首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma.  相似文献   

2.
Asthma is a respiratory disorder characterized by airway hyperreactivity (AHR) and inflammation and is associated with high serum IgE and overproduction of IL-4, IL-5, and IL-13 by allergen-specific Th2 cells. Our previous studies demonstrated that heat-killed Listeria monocytogenes (HKL) as an adjuvant in immunotherapy successfully reversed ongoing Ag-specific Th2-dominated responses toward Th1-dominated responses, but it was unclear if such immune modulation could reverse ongoing, established disease in target organs such as the lung. In this paper we show that a single dose of Ag plus HKL as adjuvant significantly reduced AHR in a murine model for asthma and reversed established AHR when given late after allergen sensitization. HKL as adjuvant also dramatically inhibited airway inflammation, eosinophilia, and mucus production, significantly reduced Ag-specific IgE and IL-4 production, and dramatically increased Ag-specific IFN-gamma synthesis. The inhibitory effect of HKL on AHR depended on the presence of IL-12 and CD8+ T cells and was associated with an increase of IL-18 mRNA expression. Thus, our results demonstrate that HKL as an adjuvant for immunotherapy mediates immune deviation from a pathological Th2-dominated response toward a protective immune response in peripheral lymphoid tissues and in the lungs and may be clinically effective in the treatment of patients with established asthma and allergic disease.  相似文献   

3.
IL-10-differentiated dendritic cells (DC10s) can prevent allergen sensitization and reverse the asthma phenotype in mice with established disease. However, little is known about the time-frames over which this tolerance is effective. We report that at 2 wk after i.p. or transtracheal delivery of 1 × 10(6) OVA-, but not house dust mite- presenting, DC10s to OVA-asthmatic mice, significant diminution of airway hyperresponsiveness (AHR) was first apparent, whereas AHR was abrogated between 3 and 10 wk posttreatment. At 13 wk, AHR returned to pretreatment levels but could again be reversed by DC10 retreatment. The impact of a single DC10 treatment on airway eosinophil and Th2 cytokine responses to recall OVA challenge, and on OVA-specific IgE/IgG1 responses, was substantial at 3 wk posttreatment, but progressively increased thereafter, such that at 8 mo, airway eosinophil and Th2 responses to recall allergen challenge remained ~85-95% suppressed relative to saline-treated asthmatic mice. Four biweekly DC10 treatments, whether transtracheal or i.p., reduced all asthma parameters to near background by 8 wk, whereas s.c. DC10 treatments did not affect AHR but did reduce the airway Th2 responses (i.v. DC10 had no discernible effects). Repeated challenge of the DC10-treated mice with aerosolized OVA (100 μg/ml) did not reverse tolerance, but treatment with the indoleamine-2,3-dioxygenase antagonist 1-methyltryptophan or neutralizing anti-IL-10R from days 12 to 21 after DC10 therapy partially reversed tolerance (Th2 cytokine responses, but not AHR). These findings indicate that DC10-induced Th2 tolerance in asthmatic animals is long lived, but that DC10s employ distinct mechanisms to affect AHR versus Th2 immunoinflammatory parameters.  相似文献   

4.
Allergic asthma is characterized by infiltration of eosinophils, elevated Th2 cytokine levels, airway hyperresponsiveness, and IgE. In addition to eosinophils, mast cells, and basophils, a variety of cytokines are also involved in the development of allergic asthma. The pivotal role of eosinophils in the progression of the disease has been a subject of controversy. To determine the role of eosinophils in the progression of airway inflammation, we sensitized and challenged BALB/c wild-type (WT) mice and eosinophil-deficient ΔdblGATA mice with ovalbumin (OVA) and analyzed different aspects of inflammation. We observed increased eosinophil levels and a Th2-dominant response in OVA-challenged WT mice. In contrast, eosinophil-deficient ΔdblGATA mice displayed an increased proportion of mast cells and a Th17-biased response following OVA inhalation. Notably, the levels of IL-33, an important cytokine responsible for Th2 immune deviation, were not different between WT and eosinophil-deficient mice. We also demonstrated that mast cells induced Th17-differentiation via IL-33/ST2 stimulation in vitro. These results indicate that eosinophils are not essential for the development of allergic asthma and that mast cells can skew the immune reaction predominantly toward Th17 responses via IL-33 stimulation.  相似文献   

