首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Unidirectional flux of 125I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of 125I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternal perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides.  相似文献   

2.
Radioimmunoassay was used to measure the content of delta-sleep-inducing peptide (DSIP) in random-bred albino rats divided into groups according to the duration of ethanol anesthesia and the levels of 15% ethanol consumption under free-choice conditions. The concentration of the neuropeptide was assayed in intact brain, in the cortex of large hemispheres, medulla oblongata, thalamus and striatum. The short-sleeping rats manifested a statistically significant lowering of the DSIP content in intact brain homogenates, in the cortex of large hemispheres and striatum. On the contrary, thirty minutes after a single intraperitoneal injection of ethanol in a dose of 1 g/kg the DSIP content in the medulla oblongata, thalamus and striatum was found to be increased. The raising of the ethanol dose up to 2.5 and 4.5 g/kg was followed by a less significant increase in the neuropeptide content. Prolonged chronic alcoholization under free-choice conditions led after 12 months to the reduced DSIP content in the medulla oblongata, thalamus and striatum. The importance of DSIP for the pathogenesis of experimental alcoholism using rats with different levels of alcoholic motivation is discussed.  相似文献   

3.
The distribution of delta sleep-inducing peptide (DSIP) in the brain and pituitary of the cartilaginous fish Scyliorhinus canicula was investigated using the indirect immunofluorescence technique. Delta sleep-inducing peptide-like immunoreactive cell bodies were mainly observed in the nucleus lateralis tuberis of the hypothalamus. Immunolabeled perikarya were also distributed in the nucleus lobi lateralis hypothalami and in the dorso-lateral wall of the recessus posterioris. Most of these cells, located in the subependymal layers of the infundibulum and lateral lobes, had the typical aspect of cerebrospinal fluid-contacting elements. The DSIP-like immunoreactive fibers were localized in the basal telencephalon, within the regions of the nucleus interstitialis commissurae anterioris and the nucleus entopeduncularis. A dense network of DSIP-positive fibers was seen throughout the midcaudal hypothalamus, the lateral lobes, and the posterior lobe. In the pituitary, numerous DSIP-like immunoreactive cells were detected in the median lobe of the pars distalis. In particular, a high concentration of cells was seen in the dorsal wall of the median lobe, an area which is known to contain melanin-concentrating hormone (MCH)-producing cells. Comparison of the distribution of DSIP- and MCH-like immunoreactive cells revealed that the two neuropeptides are stored in the same cells of the median lobe of the pituitary. These findings provide the first evidence for the presence of a DSIP-related peptide in fish. The distribution of the immunoreactive material supports the view that DSIP may act as a neuromodulator and/or a hypophysiotropic factor. Moreover, the presence of DSIP-like immunoreactive cells in the pars distalis suggests that this peptide may exert autocrine or paracrine effect in the pituitary.  相似文献   

4.
The biostability of DSIP (delta sleep-inducing peptide) and two analogs in blood was investigated in order to determine if rates of inactivation contribute to variable effects in vivo. Incubation of DSIP in human or rat blood led to release of products having retention times on a gel filtration column equivalent to Trp. Formation of products was dependent on temperature, time, and species. Incubation of 125I-N-Tyr-DSIP and 125I-N-Tyr-P-DSIP, a phosphorylated analog, revealed slower degradation and, in contrast to DSIP, produced complex formation. An excess of unlabeled material did not displace the radioactivity supporting the assumption of non-specific binding/aggregation. It was concluded that the rapid disappearance of injected DSIP in blood was due to degradation, whereas complex formation together with slower degradation resulted in longer persistence of apparently intact analogs. Whether this could explain the sometimes stronger and more consistent effects of DSIP-analogs remains to be examined.  相似文献   

