共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes 下载免费PDF全文
Han Y Lassen K Monie D Sedaghat AR Shimoji S Liu X Pierson TC Margolick JB Siliciano RF Siliciano JD 《Journal of virology》2004,78(12):6122-6133
3.
Patterns of cytokine production in human immunodeficiency virus type 1 (HIV-1)-specific human CD8+ T cells after stimulation with HIV-1-infected CD4+ T cells 下载免费PDF全文
Although human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells can produce various cytokines that suppress HIV-1 replication or modulate anti-HIV-1 immunity, the extent to which HIV-1-specific CD8+ T cells produce cytokines when they recognize HIV-1-infected CD4+ T cells in vivo still remains unclear. We first analyzed the abilities of 10 cytotoxic T-lymphocyte (CTL) clones specific for three HIV-1 epitopes to produce gamma interferon, macrophage inflammatory protein 1beta, and tumor necrosis factor alpha after stimulation with epitope peptide-pulsed cells. These CTL clones produced these cytokines in various combinations within the same specificity and among the different specificities, suggesting a functional heterogeneity of HIV-1-specific effector CD8+ T cells in cytokine production. In contrast, the HIV-1-specific CTL clones for the most part produced a single cytokine, without heterogeneity of cytokine production among the clones, after stimulation with HIV-1-infected CD4+ T cells. The loss of heterogeneity in cytokine production may be explained by low surface expression of HLA class I-epitope peptide complexes. Freshly isolated HIV-1-specific CD8+ T cells with an effector/memory or memory phenotype produced much more of the cytokines than the same epitope-specific CTL clones when stimulated with HIV-1-infected CD4+ T cells. Cytokine production from HIV-1-specific memory/effector and memory CD8+ T cells might be a critical event in the eradication of HIV-1 in HIV-1-infected individuals. 相似文献
4.
Jin X Gao X Ramanathan M Deschenes GR Nelson GW O'Brien SJ Goedert JJ Ho DD O'Brien TR Carrington M 《Journal of virology》2002,76(24):12603-12610
Human immunodeficiency virus type 1 (HIV-1)-infected individuals with HLA-B*35 allelic variants B*3502/3503/3504/5301 (B*35-Px) progress more rapidly to AIDS than do those with B*3501 (B*35-PY). The mechanisms responsible for this phenomenon are not clear. To examine whether cellular immune responses may differ according to HLA-B*35 genotype, we quantified HIV-1-specific CD8(+)-T-cell (CTL) responses using an intracellular cytokine-staining assay with specimens from 32 HIV-1-positive individuals who have B*35 alleles. Among them, 75% had CTL responses to Pol, 69% had CTL responses to Gag, 50% had CTL responses to Nef, and 41% had CTL responses to Env. The overall magnitude of CTL responses did not differ between patients bearing B*35-Px genotypes and those bearing B*35-PY genotypes. A higher percentage of Gag-specific CTL was associated with lower HIV-1 RNA levels (P = 0.009) in individuals with B*35-PY. A negative association between CTL activity for each of the four HIV antigens and viral load was observed among individuals with B*35-PY, and the association reached significance for Gag. No significant relationship between CTL activity and viral load was observed in the B*35-Px group. The relationship between total CTL activity and HIV RNA among B*35-Px carriers differed significantly from that among B*35-PY carriers (P < 0.05). The data are consistent with the hypothesis that higher levels of virus-specific CTL contribute to protection against HIV disease progression in infected individuals with B*35-PY, but not in those with B*35-Px. 相似文献
5.
Blazkova J Murray D Justement JS Funk EK Nelson AK Moir S Chun TW Fauci AS 《Journal of virology》2012,86(9):5390-5392
Maintenance of HIV latency in vitro has been linked to methylation of HIV DNA. However, examinations of the degree of methylation of HIV DNA in the latently infected, resting CD4(+) T cells of infected individuals receiving antiretroviral therapy have been limited. Here, we show that methylation of the HIV 5' long terminal repeat (LTR) in the latent viral reservoir of HIV-infected aviremic individuals receiving therapy is rare, suggesting that other mechanisms are likely involved in the persistence of viral latency. 相似文献
6.