5.
1alpha,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), a potent inhibitor of NF-kappaB expression, can prevent the maturation of dendritic cells in vitro leading to tolerogenic dendritic cells with increased potential to induce regulatory T cells. Herein, we investigated whether the combination of allergen immunotherapy with 1,25(OH)(2)D(3) potentiates the suppressive effects of immunotherapy and whether the immunoregulatory cytokines IL-10 and TGF-beta are involved in the effector phase. OVA-sensitized and challenged BALB/c mice displayed airway hyperresponsiveness (AHR) and increased serum OVA-specific IgE levels, bronchoalveolar lavage eosinophilia, and Th2 cytokine levels. In this model, the dose response of allergen immunotherapy 10 days before OVA inhalation challenge shows strong suppression of asthma manifestations at 1 mg of OVA, but partial suppression of bronchoalveolar lavage eosinophilia, IgE up-regulation, and no reduction of AHR at 100 microg. Interestingly, coadministration of 10 ng of 1,25(OH)(2)D(3) with 100 microg of OVA immunotherapy significantly inhibited AHR and potentiated the reduction of serum OVA-specific IgE levels, airway eosinophilia, and Th2-related cytokines concomitant with increased IL-10 levels in lung tissues and TGF-beta and OVA-specific IgA levels in serum. Similar effects on suboptimal immunotherapy were observed by inhibition of the NF-kappaB pathway using the selective IkappaB kinase 2 inhibitor PS-1145. The suppressive effects of this combined immunotherapy were partially reversed by treatment with mAb to either IL-10R or TGF-beta before OVA inhalation challenge but completely abrogated when both Abs were given. These data demonstrate that 1,25(OH)(2)D(3) potentiates the efficacy of immunotherapy and that the regulatory cytokines IL-10 and TGF-beta play a crucial role in the effector phase of this mouse model.  相似文献   

6.
Airway hyperresponsiveness to a variety of specific and nonspecific stimuli is a cardinal feature of asthma, which affects nearly 10% of the population in industrialized countries. Eosinophilic pulmonary inflammation, eosinophil-derived products, as well as Th2 cytokines IL-13, IL-4, and IL-5, have been associated with the development of airway hyperreactivity (AHR), but the specific immunological basis underlying the development of AHR remains controversial. Herein we show that mice with targeted deletion of IL-13 failed to develop allergen-induced AHR, despite the presence of vigorous Th2-biased, eosinophilic pulmonary inflammation. However, AHR was restored in IL-13(-/-) mice by the administration of recombinant IL-13. Moreover, adoptive transfer of OVA-specific Th2 cells generated from TCR-transgenic IL-13(-/-) mice failed to induce AHR in recipient SCID mice, although such IL-13(-/-) Th2 cells produced high levels of IL-4 and IL-5 and induced significant airway inflammation. These studies definitively demonstrate that IL-13 is necessary and sufficient for the induction of AHR and that eosinophilic airway inflammation in the absence of IL-13 is inadequate for the induction of AHR. Therefore, treatment of human asthma with antagonists of IL-13 may be very effective.  相似文献   

7.
Goblet cell metaplasia and mucus hypersecretion are important features in the pathogenesis of asthma. The cytokine IL-4 has been shown to play a role in animal models of asthma, where it induces Th2 lymphocyte differentiation and B lymphocyte IgE class switch. IL-4 has also been implicated in the differentiation of goblet cells via effects on lymphocytes and eosinophils. In this study we hypothesized that IL-4 induces airway epithelial cell mucin gene expression and mucous glycoconjugate production by direct action on these cells. In vitro, cultured airway epithelial cells (NCI-H292) expressed IL-4R constitutively, and IL-4 (10 ng/ml) induced MUC2 gene expression and mucous glycoconjugate production. In vivo, mouse airway epithelial cells expressed IL-4R constitutively, and IL-4 (250 ng) increased MUC5 gene expression and Alcian blue/periodic acid-Schiff-positive staining at 24 h; IL-4 did not increase inflammatory cell numbers in airway tissue or in bronchoalveolar lavage. TNF-alpha and IL-1beta levels in bronchoalveolar lavage were not increased in response to IL-4 instillation. These results indicate that airway epithelial cells express IL-4R constitutively and that IL-4 directly induces the differentiation of epithelium into mucous glycoconjugate-containing goblet cells.  相似文献   