5.
Delta sleep-inducing peptide (DSIP) was isolated from rabbit cerebral venous blood by Schoenenberger-Monnier group from Basel in 1977 and initially regarded as a candidate sleep-promoting factor. However, the link between DSIP and sleep has never been further characterized, in part because of the lack of isolation of the DSIP gene, protein and possible related receptor. Thus the hypothesis regarding DSIP as a sleep factor is extremely poorly documented and still weak. Although DSIP itself presented a focus of study for a number of researchers, its natural occurrence and biological activity still remains obscure. DSIP structure is different from any other known representative of the various peptide families. In this mini-review we hypothesize the existence of a DSIP-like peptide(s) that is responsible (at least partly) for DSIP-like immunoreactivity and DSIP biological activity. This assumption is based on: (i) a highly specific distribution of DSIP-like immunoreactivity in the neurosecretory hypothalamic nuclei of various vertebrate species that are not particularly relevant for sleep regulation, as revealed by the histochemical studies of the Geneva group (Charnay et al.); (ii) a large spectrum of DSIP biological activity revealed by biochemical and physiological studies in vitro; (iii) significant slow-wave sleep (SWS) promoting activity of certain artificial DSIP structural analogues (but not DSIP itself!) in rabbits and rats revealed by our early studies; and (iv) significant SWS-promoting activity of a naturally occurring dermorphin-decapeptide that is structurally similar to DSIP (in five of the nine positions) and the sleep-suppressing effect of its optical isomer, as revealed in rabbits. Potential future studies are outlined, including natural synthesis and release of this DSIP-like peptide and its role in neuroendocrine regulation.  相似文献   

6.
A Sahu  S P Kalra 《Life sciences》1987,40(12):1201-1206
Delta sleep inducing peptide (DSIP) has been shown to increase sleep in various animals and it is found in various parts of the brain including the hypothalamus. While intraventricular administration of DSIP (2 or 10 micrograms) failed to affect LH release in ovariectomized rats, in two separate experiments DSIP (2 or 10; 15 or 30 micrograms) promptly stimulated LH release in ovariectomized estrogen, progesterone-primed rats. However, DSIP (10(-8) or 10(-6)M) had no effect on either basal or luteinizing hormone-releasing hormone-induced in vitro LH release from the hemipituitaries of ovarian steroid-primed rats. These findings are in accord with the hypothesis that DSIP or DSIP-like peptide(s) may activate the hypothalamic neural circuitry responsible for stimulation of LH release reported to occur during sleep.  相似文献   

7.
Hypnogenic effects of 3 DSIP analogs with a higher stability against aminopeptidase activity have been studied in rabbits and rats using intraventricular administration (injections and infusions). An analog (D-Ala-2) DSIP augmented slow wave and paradoxical sleep within the 5th, 8th and 11th hours of the recording period. An analog (D-Val-2) DSIP made the same within the 8th and 10th hours, and hexapeptide (D-Ala-2) DSIP (1-6) increased sleep during the 1st, 3rd, and 5th hours. Both nonapeptides augmented sleep in rabbits as well as in rats, though hexapeptide produced this effect in rabbits only, that might be related to some difference in distribution and colocalization of endogenous DSIP-like peptide in the pituitary of two rodent species. It may be suggested that hypnogenic activity of DSIP analogs is determined by the structure of administrated molecule, being mediated by such hormones as GRF and CLIP.  相似文献   

8.
Delta sleep-inducing peptide-like immunoreactivity (DSIP-LI) has previously been demonstrated in brain neurons and in endocrine cells of the pituitary and the adrenal medulla. By means of three different antisera against synthetic DSIP we now describe the occurrence and distribution of DSIP-LI in several gut endocrine cells. The human gut was the richest source, where DSIP-LI was located in gastrin/CCK, secretin and PYY/glicentin cells. The rat and pig gut harbour a moderate number of immunoreactive cells in the antral mucosa but in the intestines DSIP-LI-containing cells were very few. By radioimmunoassay, the concentration of DSIP-LI was determined in extracts of various gut regions from man, pig and rat. The highest concentrations were found in all human specimens compared with corresponding samples in the pig and rat. In all three species, high-performance liquid chromatography revealed a single peak of DSIP-like material with approximately the same retention time as DSIP 3-9. Taken together, the present results provide evidence for the presence of DSIP-LI in gut endocrine cells in man, pig and rat; the human gut seems to be the richest source of DSIP-like peptides.  相似文献   

