首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal Xenopus laevis embryos begin movements at 1 day after fertilization. Embryos homozygous for the unresponsive mutation fail to move until 4 days after fertilization (just prior to feeding), after which they recover slowly. Electrophysiological studies were undertaken to determine the focus of this mutation. Formamide treatment of normal embryos was used to produce a phenocopy of the unresponsive condition, permitting direct comparisons between mutant and normal embryos. Intracellular recordings from muscle cells were obtained in formamide-treated and untreated preparations with both normal and unresponsive animals. Local electrical stimulation evoked either isolated endplate potentials and action potentials or after-discharges of these events in all preparations. A decrease in illumination also caused a burst of endplate potentials and action potentials. Therefore, the electrophysiology of the neuromuscular junction in unresponsive appears qualitatively normal; the effect of the mutation on the motor system is probably distal to the neuromuscular junction, either at or subsequent to excitation-contraction coupling.  相似文献   

2.
Microinjections of antibodies directed against the protein encoded by the c-myc protooncogene strongly inhibit or arrest the early cell cleavage stage of Xenopus laevis embryos. Injections in one blastomere of a two cell stage embryo inhibit the segmentation of this blastomere. The cleavage of the uninjected blastomere behaves normally. Injections of control rabbit immunoglobulins do not alter the embryonic development.  相似文献   

3.
Adult muscle fibres of the frog Rana temporaria were cultured with neurons from embryos of the frog Xenopus laevis. Electron microscopical and electro-physiological examination of the cultures showed that hetero-specific (Xenopus-Rana) neuromuscular junctions were formed in vitro. Nerve processes, without any Schwann cell covering, made contacts anywhere along a muscle fibre, and the junctions resembled those seen during early regeneration of neuromuscular synapses in situ. Functional contacts, as inferred by the presence of spontaneous miniature endplate potentials, or currents, were more common if the muscle fibres were denervated prior to culturing with neurons. Miniature endplate currents (m.e.p.cs) had a skewed amplitude distribution, with many small events lost in the recording noise, and their mean amplitude was much smaller than that of m.e.p.cs in the original lumbricalis muscle. The time constant of decay of m.e.p.cs in the hetero-specific junctions formed in vitro was several times longer than the decay of m.e.p.cs in the original muscle. Analysis of membrane current noise elicited by ionophoretically applied acetylcholine (ACh) suggests that the slower decay of m.e.p.cs in the junctions formed in vitro is due to a prolonged lifetime of the channels opened by ACh and to repetitive activation of ACh-receptors, which becomes possible because of a comparative lack of cholinesterase in the junctions.  相似文献   

4.
The differentiation of normal and mutant (aP/aP) Xenopus laevis melanophores in chimerae was analyzed to determine the tissues affected by this mutation. Normal melanophores in mutant host tissue differentiate in mutant host tissue prior to those of the mutant host. These normal melanophores were initially normal in appearance, but, after the differentiation of the mutant host's melanophores, they became indistinguishable from their host's melanophores. These normal melanophores persist in more than normally punctate form after the disappearance of the mutant host's melanophores in late larval life. Parabiosis and head transplants between mutant and normal embryos did not affect the character of either type of melanophore developing in tissue of its own genotype, indicating that the hormonal control of melanophore differentiation is not affected by the mutation. Therefore, the periodic albino mutant affects the capacity of the mutant melanophore to differentiate and the ability of the mutant skin to support normal melanophore differentiation.  相似文献   