8.
Airway hyperreactivity (AHR), eosinophilic inflammation with a Th2-type cytokine profile, and specific Th2-mediated IgE production characterize allergic asthma. In this paper, we show that OVA-immunized Jalpha18(-/-) mice, which are exclusively deficient in the invariant Valpha14(+) (iValpha14), CD1d-restricted NKT cells, exhibit impaired AHR and airway eosinophilia, decreased IL-4 and IL-5 production in bronchoalveolar lavage fluid, and reduced OVA-specific IgE compared with wild-type (WT) littermates. Adoptive transfer of WT iValpha14 NKT cells fully reconstitutes the capacity of Jalpha18(-/-) mice to develop allergic asthma. Also, specific tetramer staining shows that OVA-immunized WT mice have activated (CD69(+)) iValpha14 NKT cells. Importantly, anti-CD1d mAb treatment blocked the ability of iValpha14 T cells to amplify eosinophil recruitment to airways, and both Th2 cytokine and IgE production following OVA challenge. In conclusion, these findings clearly demonstrate that iValpha14 NKT cells are required to participate in allergen-induced Th2 airway inflammation through a CD1d-dependent mechanism.  相似文献   

9.
In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.  相似文献   

10.
IL-15 has been shown to accelerate and boost allergic sensitization in mice. Using a murine model of allergic sensitization to OVA, we present evidence that blocking endogenous IL-15 during the sensitization phase using a soluble IL-15Ralpha (sIL-15Ralpha) suppresses the induction of Ag-specific, Th2-differentiated T cells. This significantly reduces the production of OVA-specific IgE and IgG and prevents the induction of a pulmonary inflammation. Release of proinflammatory TNF-alpha, IL-1beta, IL-6, and IL-12 as well as that of Th2 cytokines IL-4, IL-5, and IL-13 into the bronchi are significantly reduced, resulting in suppressed recruitment of eosinophils and lymphocytes after allergen challenge. It is of clinical relevance that the airway hyper-responsiveness, a major symptom of human asthma bronchiale, is significantly reduced by sIL-15Ralpha treatment. Ex vivo analysis of the draining lymph nodes revealed reduced numbers of CD8, but not CD4, memory cells and the inability of T cells of sIL-15Ralpha-treated mice to proliferate and to produce Th2 cytokines after in vitro OVA restimulation. This phenomenon is not mediated by enhanced numbers of CD4(+)/CD25(+) T cells. These results show that IL-15 is important for the induction of allergen-specific, Th2-differentiated T cells and induction of allergic inflammation in vivo.  相似文献   

11.
The closely related Th2 cytokines, IL-4 and IL-13, share many biological functions that are considered important in the development of allergic airway inflammation and airway hyperresponsiveness (AHR). The overlap of their functions results from the IL-4R alpha-chain forming an important functional signaling component of both the IL-4 and IL-13 receptors. Mutations in the C terminus region of the IL-4 protein produce IL-4 mutants that bind to the IL-4R alpha-chain with high affinity, but do not induce cellular responses. A murine IL-4 mutant (C118 deletion) protein (IL-4R antagonist) inhibited IL-4- and IL-13-induced STAT6 phosphorylation as well as IL-4- and IL-13-induced IgE production in vitro. Administration of murine IL-4R antagonist during allergen (OVA) challenge inhibited the development of allergic airway eosinophilia and AHR in mice previously sensitized with OVA. The inhibitory effect on airway eosinophilia and AHR was associated with reduced levels of IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluid as well as reduced serum levels of OVA-IGE: These observations demonstrate the therapeutic potential of IL-4 mutant protein receptor antagonists that inhibit both IL-4 and IL-13 in the treatment of allergic asthma.  相似文献   

