首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of the immunosuppressive lipophilic peptide cyclosporin A has been measured by a number of techniques. The brain uptake index (BUI) technique in the rat yields only a small BUI value that is not significantly different from that of sucrose and mannitol and is comparable to other published BUI values for this compound. Brain perfusion studies in the guinea pig produce a unidirectional cerebrovascular permeability constant (Kin) of 1.2 +/- 0.28 microliter g-1 min-1 for the hippocampus. Intravenous bolus injection techniques also in the guinea pig characteristically produce a larger Kin value of 2.53 +/- 0.38 microliter g-1 min-1 for the same brain region, even after a correction for the inulin space of the tissue has been made. Apparent penetration of cyclosporin A into the cerebrospinal fluid (CSF) determined with the intravenous bolus injection technique is small with a Kin of 0.79 +/- 0.07 microliter g-1 min-1. However it is suggested that the radioactivity present in CSF is largely tritiated water. Studies with cultured cerebral endothelial cells from the rat have also been carried out and show that the cultured cells take up and accumulate cyclosporin A in vitro, achieving a tissue-to-medium ratio of 20 after 25 min of incubation. It is suggested that cyclosporin A is primarily taken up from lipoprotein at the blood-brain interface but, because of tight junctions at the blood-brain and blood-CSF barriers, becomes effectively trapped in the cerebral endothelial cells and the choroid plexus.  相似文献   

2.
Transport of 3H-labelled thyrotropin-releasing hormone (TRH) across the blood-brain barrier was studied in the ipsilateral perfused in situ guinea pig forebrain. The unidirectional transfer constant (Kin) calculated from the multiple time brain uptake analysis ranged from 1.14 X 10(-3) to 1.22 X 10(-3) ml min-1 g-1, in the parietal cortex, caudate nucleus, and hippocampus. Regional Kin values for [3H]TRH were significantly reduced by 43-48% in the presence of an aminopeptidase and amidase inhibitor, 2 mM bacitracin, suggesting an enzymatic degradation of tripeptide during interaction with the blood-brain barrier. In the presence of unlabelled 1 mM TRH and 2 mM bacitracin together, a reduction of [3H]TRH regional Kin values similar to that obtained with 2 mM bacitracin alone was obtained . L-Prolinamide, the N-terminal residue of tripeptide, at a 10 mM level had no effect on the kinetics of entry of [3H]TRH into the brain. The data indicate an absence of a specific saturable transport mechanism for TRH presented to the luminal side of the blood-brain barrier. It is concluded that intact TRH molecule may slowly penetrate the blood-brain barrier, the rate of transfer being some three times higher than that of D-mannitol.  相似文献   