5.
A new cadherin-like protein (CLP) was identified in oocytes, eggs, and cleavage stage embryos of Xenopus laevis. As a probe for detecting new cadherin proteins, an antiserum was raised to a 17 amino acid peptide derived from a highly conserved region in the cytoplasmic domain of all cadherins which have been sequenced to date. This antipeptide antibody recognized Xenopus E-cadherin and a polypeptide in Xenopus brain extracts similar to N-cadherin, which were independently identified by specific mAbs. In extracts of eggs and midblastula stage embryos the antipeptide antibody recognized specifically a 120-kD glycoprotein that migrated faster on SDS gels than the 140-kD E- and N-cadherin polypeptides. This 120-kD polypeptide was not recognized by the mAbs specific to E- and N-cadherin. In fact, E- and N-cadherin were not detectable in eggs or midblastula stage embryos. The possible relationship of CLP to P-cadherin, which has been identified in mouse tissues, has not yet been determined. CLP was synthesized by large, late stage oocytes. When oocytes were induced to mature in vitro with progesterone it accumulated to the same level found in normally laid eggs. It did not accumulate further to any significant extent during the early cleavage stages. CLP was detected on the surface of stage 8 blastomeres by cell surface biotinylation, but only after the tight junctions of the blastula epithelium were opened by removal of Ca2+. We conclude that CLP is a maternally encoded protein that is the major, if not only, cadherin-related protein present in the earliest stages of Xenopus development, and we propose that it may play a role in the Ca2(+)-dependent adhesion and junction formation between cleavage stage blastomeres.  相似文献   

6.
The expression of the Ca2+-dependent epithelial cell adhesion molecule E-cadherin (also known as uvomorulin and L-CAM) in the early stages of embryonic development of Xenopus laevis was examined. E-Cadherin was identified in the Xenopus A6 epithelial cell line by antibody cross-reactivity and several biochemical characteristics. Four independent mAbs were generated against purified Xenopus E-cadherin. All four mAbs recognized the same polypeptides in A6 cells, adult epithelial tissues, and embryos. These mAbs inhibited the formation of cell contacts between A6 cells and stained the basolateral plasma membranes of A6 cells, hepatocytes, and alveolar epithelial cells. The time of E-cadherin expression in early Xenopus embryos was determined by immunoblotting. Unlike its expression in early mouse embryos, E-cadherin was not present in the eggs or early blastula of Xenopus laevis. These findings indicate that a different Ca2+-dependent cell adhesion molecule, perhaps another member of the cadherin gene family, is responsible for the Ca2+-dependent adhesion between cleavage stage Xenopus blastomeres. Detectable accumulation of E-cadherin started just before gastrulation at stage 9 1/2 and increased rapidly up to the end of gastrulation at stage 15. In stage 15 embryos, specific immunofluorescence staining of E-cadherin was discernible only in ectoderm, but not in mesoderm and endoderm. The ectoderm at this stage consists of two cell layers. The outer cell layer of ectoderm was stained intensely, and staining was localized to the basolateral plasma membrane of these cells. Lower levels of staining were observed in the inner cell layer of ectoderm. The coincidence of E-cadherin expression with the process of gastrulation and its restriction to the ectoderm indicate that it may play a role in the morphogenetic movements of gastrulation and resulting segregation of embryonic germ layers.  相似文献   

7.
 Hikaru genki (HIG) is a putative secreted protein of Drosophila that belongs to immunoglobulin and complement-binding protein superfamilies. Previous studies reported that, during pupal and adult stages, HIG protein is synthesized in subsets of neurons and appears to be secreted to the synaptic clefts of neuron-neuron synapses in the central nervous system (CNS). Here we report the analyses of distribution patterns of HIG protein at embryonic and larval stages. In embryos, HIG was mainly observed in subsets of neurons of the CNS that include pCC interneurons and RP5 motorneurons. At third instar larval stage, this protein was detected in a limited number of cells in the brain and ventral nerve cord. Among them are the motorneurons that extend their axons to make neuromuscular junctions on body wall muscle 8. Immunoelectron microscopy showed that these axonal processes as well as the neuromuscular terminals contain numerous vesicles with HIG staining, suggesting that HIG is in a pathway of secretion at this stage. Some neurosecretory cells were also found to express this protein. These data suggest that HIG functions in the nervous system through most developmental stages and may serve as a secreted signalling molecule to modulate the property of synapses or the physiology of the postsynaptic cells. Received: 28 May 1998 / Accepted: 4 August 1998  相似文献   