12.
Overexpression of interleukin (IL)-5 by the airway epithelium in mice using the rat CC10 promoter (NJ.1726 line) leads to several histopathologies characteristic of human asthma, including airway hyperreactivity (AHR). We investigated the contribution of B and T cells, as well as CD4 expression, to the development of AHR in IL-5 transgenic mice. NJ.1726 mice on a T cell or CD4 knockout background, but not on a B cell knockout background, lost intrinsic AHR. These effects occurred without decreases in IL-5 or eosinophils. We further investigated the contribution of alpha(4)-integrin signaling to the development of AHR in IL-5 transgenic mice through the administration of anti-CD49d (alpha(4)-integrin) antibody (PS/2). Administration of PS/2 resulted in immediate (16-h) inhibition of AHR. The inhibition of AHR was not associated with a decrease in airway eosinophils. These studies demonstrate that, despite the presence of increased levels of IL-5 and eosinophils in the lungs of NJ.1726 mice, CD4(+) cells and alpha(4)-integrin signaling are necessary for the intrinsic AHR that develops in IL-5 transgenic mice.  相似文献   

13.
Viral respiratory infections have been implicated in influencing allergen sensitization and the development of asthma, but their exact role remains controversial. Because respiratory exposure to Ag normally engenders T cell tolerance and prevents the development of airway hyperreactivity (AHR) and inflammation, we examined the effects of influenza A virus infection on tolerance induced by exposure to intranasal (i.n.) OVA and the subsequent development of AHR. We found that concurrent infection with influenza A abrogated tolerance induced by exposure to i.n. OVA, and instead led to the development of AHR accompanied by the production of OVA-specific IgE, IL-4, IL-5, IL-13, and IFN-gamma. When both IL-4 and IL-5 were neutralized in this system, AHR was still induced, suggesting that influenza-induced cytokines such as IL-13, or mechanisms unrelated to cytokines, might be responsible for the development of AHR. The length of time between influenza A infection and i.n. exposure to OVA was crucial, because mice exposed to i.n. OVA 15-30 days after viral inoculation developed neither AHR nor OVA-specific tolerance. These mice instead acquired Th1-biased OVA-specific immune responses associated with vigorous OVA-induced T cell proliferation, and reduced production of OVA-specific IgE. The protective effect of influenza A on AHR was dependent on IFN-gamma, because protection was abrogated with a neutralizing anti-IFN-gamma mAb. These results suggest that viral respiratory infection interferes with the development of respiratory allergen-induced tolerance, and that the time interval between viral infection and allergen exposure is critical in determining whether viral infection will enhance, or protect against, the development of respiratory allergen sensitization and AHR.  相似文献   

14.
Asthma, a chronic inflammatory disease characterized by intermittent, reversible airflow obstruction and airway hyperresponsiveness (AHR), is classically characterized by an excess of Th2 cytokines (IL-13, IL-4) and depletion of Th1 cytokines (IFN-gamma, IL-12). Recent studies indicating an important role for Th1 immunity in the development of AHR with allergic inflammation suggest that Th1/Th2 balance may be important in determining the association of AHR with allergic inflammation. We hypothesized that administration of pentoxifylline (PTX), a phosphodiesterase inhibitor known to inhibit Th1 cytokine production, during allergen (OVA) sensitization and challenge would lead to attenuation of AHR in a murine model of allergic pulmonary inflammation. We found that PTX treatment led to attenuation of AHR when administered at the time of allergen sensitization without affecting other hallmarks of pulmonary allergic inflammation. Attenuation of AHR with PTX treatment was found in the presence of elevated bronchoalveolar lavage fluid levels of the Th2 cytokine IL-13 and decreased levels of the Th1 cytokine IFN-gamma. PTX treatment during allergen sensitization leads to a divergence of AHR and pulmonary inflammation following allergen challenge.  相似文献   