7.
Geiben-Lynn R Kursar M Brown NV Kerr EL Luster AD Walker BD 《Journal of virology》2001,75(17):8306-8316
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) mediate immunologic selection pressure by both cytolytic and noncytolytic mechanisms. Non cytolytic mechanisms include the release of beta-chemokines blocking entry of R5 HIV-1 strains. In addition, CD8(+) cells inhibit X4 virus isolates via release of as yet poorly characterized soluble factors. To further characterize these factors, we performed detailed analysis of CTL as well as bulk CD8(+) T lymphocytes from six HIV-1-infected individuals and from six HIV-1-seronegative individuals. Kinetic studies revealed that secreted suppressive activities of HIV-1-specific CTL and bulk CD8(+) T lymphocytes from all HIV-1-infected persons are significantly higher than that of supernatants from seronegative controls. The suppressive activity could be blocked by monensin and brefeldin A, was heat labile, and appeared in a pattern different from that of secretion of chemokines (MDC, I-309, MIP-1alpha, MIP-1beta, and RANTES), cytokines (gamma interferon, tumor necrosis factor alpha, and granulocyte-macrophage colony-stimulating factor), and interleukins (interleukin-13 and interleukin-16). This suppression activity was characterized by molecular size exclusion centrifugation and involves a suppressive activity of >50 kDa which could be bound to heparin and a nonbinding inhibitory activity of <50 kDa. Our data provide a functional link between CD8(+) cells and CTL in the noncytolytic inhibition of HIV-1 and suggest that suppression of X4 virus is mediated through proteins. The sizes of the proteins, their affinity for heparin, and the pattern of release indicate that these molecules are not chemokines. 相似文献
8.
9.
10.
C M Walker G A Thomson-Honnebier F C Hsueh A L Erickson L Z Pan J A Levy 《Cellular immunology》1991,137(2):420-428
T lymphocytes expressing the CD8 surface antigen block HIV replication in CD4+ peripheral blood cells from HIV-infected individuals. We report here that CD4+ cells from HIV seronegative donors, when infected in vitro with HIV, also do not replicate virus when cocultured with CD8+ T cells from HIV-infected individuals. CD8+ cells from HIV-uninfected donors did not show this effect on virus replication. HLA-restriction of the antiviral response was not observed, and virus-containing cells were not eliminated from culture. The antiviral activity was broadly cross-reactive, as CD8+ cells from individuals infected only with HIV-1 suppressed the replication of diverse strains of HIV-1 and HIV-2, as well as the simian immunodeficiency virus. This ability of CD8+ cells to control HIV replication could play an important role in the maintenance of an asymptomatic state in HIV-infected individuals. 相似文献
11.
Human immunodeficiency virus type 1 (HIV-1)-induced GRO-alpha production stimulates HIV-1 replication in macrophages and T lymphocytes 下载免费PDF全文
We examined the early effects of infection by CCR5-using (R5 human immunodeficiency virus [HIV]) and CXCR4-using (X4 HIV) strains of HIV type 1 (HIV-1) on chemokine production by primary human monocyte-derived macrophages (MDM). While R5 HIV, but not X4 HIV, replicated in MDM, we found that the production of the C-X-C chemokine growth-regulated oncogene alpha (GRO-alpha) was markedly stimulated by X4 HIV and, to a much lesser extent, by R5 HIV. HIV-1 gp120 engagement of CXCR4 initiated the stimulation of GRO-alpha production, an effect blocked by antibodies to CXCR4. GRO-alpha then fed back and stimulated HIV-1 replication in both MDM and lymphocytes, and antibodies that neutralize GRO-alpha or CXCR2 (the receptor for GRO-alpha) markedly reduced viral replication in MDM and peripheral blood mononuclear cells. Therefore, activation of MDM by HIV-1 gp120 engagement of CXCR4 initiates an autocrine-paracrine loop that may be important in disease progression after the emergence of X4 HIV. 相似文献
12.