3.
Transport of [tyrosyl-3,5-3H]enkephalin-(5-L-leucine) [( 3H]Leu-enkephalin) across the blood-brain barrier was studied in the adult guinea pig, by means of vascular perfusion of the head in vivo. The unidirectional transfer constant (Kin) estimated from the multiple-time uptake data for [3H]Leu-enkephalin ranged from 3.62 X 10(-3) to 3.63 X 10(-3) ml min-1 g-1 in the parietal cortex, caudate nucleus, and hippocampus. Transport of [3H]Leu-enkephalin was not inhibited by unlabelled L-tyrosine (the N-terminal amino acid) at a concentration as high as 5 mM, or by the inhibitor of aminopeptidase activity bacitracin (2 mM), suggesting that there was no enzymatic degradation of peptide at the blood-brain barrier. By contrast, 2 mM unlabelled Leu-enkephalin strongly inhibited the unidirectional blood-to-brain transport of [3H]Leu-enkephalin by 74-78% in the parietal cortex, caudate nucleus, and hippocampus. The tetrapeptide tyrosyl-glycyl-glycyl-phenylalanine (without the C-terminal leucine of Leu-enkephalin), at a concentration of 5 mM, caused a moderate inhibition ranging from 15 to 29% in the brain regions studied, whereas the tetrapeptide glycyl-glycyl-phenylalanyl-leucine (without the N-terminal tyrosine) at 5 mM was without effect on Leu-enkephalin transport. Unidirectional brain uptake of Leu-enkephalin was not altered in the presence of naloxone at a concentration as high as 3 mM (1 mg/ml), suggesting that there is no binding of Leu-enkephalin to opioid receptors at the blood-brain barrier. It is concluded that there is a specific transport mechanism for Leu-enkephalin at the blood-brain barrier in the guinea pig.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A technique for the vascular perfusion of the guinea pig head in vivo, suitable for measurements of blood-to-brain transport under controlled conditions of arterial inflow, has been developed. With a perfusion pressure ranging between 13 and 18 kPa and PCO2 in the arterial inflow of 5 and 5.5 kPa, cerebral blood flow, measured with [14C]butanol, was about 1 ml min-1 g-1 in the cerebral cortex, hippocampus, and caudate-putamen of the ipsilateral hemisphere; in the cerebellum and pontine white matter it was considerably less, and much higher perfusion pressures were required to establish equal blood flow throughout the whole brain. Regional water content, Na+/K+ ratio, ATP, energy charge potential, and lactate content of the ipsilateral side of perfused and nonperfused brain were not significantly different after 10 min perfusion. The D-[3H]mannitol space did not exceed 1% after 30 min of perfusion, indicating the integrity of the barrier. Over this period, EEG, ECG, and respiratory waveform remained normal. When [14C]N-methyl-alpha-aminoisobutyric acid (MeAIB), and D-[3H]mannitol were perfused together over periods extending to 30 min progressive uptakes of both solutes by the parietal cortex could be measured, and the unidirectional transfer constants estimated from multiple time-uptake data. The Kin for MeAIB (0.75 X 10(-3) ml min-1 g-1) was some three times that for mannitol. It is concluded that the technique provides a stable, well-controlled environment in the cerebral microvasculature of the ipsilateral perfused brain hemisphere suitable for examining the transport of slowly penetrating solutes into the brain.  相似文献   

5.
The blood-brain barrier permeability of the competitive N-methyl-D-aspartate receptor antagonist CGS-19755 [cis-4-(phosphonomethyl)-2-piperidine carboxylic acid] was assessed in normal and ischemic rat brain. The brain uptake index of CGS-19755 relative to iodoantipyrine was assessed using the Oldendorf technique in normal brain. The average brain uptake index in brain regions supplied by the middle cerebral artery was 0.15 +/- 0.35% (mean +/- SEM). The unidirectional clearance of CGS-19755 from plasma across the blood-brain barrier was determined from measurements of the volume of distribution of CGS-19755 in brain. These studies were performed in normal rats and in rats with focal cerebral ischemia produced by combined occlusion of the proximal middle cerebral artery and ipsilateral common carotid artery. In normal rats the regional plasma clearance across the blood-brain barrier was low, averaging 0.015 ml 100 g-1 min-1. In ischemic rats this clearance value averaged 0.019 ml 100 g-1 min-1 in the ischemic hemisphere and 0.009 ml 100 g-1 min-1 in the nonischemic hemisphere. No significant regional differences in plasma clearance of CGS-19755 were observed in either normal or ischemic rats except in cortex injured by electrocautery where a 14-fold increase in clearance across the blood-brain barrier was measured. We conclude that CGS-19755 crosses the blood-brain barrier very slowly, even in acutely ischemic tissue.  相似文献   

6.
Simultaneous diffusion of inositol and mannitol in the rat brain   总被引:1,自引:0,他引:1  
The diffusion of both inositol and mannitol has been determined simultaneously by the integral bolus method in rat brain. The permeability constant (Kin) of inositol averaged 0.27 +/- 0.02 ml X (100 g)-1 X min-1 or 4 X 10(-7) cm X s-1 at a cerebral capillary surface area of 100 cm2 x g-1. The permeability of mannitol was 0.08 +/- 0.01 ml X (100 g)-1. min-1 or 1 X 10(-7) cm X s-1. Neither glucose nor galactose affected the inositol permeability. Hypoglycemia increased somewhat the Km value for mannitol. The basal ganglia showed an increase Km for both substrates as compared with those obtained for cortex, temporal and parietal tissues.  相似文献   