9.
By RIA there were studied the contents of corticosterone, ACTH, beta-endorphin and insulin in the blood plasma, met- and leu-enkephalin in different regions of the rat brain and in the adrenal glands after a 6-hour immobilization. The stress increased the content of corticosterone, ACTH, beta-endorphin, but not insulin in the blood plasma, and the levels of met-enkephalin in the adrenal glands, but decreased the met-enkephalin contents in the striatum. The injection of DSIP (0.1 mg/kg, i/p) blocked partly the elevation of corticosterone only. The authors propose, that stress-protective action of DSIP is realized with the involvements of the hypothalamo-pituitary-adrenal gland system.  相似文献   

10.
D B Hoover 《Peptides》1989,10(2):343-347
The pharmacological effects of guinea pig vasoactive intestinal peptide (VIP) were studied in isolated perfused guinea pig hearts. Bolus injections of VIP produced a dose-dependent tachycardia that was not affected by atenolol. A decrease in amplitude of ventricular contractions occurred in response to all doses of VIP. This response was preceded by a small increase in amplitude in 3 of 6 hearts at the highest dose. VIP produced a decrease in perfusion pressure which was prominent after coronary tone was elevated with [Arg8]-vasopressin. The present findings support speculation that VIP may have a role in the regulation of heart rate and coronary blood flow.  相似文献   

11.
Saturable transport of peptides across the blood-brain barrier   总被引:3,自引:0,他引:3  
W A Banks  A J Kastin 《Life sciences》1987,41(11):1319-1338
Peptides can be transported across the blood-brain barrier by saturable transport systems. One system, characterized with radioactively labeled Tyr-MIF-1 (Tyr-Pro-Leu-Gly-amide), is specific for some of the small peptides with an N-terminal tyrosine, including Tyr-MIF-1, the enkephalins, beta-casomorphin, and dynorphin (1-8). Another separate system transports vasopressin-like peptides. The choroid plexus has at least one system distinguishable from those above that is capable of uptake and possibly transport of opiate-like peptides. The possibility of saturable transport of other peptides has been investigated to a varying degree. Specificity, stereo-specificity, saturability, allosteric regulation, modulation by physiologic and pharmacologic manipulations, and noncompetitive inhibition have been demonstrated to occur in peptide transport systems and suggest a role for them in physiology and disease.  相似文献   

12.
Entry of delta sleep-inducing peptide (DSIP) into the circulation from the gastrointestinal (GI) tract was studied in unweaned rat pups. The pups were fed an analog of DSIP (N-Tyr-DSIP) or 125I-N-Tyr-DSIP and blood samples collected. Significant increases in plasma DSIP-like immunoreactivity occurred after the feeding of 100 ωg/animal of N-Tyr-DSIP but not after vehicle (normal saline) or 1 ωg/animal. Column chromatography showed this immunoreactivity to coelute with intact DSIP and des-Trp1- DSIP. A small but statistically significant increase of immunoreactivity occurred in the plasma of pups whose nursing mothers were injected with N-Tyr-DSIP but not in those whose mothers were injected with saline. Radioactivity appeared in both the brain and blood of 1–2 and 10 day old rat pups fed 125I-N-Tyr-DSIP. Although only a small amount of the radioactivity in plasma co-eluted with intact 1251I-N-Tyr-DSIP on column chromatography, almost all of the radioactivity in brain did, suggesting that the radioactivity in the brain represented crossing of the blood-brain-barrier by the peptide and not just contamination by blood. The results cannot be explained by either regurgitation of intestinal contents, or by stimulation of endogenous peptide. They show that a DSIP peptide administered orally can be absorbed through the GI tract into the systemic circulation.  相似文献   