15.
Neurotrophins such as nerve growth factor and brain-derived neurotrophic factor have been described to be involved in the pathogenesis of asthma. Neurturin (NTN), another neurotrophin from the glial cell line-derived neurotrophic factor family, was shown to be produced by human immune cells: monocytes, B cells, and T cells. Furthermore, it was previously described that the secretion of inflammatory cytokines was dramatically stimulated in NTN knockout (NTN(-/-)) mice. NTN is structurally similar to TGF-β, a protective cytokine in airway inflammation. This study investigates the implication of NTN in a model of allergic airway inflammation using NTN(-/-) mice. The bronchial inflammatory response of OVA-sensitized NTN(-/-) mice was compared with wild-type mice. Airway inflammation, Th2 cytokines, and airway hyperresponsiveness (AHR) were examined. NTN(-/-) mice showed an increase of OVA-specific serum IgE and a pronounced worsening of inflammatory features. Eosinophil number and IL-4 and IL-5 concentration in the bronchoalveolar lavage fluid and lung tissue were increased. In parallel, Th2 cytokine secretion of lung draining lymph node cells was also augmented when stimulated by OVA in vitro. Furthermore, AHR was markedly enhanced in NTN(-/-) mice after sensitization and challenge when compared with wild-type mice. Administration of NTN before challenge with OVA partially rescues the phenotype of NTN(-/-) mice. These findings provide evidence for a dampening role of NTN on allergic inflammation and AHR in a murine model of asthma.  相似文献   

16.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

17.

Background

Early-life respiratory viral infections, notably with respiratory syncytial virus (RSV), increase the risk of subsequent development of childhood asthma. The purpose of this study was to assess whether early-life infection with a species-specific model of RSV and subsequent allergen exposure predisposed to the development of features of asthma.

Methods

We employed a unique combination of animal models in which BALB/c mice were neonatally infected with pneumonia virus of mice (PVM, which replicates severe RSV disease in human infants) and following recovery, were intranasally sensitised with ovalbumin. Animals received low-level challenge with aerosolised antigen for 4 weeks to elicit changes of chronic asthma, followed by a single moderate-level challenge to induce an exacerbation of inflammation. We then assessed airway inflammation, epithelial changes characteristic of remodelling, airway hyperresponsiveness (AHR) and host immunological responses.

Results

Allergic airway inflammation, including recruitment of eosinophils, was prominent only in animals that had recovered from neonatal infection with PVM and then been sensitised and chronically challenged with antigen. Furthermore, only these mice exhibited an augmented Th2-biased immune response, including elevated serum levels of anti-ovalbumin IgE and IgG1 as well as increased relative expression of Th2-associated cytokines IL-4, IL-5 and IL-13. By comparison, development of AHR and mucous cell change were associated with recovery from PVM infection, regardless of subsequent allergen challenge. Increased expression of IL-25, which could contribute to induction of a Th2 response, was demonstrable in the lung following PVM infection. Signalling via the IL-4 receptor α chain was crucial to the development of allergic inflammation, mucous cell change and AHR, because all of these were absent in receptor-deficient mice. In contrast, changes of remodelling were evident in mice that received chronic allergen challenge, regardless of neonatal PVM infection, and were not dependent on signalling via the IL-4 receptor.

Conclusion

In this mouse model, interaction between early-life viral infection and allergen sensitisation/challenge is essential for development of the characteristic features of childhood asthma, including allergic inflammation and a Th2-biased immune response.  相似文献   

18.
The complement fragment C5a plays dual roles in the development of experimental allergic asthma. It protects from pulmonary allergy by a regulatory effect on dendritic cells during allergen sensitization, but is proallergic during the effector phase. C5a can bind to two distinct receptors (i.e., C5a receptor and C5a receptor-like 2 [C5L2]). The functional role of C5L2 in vivo remains enigmatic. In this study, we show in two models of OVA- and house dust mite (HDM)-induced experimental allergic asthma that C5L2-deficient mice are protected from the development of airway hyperresponsiveness, Th2 cytokine production, eosinophilic airway inflammation, serum IgE, or mucus production. Surprisingly, HDM-induced experimental asthma in C5L2-deficient mice was associated with increased pulmonary IL-17A production and increased airway neutrophil numbers. To directly assess the role of C5L2 on myeloid dendritic cells (mDCs) during allergen sensitization, we performed single or repeated adoptive transfers of C5L2-deficient mDCs into wild-type mice. HDM-pulsed C5L2-deficient mDCs induced strong Th2 cytokine production, which was associated with marked IFN-γ and IL-17A production, decreased eosinophil numbers, and reduced IgE production as compared with HDM-pulsed mDCs from wild-type mice. HDM stimulation of C5L2(-/-) mDCs in vitro resulted in production of Th17-promoting cytokine IL-23, which was absent in wild-type mDCs. Our findings suggest that C5L2 acts at the mDC/T cell interface to control the development of Th1 and Th17 cells in response to airway HDM exposure. Furthermore, it drives Th2 immune responses independent of mDCs, suggesting a complex role for C5L2 in the development of experimental allergic asthma.  相似文献   