7.
1. Under normal circulation of the dog submandibular gland, the electrical stimulation induced a massive salivary secretion (about 0.35 ml . min-1.g-1 gland weight) and an increase in the glandular temperature (about 0.2 degrees C). The heat production was calculated of about 60 mW.g-1. 2. Clamping of the glandular artery made both of secretion and heat production to be transient. The early peak of secretion was about 0.12 ml.min-1.g and that of heat production was 7 approximately 10mW,g-1. Then each 1 ml secretion followed about 4.6 J heat production. 3. Under constant blood flow in the glandular circulation, the secretory process was divided clearly into 2 phases of peak and plateau. The glandular temperature increased about 0.12 degrees C with an early temperature drop. In the secretory plateau phase, the secretary rate was about 0.043 ml.min-1.g-1, the heat production was about 5 approximately 7 mW.g-1 and each 1 ml secretion caused about 8.2 J heat production. 4. The rate of oxygen uptake was about 20.9 microl.min-1g-1 at the resting state. The maximum during secretion was about 192 microliter.min-1.g-1. THe half time of the recovery process of O2 uptake tended slightly longer than that of heat production. 5. THe rate of CO2 output was about 21.8 microliter.min-1.g-1 at resting. The maximum during secretion was about 142 microliter.min-1.g-1 R. Q. were about 1 at resting and about 0.74 under secretion.  相似文献   

8.
The transfer coefficients (Kin) for the uptake of gallium-67 (67Ga) into brain and CSF were determined in unanesthetized male Fischer-344 rats fed either a normal or a low-Ca diet. Kin for 67Ga was also compared with transfer coefficients for the uptake of iron-55 (55Fe) and 125I-albumin in control animals. The value of CSF 67Ga Kin was 3 x 10(-7) ml.g-1.s-1 and was 50% larger in low-Ca animals. Brain regional Kin values for 67Ga were 3-9 x 10(-7) ml.g-1.s-1 with no differences in Kin between normal and low-Ca rats. CSF Kin values for 55Fe were 40% and those for albumin were 15% of Kin for 67Ga. For brain, Kin values for 55Fe were 15-40% smaller than for 67Ga, but for albumin the Kin values were 85% less than for 67Ga. 67Ga was found to be 99% bound to plasma proteins, whereas 55Fe was 99.9% bound. The results indicate that metals that are primarily bound to transferrin enter the CSF and brain very slowly. Uptake of both metals was faster than albumin, which may indicate that metal bound to small chelates contributes significantly to brain uptake. In addition, Ca deficiency does not enhance entry of Ga into the brain.  相似文献   

9.
Radioiodinated m-iodobenzylguanidine ([125I]MIBG) and tritiated norepinephrine ([3H]NE]) uptake and release were compared, in different regions of the brain of the rat. The classification of the regions according to uptake was the same for both tracers: striatum > hypothalamus > hippocampus > cortex > brainstem. Tetrabenazine (TBZ), a granular monoamine uptake inhibitor reduced the uptake in the different regions. The inhibition rate was higher for [3H]NE uptake than for [125I]MIBG. The spontaneous release was the same for [125I]MIBG and [3H]NE and was the lowest in the striatum. The K+ stimulated release of [3H]NE was more complete than the release of [125I]MIBG and was the most important in the striatum. From these results, it is inferred that MIBG enters the brain tissue via NE uptake mechanisms. It appears that MIBG is stored in the chromaffin granules, as NE, but also in the cytoplasm. A modified molecule derived from MIBG which would cross the blood-brain barrier, would then appear as a potential scintigraphic marker of monoamine uptake, storage and release.  相似文献   