13.
K S Iyer  S M McCann 《Peptides》1987,8(1):45-48
To evaluate possible effects of delta sleep-inducing peptide on GH release, the peptide was micro-injected into conscious animals with third ventricular cannulae and blood samples were drawn from indwelling external jugular vein cannulae. Ovariectomized animals were used in order to eliminate gonadal steroid feedback. In the initial experiment, intraventricular injection of 5 micrograms of the peptide induced an elevation of GH which became significant by 30 min and persisted for the 120 min duration of the experiment after the injection. Diluent-injected animals showed a slight initial drop in GH and then no increase. The increase in plasma GH induced by the peptide was dose-related with a minimal effective dose of 0.1 microgram and a linear log-dose increase to a dose of 10 micrograms. This effect is presumably mediated hypothalamically via a dopaminergic mechanism since it could be blocked by pre-treatment of the animals with pimozide, a dopamine receptor blocker. Dispersed overnight, cultured pituitary cells from ovariectomized rats exhibited a dose-related increase in GH release in static incubations with DSIP. A response occurred with the lowest dose tested (10(-12) M) which increased to a maximum at 10(-10) M DSIP. The responses then declined at higher doses such that they were no longer significant at doses of 10(-7) and 10(-5) M. The increase even at the most effective dose was approximately 50% above the basal values. The results are consistent with the hypothesis that DSIP may be involved in GH release via a dopaminergic mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Using the indirect immunofluorescence method, the distribution of the Delta Sleep Inducing Peptide (DSIP)-containing neurons was studied in the rabbit brain. DSIP antisera were raised in rat by multiple injections of synthetic DSIP conjugated to thyroglobulin. Some DSIP immunoreactive cell bodies were detected in the diagonal band of Broca and anterior part of the hypothalamus. Large populations of immunofluorescent fibers and terminals were visualized mainly through the organum vasculosum of the lamina terminalis, the preoptic areas, the subfornical organ, the thalamus, the ventromedial hypothalamus and infundibulum. Further, most of the cells of the intermediate lobe of the hypophysis displayed DSIP-immunoreactivity. The predominant localization of DSIP-immunoreactive fibers and terminals in certain circumventricular organs suggests that DSIP could play a specific role in the neurohumoral regulation.  相似文献   

15.
The presence of delta sleep-inducing peptide (DSIP) in brain has been shown by radioimmunoassay (RIA) and by immunocytochemistry. We now describe the occurrence of DSIP-like material in the peripheral organs of the rat as measured by RIA. Tissue from 12 areas was extracted with water, and the amounts of immunoreactive material found to be between 86 pg/mg tissue (muscle) and 849 pg/mg (stomach). Recoveries of about 80% of added DSIP were achieved at tissue concentrations of 1 mg/ml or less. This percentage was reduced in liver at higher concentrations. The percentage of small peptide adsorbed by charcoal was greatly increased at lower tissue concentrations in all organs. This effect was significant and linear. Chromatography on columns of Sephadex G-15 and G-25 showed immunoreactive material mostly larger than DSIP. Digestion with trypsin, however, produced small immunoreactive peptides with only a minimal reduction in total immunoreactivity. Thus, DSIP-like material is widespread in peripheral tissues and appears to exist mainly in a large form, probably bound to protein, that can be reduced in size by tryptic digestion and can be dissociated at lower concentrations of tissue to yield small immunoreactive peptides.  相似文献   

16.
Antiedematic effects of the drugs are connected with their action on the mediator systems. DSIP has a wide range of modulatory effects on the brain mediator systems. DSIP antiedematic effect was studied on the toxic brain edema-swelling (BES) model. Physical characteristics of the nervous tissue such as thickness and wetness were used as evaluation criteria. According to the findings, the doses of 75-100 micrograms/kg DSIP were optimal. It is suggested that DSIP effect on BES is multicomponent and rather complicated. Inhibition of serotonin, noradrenaline and histamine systems and activation of GABA-ergic system by DSIP act as a possible antiedematic mechanism.  相似文献   

17.
Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.  相似文献   

18.
In free behavior experiments on cats it has been shown, that the intraperitoneal injection of delta-sleep-inducing peptide (100 mg/kg) may change organization of the pathology integration-epileptic discharges did not spread all the structures simultaneously. The slow-waves were registered in central medium of the thalamus and nucl. caudati. The epileptic discharges were registered first in visual and auditory cortex, hippocampus. After that they were observed in the motor cortex, nucl. caudati and centrum medianum of the thalamus.  相似文献   

19.
It is shown that injection of delta sleep-inducing peptide (DSIP) into the substantia nigra reticular part (SNrp) suppresses generalized convulsive activity induced in rats by picrotoxin and corazol injection but exerts no influence on the strichnine-induced seizures. The analogous DSIP injection causes the antiepileptic action in rats kindled through picrotoxin injections. The DSIP intranigral anticonvulsant action is blocked by naloxon and enhanced by haloperidol and yohimbin. It can be concluded that DSIP anticonvulsant action may be realized due to activation of SNrp-dependent opioid mechanisms and suppression of dopaminergic ones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号