8.
Adult rat muscle fibres were dissociated by using collagenase and maintained in culture. One to nine days later, neurons obtained from stages 22-30 Xenopus laevis embryos, or neonatal spinal cord, or pheochromocytoma (PC12) cells treated with nerve growth factor were added. Subsequently, the co-cultures were maintained for up to eight days. Functional synapses were formed with variable efficiency: 12% in rat-Xenopus nerve-muscle co-cultures, 23% in rat-rat and 33% in PC12 co-cultures. Miniature endplate potentials (MEPPs) and currents (MEPCs) were recorded, at frequencies ranging from 0.01 to 0.9 Hz. Their mean amplitude was smaller than in normal mammalian muscles. The rise time and time-constant of decay of MEPCs was about seven to ten times longer than that found in the original muscle, resembling immature synapses. (+)-Tubocurarine abolished the MEPPs in the rat-PC12 neuromuscular junctions. It is concluded that dissociated adult rat muscle fibres retain their ability of being reinnervated, and can form functional synapses with foreign neurons and transformed chromaffin cells.  相似文献   

9.
To identify mechanisms that regulate the deposition of the junctional basal lamina during synaptogenesis, immunocytochemical experiments were carried out on cultured nerve and muscle cells derived from Xenopus laevis embryos. In some experiments successive observations were made on individual muscle cells after pulse-labeling with a fluorescent monoclonal antibody specific for a basal lamina proteoglycan. In others, old and new proteoglycan molecules were differentially labeled with antibody conjugated to contrasting fluorochromes. These observations revealed that surface deposits of antibody-labeled proteoglycan remain morphologically stable for several days on developing muscle cells. Over the same period, however, new sites of proteoglycan accumulation formed that contained primarily those antigenic sites recently exposed at the cell surface. When muscle cells became innervated by cholinergic neurites, new proteoglycan accumulations were induced at the developing neuromuscular junctions, and these too were composed almost exclusively of recently deposited antigen. In older muscle cultures, where many cells possessed relatively high background concentrations of antigen over their surfaces, developing neuromuscular junctions initially showed a markedly reduced proteoglycan site-density compared with the adjacent, extrajunctional muscle surface. Much of this perineural region eventually became filled with dense, nerve induced proteoglycan plaques at later stages of synapse development. Motoneurons thus appear to have two, superficially paradoxical effects on muscle basal lamina organization. They first cause the removal of any existing, extrajunctional proteoglycan from the path of cell contact, and then induce the deposition of dense plaques of recently synthesized proteoglycan within the developing junctional basal lamina. This observation suggests that the proteolytic enzyme systems that have already been implicated in tissue remodeling may also contribute to the inductive interaction between nerve and muscle cells during synaptogenesis.  相似文献   

10.
As rapid divisions without growth generate progressively smaller cells within an embryo, mitotic chromosomes must also decrease in size to permit their proper segregation, but this scaling phenomenon is poorly understood. We demonstrated previously that nuclear and spindle size scale between egg extracts of the related frog species Xenopus tropicalis and Xenopus laevis, but show here that dimensions of isolated mitotic sperm chromosomes do not differ. This is consistent with the hypothesis that chromosome scaling does not occur in early embryonic development when cell and spindles sizes are large and anaphase B segregates chromosomes long distances. To recapitulate chromosome scaling during development, we combined nuclei isolated from different stage Xenopus laevis embryos with metaphase-arrested egg extracts. Mitotic chromosomes derived from nuclei of cleaving embryos through the blastula stage were similar in size to replicated sperm chromosomes, but decreased in area approximately 50% by the neurula stage, reproducing the trend in size changes observed in fixed embryos. Allowing G2 nuclei to swell in interphase prior to mitotic condensation did not increase mitotic chromosome size, but progression through a full cell cycle in egg extract did, suggesting that epigenetic mechanisms determining chromosome size can be altered during DNA replication. Comparison of different sized mitotic chromosomes assembled in vitro provides a tractable system to elucidate underlying molecular mechanisms.  相似文献   

11.
We have investigated the expression and distribution of talin and vinculin in the oocytes, eggs, and embryos of Xenopus laevis. Antibodies to the previously characterized avian proteins stain several different Xenopus cell types identically by immunofluorescence: adhesion plaques of cultured kidney (A6) cells, the cell peripheries of oviduct cells, and the postsynaptic neuromuscular junctions of tadpole tail muscle fibers. These antibodies also identify cognate proteins of the appropriate sizes on immunoblots of A6 cell and oviduct lysates. Using these antibodies on ovarian tissue, we find talin to be highly localized at the cortices of oocytes and vinculin to be in the oocyte cytoplasm and absent from the oocyte cortex. In the cells of the ovarian layers that surround the oocytes, talin and vinculin can be detected as soluble and cytoskeletal components. Vinculin is first detectable as a cytoskeletal component in eggs, appearing some time during or between oocyte maturation and oviposition. During early embryo development, talin and vinculin are colocalized in the cortex of cleavage furrows and blastomeres. Thus, Xenopus oocytes and eggs display different distributions of talin and vinculin. The change from unlinked localization to colocalization appears to be developmentally regulated, occurring during the transition from oocyte to egg.  相似文献   