10.
Postnatal changes in local permeability of the blood-brain barrier to an inert neutral amino acid (alpha-[14C]-aminoisobutyric acid) were investigated in 25 rabbits. The local transfer constant (K) for this tracer was measured with quantitative autoradiographic techniques at postnatal ages of 1, 3, 8, and 17 days, and adult. In adults, the amino acid penetrated the blood-brain barrier poorly in most regions examined (K less than 1 microliter.g-1.min-1) except within and in proximity to structures with a relatively leaky blood-brain barrier such as area postrema and choroid plexus. The rate of tracer entry into "impermeable" regions was seven- to 10-fold greater in 1-day-old rabbits than adults and not dependent on active transport. In young animals, there was a pronounced regional variation in K with the lowest values occurring in white matter and the highest in gray matter such as cerebral cortex, posterior thalamus, and hippocampus. During postnatal development, K decreased (p less than 0.01) with most regions having values near those of adults by 17 days of age. The results indicate that the blood-brain barrier of the newborn rabbit is relatively leaky to a small hydrophilic nonelectrolyte with a distribution that is heterogeneous regionally. Irrespective of age, such blood-borne substances can accumulate in certain brain areas considered to have impermeable vessels (e.g., nucleus tractus solitarii).  相似文献   

11.
The rate of protein synthesis in the isolated perfused rat pancreas was measured from the rate of incorporation of L-[3H]phenylalanine into total protein, and was compared with the transport of this amino acid into the epithelium. Unidirectional (15 s) and net (15-30 min) uptake of L-[3H]phenylalanine was measured relative to D-[14C]mannitol (extracellular marker) using a cell loading technique. The fractional rate of protein synthesis in the pancreas was also measured in vivo using a flooding dose technique and found to be 118 +/- 10% day-1 (corresponding to an absolute rate of incorporation of L-Phe into protein of 36.1 +/- 3 nmol min-1 g-1) in overnight fasted rats. Compared with the in vivo rate, the perfused pancreas exhibited a markedly lower rate of protein synthesis which increased significantly when amino acids were added to the perfusate (15.6 +/- 1.9 vs. 22.5 +/- 0.9% day-1 or 4.7 +/- 0.6 vs. 6.9 +/- 0.3 nmol L-Phe min-1 g-1). Carbachol (3 x 10(-7) M) stimulated protein synthesis provided amino acids were also supplied in the perfusate. Protein synthesis rates measured under all conditions in vivo and in vitro were at least an order of magnitude lower than the unidirectional influx (121 +/- 14 nmol min-1 g-1) of L-phenylalanine into the pancreatic epithelium. These results demonstrate that amino acid transport across the basolateral membrane of the epithelium is not rate-limiting for pancreatic protein synthesis.  相似文献   

12.
The active uptake of [methyl-3H]choline into isolated rat brain microvessel suspension was studied as a likely guide to the transport of choline across the blood-brain barrier. The method consisted primarily of incubation of the suspension with a fixed concentration of labeled choline in the presence of increasing concentrations of unlabeled choline or any other inhibitor (I) of active uptake, defined as the difference in uptake at 37 degrees and 0 degrees C. From the linear regression of (1/V) against [I], the following values of Vmax (nmol g-1 min-1) and Km (microM) were obtained for choline: 2-month-old males, 10.6 +/- 3.8 and 6.1 +/- 0.9; 3-month old random females, 28.4 +/- 5.9 and 12.6 +/- 4.0; females at metaestrus, 17.8 +/- 10.3 and 8.3 +/- 5.0; at diestrus, 31.1 +/- 9.3 and 13.0 +/- 2.6; at proestrus, 54.9 +/- 2.2 and 14.0 +/- 1.5; at estrus, 19.2 +/- 2.2 and 2.6 +/- 1.7. The differences between males and random females (p less than 0.018) and between females at proestrus and estrus (p less than 0.005) are significant. It is suggested that these inter- and intrasex variations in choline uptake reflect a dynamic adjustment of supply in accordance with brain demand for choline at the time of assay. Hemicholinium-3 was an effective inhibitor of choline uptake, Ki = 14.0 +/- 8.5 microM; dimethylaminoethanol was much less effective; and imipramine had no measurable effect.  相似文献   

13.
We used a simplified probe detection system for positron-emitting radionuclides in order to measure blood-brain barrier transport of amino acids in anesthetized dogs. Plasma and brain time-activity curves were recorded after intravenous bolus injection of L-[11C]methionine before and after administration of 1 microgram of vasopressin. Three-compartment models with three or four transfer coefficients were used to derive the kinetics of L-[11C]methionine uptake in brain. The blood-brain clearance of the tracer (K1) was 0.075 ml ml-1 min-1 before and 0.041 ml ml-1 min-1 after injection of vasopressin. The partition volume and the initial distribution (plasma) volume of methionine were unchanged and within the expected limits. The net accumulation rate of methionine (K), estimated by both the four-parameter (kinetic) and three-parameter (graphic) approaches, decreased after vasopressin injection in all six studies.  相似文献   