T W Chun D Engel S B Mizell C W Hallahan M Fischette S Park R T Davey M Dybul J A Kovacs J A Metcalf J M Mican M M Berrey L Corey H C Lane A S Fauci 《Nature medicine》1999,5(6):651-655
The size of the pool of resting CD4+ T cells containing replication-competent HIV in the blood of patients receiving intermittent interleukin (IL)-2 plus highly active anti-retroviral therapy (HAART) was significantly lower than that of patients receiving HAART alone. Virus could not be isolated from the peripheral blood CD4+ T cells in three patients receiving IL-2 plus HAART, despite the fact that large numbers of resting CD4+ T cells were cultured. Lymph node biopsies were done in two of these three patients and virus could not be isolated. These results indicate that the intermittent administration of IL-2 with continuous HAART may lead to a substantial reduction in the pool of resting CD4+ T cells that contain replication-competent HIV. 相似文献
13.
14.
Contact of human immunodeficiency virus type 1-infected and uninfected CD4+ T lymphocytes is highly cytolytic for both cells. 总被引:1,自引:0,他引:1 下载免费PDF全文
Individuals infected with the human immunodeficiency virus (HIV) experience a marked loss of CD4+ T lymphocytes, leading to fatal immunodeficiency. The mechanisms causing the depletion of these cells are not yet understood. In this study, we observed that CD4+ T lymphocytes from HIV type 1 (HIV-1)-infected and uninfected individuals rapidly lysed B lymphoblasts expressing the HIV-1 envelope glycoprotein on the cell surface and Jurkat cells expressing the complete virus. Contact of uninfected CD4+ T cells with envelope glycoprotein-expressing cells also resulted in the lysis of the uninfected CD4+ T cells. Cytolysis did not require priming or in vitro stimulation of the CD4+ T cells and was not restricted by major histocompatibility complex molecules. Cytotoxicity was inhibited by soluble CD4 and anti-CD4 monoclonal antibodies that block binding of CD4 to gp120. In addition, neutralizing anti-CD4 and anti-gp120 monoclonal antibodies which block postbinding membrane fusion events and syncytium formation also inhibited cell lysis, suggesting that identical mechanisms in HIV-infected cultures underlie cell-cell fusion and the cytolysis observed. However, cytotoxicity was not always accompanied by the formation of visible syncytia. Rapid cell lysis after contact of uninfected and HIV-1-infected CD4+ T cells may explain CD4+ T-cell depletion in the absence of detectable syncytia in infected individuals. Moreover, because of its vigor, lysis of envelope-expressing targets by contact with unprimed CD4+ T lymphocytes may at first glance resemble antigen-specific immune responses and should be excluded when cytotoxic T-lymphocyte responses in infected individuals and vaccinees are evaluated. 相似文献
15.
16.
Homeostatic proliferation ensures the longevity of central memory T-cells by inducing cell proliferation in the absence of cellular differentiation or activation. This process is governed mainly by IL-7. Central memory T-cells can also be stimulated via engagement of the T-cell receptor, leading to cell proliferation but also activation and differentiation. Using an in vitro model of HIV-1 latency, we have examined in detail the effects of homeostatic proliferation on latently infected central memory T cells. We have also used antigenic stimulation via anti-CD3/anti-CD28 antibodies and established a comparison with a homeostatic proliferation stimulus, to evaluate potential differences in how either treatment affects the dynamics of latent virus populations. First, we show that homeostatic proliferation, as induced by a combination of IL-2 plus IL-7, leads to partial reactivation of latent HIV-1 but is unable to reduce the size of the reservoir in vitro. Second, latently infected cells are able to homeostatically proliferate in the absence of viral reactivation or cell differentiation. These results indicate that IL-2 plus IL-7 may induce a detrimental effect by favoring the maintenance of the latent HIV-1 reservoir. On the other hand, antigenic stimulation efficiently reactivated latent HIV-1 in cultured central memory cells and led to depletion of the latently infected cells via virus-induced cell death. 相似文献
17.
Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes 总被引:8,自引:0,他引:8
Huang J Wang F Argyris E Chen K Liang Z Tian H Huang W Squires K Verlinghieri G Zhang H 《Nature medicine》2007,13(10):1241-1247
The latency of human immunodeficiency virus type 1 (HIV-1) in resting primary CD4+ T cells is the major barrier for the eradication of the virus in patients on suppressive highly active antiretroviral therapy (HAART). Even with optimal HAART treatment, replication-competent HIV-1 still exists in resting primary CD4+ T cells. Multiple restriction factors that act upon various steps of the viral life cycle could contribute to viral latency. Here we show that cellular microRNAs (miRNAs) potently inhibit HIV-1 production in resting primary CD4+ T cells. We have found that the 3' ends of HIV-1 messenger RNAs are targeted by a cluster of cellular miRNAs including miR-28, miR-125b, miR-150, miR-223 and miR-382, which are enriched in resting CD4+ T cells as compared to activated CD4+ T cells. Specific inhibitors of these miRNAs substantially counteracted their effects on the target mRNAs, measured either as HIV-1 protein translation in resting CD4+ T cells transfected with HIV-1 infectious clones, or as HIV-1 virus production from resting CD4+ T cells isolated from HIV-1-infected individuals on suppressive HAART. Our data indicate that cellular miRNAs are pivotal in HIV-1 latency and suggest that manipulation of cellular miRNAs could be a novel approach for purging the HIV-1 reservoir. 相似文献
18.
Bongertz V Teixeira SL Grinztejn B Pilotto JH Veloso VG Morgado MG Bastos FI Ouverney EP 《Memórias do Instituto Oswaldo Cruz》2005,100(1):85-89
Anti-human immunodeficiency virus type 1 (HIV-1) "binding antibodies" (antibodies capable of binding to synthetic peptides or proteins) occur throughout HIV-1 infection, are high-titered and highly cross-reactive, as confirmed in this study by analyzing plasma from B and F genotype HIV-1 infected individuals. Plasma from individuals infected with clade F HIV-1 displayed the most frequent cross-reactivity, in high titers, while Bbr plasma showed much higher specificity. Similarly, neutralization of a reference HIV-1 isolate (HIV-1 MN) was more frequently observed by plasma from F than B genotype infected individuals. No significant difference was seen in neutralization susceptibility of primary B, Bbr or F clade HIV-1 by plasma from individuals infected with the classical B (GPGR) or F HIV-1, but Bbr (GWGR) plasma were less likely to neutralize the F genotype primary HIV-1 isolates. The data indicate that both B and F genotype derived vaccines would be equally effective against B and F HIV-1 infection, with a slightly more probable effectiveness for F than B genotype. Although the Bbr variant appears to induce a much more specific humoral immune response, the susceptibility in neutralizing the Brazilian HIV-1 B genotype Bbr variant is similar to that observed with the classical B genotype HIV-1. 相似文献
19.
20.
Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli 下载免费PDF全文
Swiggard WJ Baytop C Yu JJ Dai J Li C Schretzenmair R Theodosopoulos T O'Doherty U 《Journal of virology》2005,79(22):14179-14188
Resting CD4(+) T cells are the best-defined reservoir of latent human immunodeficiency virus type 1 (HIV-1) infection, but how the reservoir is formed is unclear. Understanding how the reservoir of latently infected cells forms is critical because it is a major barrier to curing HIV infection. The system described here may provide an in vitro model of latent HIV-1 infection in resting CD4(+) T cells. We demonstrated that HIV-1 integrates into the genomes of in vitro-inoculated resting CD4(+) T cells that have not received activating stimuli and have not entered cell cycle stage G(1b). A percentage of the resting CD4(+) T cells that contain integrated DNA produce virus upon stimulation, i.e., are latently infected. Our results show that latent HIV-1 infection occurs in unstimulated resting CD4(+) T cells and suggest a new route for HIV-1 reservoir formation. 相似文献