12.
The effects of neuromuscular blocking drugs on the development of slow and fast muscle fibres and their neuromuscular junctions was studied in chick embryos.
Treatment of embryos with the depolarizing neuromuscular blocking agent suxamethonium affected the development of muscle fibres of the slow anterior latissimus dorsi (ALD) muscle more than that of muscle fibres of the posterior latissimus dorsi (PLD). The differentiation of the presynaptic elements of the neuromuscular junction was delayed and this was particularly obvious in PLD. Normally the number of axon profiles at individual endplates is reduced by 18 days of incubation, but in suxamethonium treated embryos this reduction took place only at 21 days. During earlier stages of development the axon profiles from treated embryos were small with sparse synaptic vesicles. Nevertheless the subsynaptic site of endplates on ALD and PLD muscle fibres became specialized earlier than normal and to a greater extent. Treatment with hemicholinium (HC-3), a drug that reduces the synthesis of acetylcholine (ACh) in nerve terminals affected the development of PLD muscle fibres more than ALD muscle fibres. Although in HC-3 treated embryos nerve-muscle contacts were formed, the axon terminals look immature and remain small even in 18-day old embryos at both ALD and PLD muscle fibres. The reduction of the number of axon profiles normally seen at 18 days failed to take place in treated embryos. At 18 days of incubation many endplates on PLD muscle fibres showed little sign of postsynaptic specilization and resembled endplates usually seen at this stage on ALD muscle fibres.
It is concluded that while neuromuscular activity may be important for the reduction of the number of axon profiles at individual endplates, the specialization of the subsynaptic membrane is brought about by depolarizing effect of ACh.  相似文献   

13.
Pattern regulation in defect embryos of Xenopus laevis   总被引:4,自引:0,他引:4  
Defect embryos of 24 series were prepared by removing increasing numbers of blastomeres from an 8-cell embryo of Xenopus laevis. They were cultured and their development was examined macroscopically when controls reached a tailbud stage or later. Results show that most of defect embryos of 12 series develop normally, and some of them become normal frogs. Each of these defect embryos contain at least two animal blastomeres, one dorsal, and one ventral blastomere of the vegetal hemisphere. This suggests that a set of these four blastomeres of the three types is essential for complete pattern regulation.  相似文献   

14.
The types and the distribution of muscle fibres were analysed and compared in the tails of Xenopus laevis and Rana temporaria tadpoles. The filter feeding tadpoles of X. laevis were found to have both white muscle fibres adjacent to the notochord used for normal locomotory swimming and a superficial layer of small red fibres. The red fibres are probably used for the continuous flickering movement of the tail associated with the maintenance of the mid-water filter feeding position. R. temporaria, a grazing detritus feeding tadpole, was found to have only white muscle fibres used for normal locomotory swimming. Smaller superficial fibres were not red fibres but were thought to be immature white fibres.  相似文献   

15.
Metabolism of 5S RNA in the absence of ribosome production   总被引:3,自引:0,他引:3  
L Miller 《Cell》1974,3(3):275-281
The results presented in this report show that during early development of Xenopus laevis the synthesis of 5S RNA occurs in blastula embryos, whereas the synthesis of 18S and 28S RNA cannot be detected until gastrulation. Thus the initiation of synthesis of the three ribosomal RNAs is not coordinate during early development. Blastula embryos are similar to anucleolate mutants of Xenopus laevis, in that they both synthesize 5S RNA, but are unable to assemble new ribosomes because they do not synthesize 18S and 28S RNA or ribosomal proteins. The blastula and anucleolate embryos thus provide a unique opportunity to determine if newly synthesized soluble 5S RNA can exchange with the 5S RNA present in existing ribosomes. The results show that newly synthesized 5S RNA is not incorporated into the ribosomes of blastula or anucleolate embryos. Furthermore, the 5S RNA synthesized by anucleolate mutants has a shorter half-life than the 5S RNA made by normal embryos. The synthesis of excess 5S RNA and its subsequent degradation in the absence of ribosome production appears to be another example of the phenomenon of wastage of newly synthesized ribosomal RNA.  相似文献   

