首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Addition of phenylephrine to isolated perfused rat liver is followed by an increased 14CO2 production from [1-14C]glutamate, [1-14C]glutamine, [U-14C]proline and [3-14C]pyruvate, but by a decreased 14CO2 production from [1-14C]pyruvate. Simultaneously, there is a considerable decrease in tissue content of 2-oxoglutarate, glutamate and citrate. Stimulation of 14CO2 production from [1-14C]glutamate is also observed in the presence of amino-oxyacetate, suggesting a stimulation of glutamate dehydrogenase and 2-oxoglutarate dehydrogenase fluxes by phenylephrine. Inhibition of pyruvate dehydrogenase flux by phenylephrine is due to an increased 2-oxoglutarate dehydroxygenase flux. Phenylephrine stimulates glutaminase flux and inhibits glutamine synthetase flux to a similar extent, resulting in an increased hepatic glutamine uptake. Whereas the effects of NH4+ ions and phenylephrine on glutaminase flux were additive, activation of glutaminase by glucagon was considerably diminished in the presence of phenylephrine. The reported effects are largely overcome by prazosin, indicating the involvement of alpha-adrenergic receptors in the action of phenylephrine. It is concluded that stimulation of gluconeogenesis from various amino acids by phenylephrine is due to an increased flux through glutamate dehydrogenase and the citric acid cycle.  相似文献   

3.
This study examines the role of glucagon and insulin in the incorporation of (15)N derived from (15)N-labeled glutamine into aspartate, citrulline and, thereby, [(15)N]urea isotopomers. Rat livers were perfused, in the nonrecirculating mode, with 0.3 mM NH(4)Cl and either 2-(15)N- or 5-(15)N-labeled glutamine (1 mM). The isotopic enrichment of the two nitrogenous precursor pools (ammonia and aspartate) involved in urea synthesis as well as the production of [(15)N]urea isotopomers were determined using gas chromatography-mass spectrometry. This information was used to examine the hypothesis that 5-N of glutamine is directly channeled to carbamyl phosphate (CP) synthesis. The results indicate that the predominant metabolic fate of [2-(15)N] and [5-(15)N]glutamine is incorporation into urea. Glucagon significantly stimulated the uptake of (15)N-labeled glutamine and its metabolism via phosphate-dependent glutaminase (PDG) to form U(m+1) and U(m+2) (urea containing one or two atoms of (15)N). However, insulin had little effect compared with control. The [5-(15)N]glutamine primarily entered into urea via ammonia incorporation into CP, whereas the [2-(15)N]glutamine was predominantly incorporated via aspartate. This is evident from the relative enrichments of aspartate and of citrulline generated from each substrate. Furthermore, the data indicate that the (15)NH(3) that was generated in the mitochondria by either PDG (from 5-(15)N) or glutamate dehydrogenase (from 2-(15)N) enjoys the same partition between incorporation into CP or exit from the mitochondria. Thus, there is no evidence for preferential access for ammonia that arises by the action of PDG to carbamyl-phosphate synthetase. To the contrary, we provide strong evidence that such ammonia is metabolized without any such metabolic channeling. The glucagon-induced increase in [(15)N]urea synthesis was associated with a significant elevation in hepatic N-acetylglutamate concentration. Therefore, the hormonal regulation of [(15)N]urea isotopomer production depends upon the coordinate action of the mitochondrial PDG pathway and the synthesis of N-acetylglutamate (an obligatory activator of CP). The current study may provide the theoretical and methodological foundations for in vivo investigations of the relationship between the hepatic urea cycle enzyme activities, the flux of (15)N-labeled glutamine into the urea cycle, and the production of urea isotopomers.  相似文献   