14.
In a rat with an isolated hind leg circulation perfused with varying tyrode solutions, heart rate (HR) changes were studied in dependence of VO2 in the isolated hind leg and of PCO2, [K+], pH and lactic acid concentration ([Lac]) measured in the venous outflow of the isolated hind leg. In experimental series I the inflow PO2 (PiO2) was kept constantly high (either about 65 or 72 kPa). The perfusion pressure alternated between 16 and 24 kPa leading to flow rates in isolated hind legs (Qa) from 30 to 50 ml . 100 g-1 . min-1. The VO2 depended on the momentary Qa (flow-limited oxygen uptake). The [K+] and [Lac], the pH and the AVDO2 remained nearly constant while the PCO2 was lower at small flow rates. The HR decreases some 4 min after initial enhancement of Qa and VO2. Series II comprised experiments with low flow rates and a medium oxygen supply (Qa = 2.5-17.4 ml . 100 g-1 . min-1), PiO2 = 17.5-62.7 kPa). The VO2 ranged between 0.02 and 0.2 ml . 100 g-1 . min-1. The [K+] and [Lac], the PCO2 and the HR increased while the pH decreased. The [Lac] in the outflow showed a strong dependence on oxygen uptake and--at a weak oxygen supply--on the time. Cross-correlation analyses between the parameters confirmed that the HR was best temporally correlated to the [Lac] in the outflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hydroxyurea is used in the treatment of HIV infection in combination with nucleoside analogues, 2'3'-didehydro-3'deoxythymidine (D4T), 2'3'-dideoxyinosine or abacavir. It is distributed into human CSF and is transported from the CSF to sub-ependymal brain sites, but its movement into the brain directly from the blood has not been studied. This study addressed this by a brain perfusion technique in anaesthetized guinea-pigs. The carotid arteries were perfused with an artificial plasma containing [14C]hydroxyurea (1.6 microm) and a vascular marker, [3H]mannitol (4.6 nm). Brain uptake of [14C]hydroxyurea (8.0 +/- 0.9%) was greater than [3H]mannitol (2.4 +/- 0.2%; 20-min perfusion, n = 8). CSF uptake of [14C]hydroxyurea (5.6 +/- 1.5%) was also greater than [3H]mannitol (0.9 +/- 0.3%; n = 4). Brain uptake of [14C]hydroxyurea was increased by 200 microm hydroxyurea, 90 microm D4T, 350 microm probenecid, 25 microm digoxin, but not by 120 microm hydroxyurea, 16.5-50 microm D4T, 90 microm 2'3'-dideoxyinosine or 90 microm abacavir. [14C]Hydroxyurea distribution to the CSF, choroid plexus and pituitary gland remained unaffected by all these drugs. The metabolic half-life of hydroxyurea was > 15 h in brain and plasma. Results indicate that intact hydroxyurea can cross the brain barriers, but is removed from the brain by probenecid- and digoxin-sensitive transport mechanisms at the blood-brain barrier, which are also affected by D4T. These sensitivities implicate an organic anion transporter (probably organic anion transporting polypeptide 2) and possibly p-glycoprotein in the brain distribution of hydroxyurea and D4T.  相似文献   

16.
ATP-binding cassette transporter A1 (ABCA1) mediates apolipoprotein-dependent cholesterol release from cellular membranes. Recent studies using ABCA1 knockout mice have demonstrated that ABCA1 affects amyloid-beta peptide (A beta) levels in the brain and the production of senile plaque. Cerebral A beta(1-40) was eliminated from the brain to the circulating blood via the blood-brain barrier (BBB), which expresses ABCA1. Therefore, in the present study, we examined whether ABCA1 affects the brain-to-blood efflux transport of human A beta(1-40)(hA beta(1-40)) at the BBB. The apparent uptake of [125I]hA beta(1-40) into ABCA1-expressing HEK293 cells was not significantly different from that into parental HEK293 cells. In addition, the apparent uptake was not significantly affected even in the presence of apolipoprotein A-I as a cholesterol release acceptor. Moreover, [125I]hA beta(1-40) elimination from mouse brain across the BBB was not significantly different between ABCA1-deficient and wild-type mice 60 min after its administration into the cerebrum. These results suggest that ABCA1 does not directly transport hA beta(1-40) and a deficiency of ABCA1 does not attenuate the brain-to-blood efflux transport of hA beta(1-40) across the BBB.  相似文献   