16.
Effects of ethanol on the primitive streak stage mouse embryo   总被引:1,自引:0,他引:1  
Recent studies of mouse models have suggested that malformations associated with the fetal alcohol syndrome (FAS) are caused by the effects of ethanol on early embryos during gastrulation and neurulation. A study of Xenopus laevis embryos showed that exposure of gastrula stage amphibian embryos to ethanol inhibits migration of the mesodermal cells, causes formation of small neural plates, and subsequently causes hypoplastic craniofacial malformations in tadpoles. We now report effects of ethanol on the primitive streak stage mouse embryos. An ethanol solution (25%) was injected intraperitonealy twice into mice of 6.5-7.0 days of pregnancy at a dose of 0.015 ml/gm of body weight. Histological and morphometric examinations of 7.5-day embryos, 20 hr after the second injection, showed that the epiblast layer was disorganized and shrunk with formation of many blebs. In addition, formation of the mesodermal cell layer was retarded in the ethanol-treated embryos, suggesting that exposure of gastrula stage embryos to ethanol causes similar abnormalities in mouse and Xenopus embryos. These results suggest that the inhibition of the morphogenetic movements during gastrulation may be the primary effect of ethanol in causing major craniofacial malformations of FAS.  相似文献   

17.
Vimentin belongs to the diverse multigene family of intermediate filament proteins, each member of which is expressed in a tissue-specific and developmentally regulated pattern. The existence of vimentin filaments has been documented in oocytes, eggs, and early embryos of Xenopus laevis, but the role of these cytoskeletal components remains unknown. To investigate the functions of vimentin during early development in Xenopus, we induced the overexpression of wild-type and deletion mutant subunits in most of the cells of embryos by injecting synthetic RNA into fertilized eggs. Wild-type vimentin subunits, as well as subunits lacking most of the amino-terminal head piece, assembled into normal appearing filaments in vivo. Deletion mutants of the fourth alpha-helical rod domain were assembly incompetent and dominantly inhibited the polymerization of wild-type subunits when both types of subunit were co-expressed in cells. Expression of at least a tenfold excess of wild-type or mutant subunits within cells of embryos did not lead to any detectable morphological or developmental abnormalities, suggesting that the presence and proper regulation of vimentin expression is not essential during the initial stages of embryogenesis in Xenopus.  相似文献   

18.
In this report we have demonstrated that paxillin, a cytoskeletal protein which is present in focal adhesions, localizes in vivo to regions of cell-extracellular matrix interaction which are believed to be analogous to focal adhesions. Specifically, it is enriched in the dense plaques of chicken gizzard smooth muscle tissue and in the myotendinous junctions formed in Xenopus laevis tadpole tail skeletal muscle. In addition, paxillin was identified at the rat diaphragm neuromuscular junction. The distribution of paxillin is thus comparable to that of other focal adhesion proteins, for example, talin and vinculin, in these structures.  相似文献   

19.
It has been proposed and is now widely accepted that in Xenopus laevis embryogenesis RNA synthesis starts only at and after 12 rounds of cleavage, at the time of the midblastula transition (MBT). In this report, however, we provide evidence that RNA synthesis takes place prior to the MBT stage in normally developing Xenopus embryos. In the present experiments, we cultured fertilized eggs in 80 mM phosphate buffer and loosened the adhesion between blastomeres, so that [3H]uridine could be incorporated into blastomeres from the surrounding medium. By this method and also by microinjection of [3H]GTP, we found that embryos synthesize heterogeneous, nonribosomal, high-molecular-weight RNAs and a relatively small amount of low-molecular-weight RNA as early as the sixth cleavage. RNAs synthesized were not of mitochondrial origin, and the synthesis was sensitive to actinomycin D and alpha-amanitin. From these results we conclude that mRNA-like RNA and low-molecular-weight RNA start to be synthesized during the cleavage stage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号