统的可持续发展。  相似文献   

18.
We studied the species richness and assemblages of longicorn beetles (Coleoptera, Cerambycidae, Disteniidae) in ten secondary broad-leaved stands and eight plantation stands of Japanese cedar (Cryptomeria japonica) of various ages after clear-cutting or plantation in Ibaraki, central Japan. The species richness of longicorns, which were collected with Malaise traps, was the highest in young stands, decreasing with the age of the stand for both broad-leaved and conifer stands. A canonical correspondence analysis divided the 18 plots into three groups based on longicorn assemblages and environmental variables. These three groups consisted of (1) very young (1–4 years old) stands after clear-cutting or plantation; (2) 12- to over 100 year-old broad-leaved stands; (3) 7- to 76-year-old conifer stands. The species richness of the longicorns was the highest in the young stands followed, in order of decreasing species richness, by broad-leaved stands and conifer stands. Possible causes of the high species richness in young stands include large amounts of coarse wood debris and flowers, which are resources for oviposition and nutrition for adults, respectively. The lower longicorn diversity in conifer stands than in broad-leaved stands may be due to the lower diversity of trees available as host plants in the former. Almost all species that occurred in conifer stands were also collected in young and/or broad-leaved stands, but the reverse was not true, suggesting that conifer plantations cannot replace broad-leaved stands in terms of longicorn biodiversity. We argue that an extensive conversion of broad-leaved forests into conifer plantations will lead to an impoverishment of the longicorn fauna, which may result in the degradation of ecosystem functions possibly carried out by them.  相似文献   

19.
Pinus pinea plants were inoculated with different strains of the edible ectomycorrhizal fungus Lactarius deliciosus. The inoculated plants were established in six experimental plantations in two sites located in the Mediterranean area to determine the effect of the initial colonization level and the inoculated strain on fungal persistence in the field. Ectomycorrhizal root colonization was determined at transplantation time and monitored at different times from uprooted plants. Extraradical soil mycelium biomass was determined from soil samples by TaqMan® real-time polymerase chain reaction (PCR). The results obtained indicate that the field site played a decisive role in the persistence of L. deliciosus after outplanting. The initial colonization level and the selection of the suitable strain were also significant factors but their effect on the persistence and spread of L. deliciosus was conditioned by the physical–chemical and biotic characteristics of the plantation soil and, possibly, by their influence in root growth. Molecular techniques based on real-time PCR allowed a precise quantification of extraradical mycelium of L. deliciosus in the field. The technique is promising for non-destructive assessment of fungal persistence since soil mycelium may be a good indicator of root colonization. However, the accuracy of the technique will ultimately depend on the development of appropriate soil sampling methods because of the high variability observed.  相似文献   

20.
Summary The alder has a perennial nodule cluster. The nodule amount on the roots increases with tree age. The N2-fixing activity of nodules decreases with nodule age. Purple coloured soils with various soil pHs and CaCO3 contents are, in the main, the ones which influence nodulation and N2-fixing. Higher N2-fixing capacity existed in the neutral and low calcium soils. High calcium soils and acid soils can restrain nodulation and the N2-fixing rate significantly. On the slope, where calcarous light loams are found, the annual nitrogen fixation capacity of alder and cypress mixed plantations, less than 10 years old, is 16 or 17 kg/ha yr, but in the valley, a pure alder plantation can reach 40 kg/ha yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号