19.
CD4(+) memory/effector T cells play a central role in orchestrating the rapid and robust immune responses upon re-encounter with specific Ags. However, the immunologic mechanism(s) underlying these responses are still not fully understood. To investigate this, we generated an allergen (major house dust mite allergen, Blo t 5)-specific murine Th2 cell line that secreted IL-4, IL-5, IL-10, and IL-13, but not IL-9 or TNF-α, upon activation by the cognate Ag. These cells also exhibited CD44(high)CD62L(-) and CD127(+) (IL-7Rα(+)) phenotypes, which are characteristics of memory/effector T cells. Experiments involving adoptive transfer of this Th2 cell line in mice, followed by three intranasal challenges with Blo t 5, induced a dexamethasone-sensitive eosinophilic airway inflammation. This was accompanied by elevation of Th2 cytokines and CC- and CXC-motif chemokines, as well as recruitment of lymphocytes and polymorphic mononuclear cells into the lungs. Moreover, Blo t 5-specific IgE was detected 4 d after the last intranasal challenge, whereas elevation of Blo t 5-specific IgG1 was found at week two. Finally, pulmonary delivery of the pVAX-IL-35 DNA construct effectively downregulated Blo t 5-specific allergic airway inflammation, and i.m. injection of pVAX-IL-35 led to long-lasting suppression of circulating Blo t 5-specific and total IgE. This model provides a robust research tool to elucidate the immunopathogenic role of memory/effector Th2 cells in allergic airway inflammation. Our results suggested that IL-35 could be a potential therapeutic target for allergic asthma through its attenuating effects on allergen-specific CD4(+) memory/effector Th2 cell-mediated airway inflammation.  相似文献   

20.
Allergic asthma, an inflammatory disease characterized by the infiltration and activation of various leukocytes, the production of Th2 cytokines and leukotrienes, and atopy, also affects the function of other cell types, causing goblet cell hyperplasia/hypertrophy, increased mucus production/secretion, and airway hyperreactivity. Eosinophilic inflammation is a characteristic feature of human asthma, and recent evidence suggests that eosinophils also play a critical role in T cell trafficking in animal models of asthma. Nicotine is an anti-inflammatory, but the association between smoking and asthma is highly contentious and some report that smoking cessation increases the risk of asthma in ex-smokers. To ascertain the effects of nicotine on allergy/asthma, Brown Norway rats were treated with nicotine and sensitized and challenged with allergens. The results unequivocally show that, even after multiple allergen sensitizations, nicotine dramatically suppresses inflammatory/allergic parameters in the lung including the following: eosinophilic/lymphocytic emigration; mRNA and/or protein expression of the Th2 cytokines/chemokines IL-4, IL-5, IL-13, IL-25, and eotaxin; leukotriene C(4); and total as well as allergen-specific IgE. Although nicotine did not significantly affect hexosaminidase release, IgG, or methacholine-induced airway resistance, it significantly decreased mucus content in bronchoalveolar lavage; interestingly, however, despite the strong suppression of IL-4/IL-13, nicotine significantly increased the intraepithelial-stored mucosubstances and Muc5ac mRNA expression. These results suggest that nicotine modulates allergy/asthma primarily by suppressing eosinophil trafficking and suppressing Th2 cytokine/chemokine responses without reducing goblet cell metaplasia or mucous production and may explain the lower risk of allergic diseases in smokers. To our knowledge this is the first direct evidence that nicotine modulates allergic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号