17.
The uptake of 3,3',5-[3'-125I]triiodo-L-thyronine ([125I]L-T3) and of L-[3',5'-125I]thyroxine ([125I]L-T4) by cultured rat glial cells was studied under initial velocity (Vi) conditions. Uptake of both hormones was carrier mediated and obeyed simple Michaelis-Menten kinetics. The following respective values of Km (microM) and Vmax (fmol/min/microgram of DNA) were obtained at 25 degrees C: 0.52 +/- 0.09 and 727 +/- 55 for L-T3 and 1.02 +/- 0.21 and 690 +/- 85 for L-T4. Ki values (microM) for the inhibition of [125I]L-T3 uptake by unlabeled analogues were as follows: L-T4, 0.88; 3,3',5'-triiodo-L-thyronine, 1.4; 3,3'-diiodo-L-thyronine, 2.9; 3,3',5-triiodo-D-thyronine, 4.8; and triiodothyroacetic acid, 5.3. These values indicate that the uptake system is stereospecific. Unlabeled L-T3 was a better competitor than unlabeled L-T4 for the uptake of [125I]L-T4, an observation suggesting that both hormones were taken up by a common carrier system. L-T3, and L-T4 uptake was pH dependent, a finding suggesting that the phenolic unionized form of the hormones was preferentially taken up. L-T3 uptake was studied in the presence of various inhibitors; the results suggest that uptake was independent of the transmembrane Na+ gradient and of the cellular energy. Compounds that inhibited cellular uptake but were without effect on L-T3 binding to isolated nuclei also inhibited L-T3 nuclear binding in intact cells, an observation suggesting that uptake could be rate limiting for the access of L-T3 to nuclear receptors when transport is severely inhibited.  相似文献   

18.
Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared [125I]PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of [125I]PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of [125I]PYY binding sites throughout the rat brain was seen to be similar to the distribution of [125I]NPY binding sites.  相似文献   

19.
An in vitro autoradiographic assay was used in identifying a magnesium-dependent, non-specific binding of [125I] prolactin to myelinated fiber tracts in the rat brain. Frozen tissue sections were incubated for 18 h at 4 degrees C in media which included [125I]prolactin alone or with a 500 fold excess of unlabelled prolactin. Magnesium in the incubation medium caused a non-specific binding of radiolabelled prolactin to the myelinated fiber tracts in the brain. In contrast, calcium did not facilitate prolactin non-specific binding to myelin. Hence, calcium should optimize the detection of specific prolactin binding sites in the brain by in vitro autoradiographic or radioreceptor assays.  相似文献   

20.
The effect of glucocorticoids on the blood-brain barrier (BBB) was studied in rats following a single injection or 3 days of dexamethasone administration. Tracers with a low permeability across the intact endothelium, [14C]sucrose and alpha-[3H]aminoisobutyric acid ([3H]AIB), were simultaneously injected intravenously in untreated rats or in rats treated with dexamethasone. Unidirectional blood-to-brain transfer constants (Ki) in 14 regions of the rat brain were determined. In regions of control brain, average Ki values for AIB and sucrose were approximately 0.0020 and 0.00060 ml g-1 min-1, respectively. The lowest transfer constants were found in caudate nucleus, hippocampus, white matter, and cerebellum. In dexamethasone-treated animals, Ki values for both sucrose and AIB markedly decreased by 30-50% in almost all brain regions. These results indicate that a single injection or 3 days of treatment with dexamethasone causes an apparent reduction in the normal BBB permeability, and dexamethasone may greatly interfere with drug delivery into brain. These observations may have an importance for the administration of drugs in brain disease in the presence of steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号