4.
5.
1. Addition of 1-chloro-2,4-dinitrobenzene to isolated perfused rat liver results in the rapid formation of its glutathione-S-conjugate [S-(2,4-dinitrophenyl)glutathione], which is released into both, bile and effluent perfusate. Anisotonic perfusion did not affect total S-conjugate formation, but release of the S-conjugate into the perfusate was increased (decreased) following hypertonic (hypotonic) exposure at the expense of excretion into bile. Stimulation of S-conjugate release into the perfusate following hypertonic exposure paralleled the time course of volume-regulatory net K+ uptake. 2. Basal steady-state release of oxidized glutathione (GSSG) into bile was 1.30 +/- 0.12 nmol.g-1.min-1 (n = 18) during normotonic (305 mOsmol/l) perfusion and was 3.8 +/- 0.3 nmol.g-1.min-1 in the presence of t-butylhydroperoxide (50 mumol/l). Hypotonic exposure (225 mOsmol/1) lowered both, basal and t-butylhydroperoxide (50 mumol/l)-stimulated GSSG release into bile by 35% and 20%, respectively, whereas hypertonic exposure (385 mOsmol/l) increased. Anisotonic exposure was without effect on t-butylhydroperoxide removal by the liver. GSSG release into bile also decreased by 33% upon liver-cell swelling due to addition of glutamine plus glycine (2 mmol/l, each). 3. Hypotonic exposure led to a persistent stimulation 14CO2 production from [1-14C]glucose by about 80%, whereas 14CO2 production from [6-14C]glucose increased by only 10%. Conversely, hypertonic exposure inhibited 14CO2 production from [1-14C]glucose by about 40%, whereas 14CO2 production from [6-14C]glucose was unaffected. The effect of anisotonicity on 14CO2 production from [1-14C]glucose was also observed in presence of t-butylhydroperoxide (50 mumol/l), which increased 14CO2 production from [1-14C]glucose by about 40%. 4. t-Butylhydroperoxide (50 mumol/l) was without significant effect on volume-regulatory K+ fluxes following exposure to hypotonic (225 mOsmol/l) or hypertonic (385 mOsmol/l) perfusate. Lactate dehydrogenase release from perfused rat liver under the influence of t-butylhydroperoxide was increased by hypertonic exposure compared to hypotonic perfusions. 5. The data suggest that hypotonic cell swelling stimulates flux through the pentose-phosphate pathway and diminishes loss of GSSG under conditions of mild oxidative stress. Hypotonically swollen cells are less prone to hydroperoxide-induced lactate dehydrogenase release than hypertonically shrunken cells. Hypertonic cell shrinkage stimulates the excretion of glutathione-S-conjugates into the sinusoidal circulation at the expense of biliary secretion.  相似文献   

6.
1. The metabolism of glutamine and ammonia was studied in isolated perfused rat liver in relation to its dependence on the direction of perfusion by comparing the physiological antegrade (portal to caval vein) to the retrograde direction (caval to portal vein). 2. Added ammonium ions are mainly converted to urea in antegrade and to glutamine in retrograde perfusions. In the absence of added ammonia, endogenously arising ammonium ions are converted to glutamine in antegrade, but are washed out in retrograde perfusions. When glutamine synthetase is inhibited by methionine sulfoximine, direction of perfusion has no effect on urea synthesis from added or endogenous ammonia. 3. 14CO2 production from [1-14C]glutamine is higher in antegrade than in retrograde perfusions as a consequence of label dilution during retrograde perfusions. 4. The results are explained by substrate and enzyme activity gradients along the liver lobule under conditions of limiting ammonia supply for glutamine and urea synthesis, and they are consistent with a perivenous localization of glutamine synthetase and a predominantly periportal localization of glutaminase and urea synthesis. Further, the data indicate a predominantly periportal localization of endogenous ammonia production. The results provide a basis for an intercellular (as opposed to intracellular) glutamine cycling and its role under different metabolic conditions.  相似文献   

7.
8.
Nitrogen metabolism in the perfused rat liver   总被引:5,自引:0,他引:5  
  相似文献   

9.
10.
Fatty acid metabolism in the perfused rat liver   总被引:4,自引:4,他引:0       下载免费PDF全文
1. The formation of acetoacetate, beta-hydroxybutyrate and glucose was measured in the isolated perfused rat liver after addition of fatty acids. 2. The rates of ketone-body formation from ten fatty acids were approximately equal and independent of chain length (90-132mumol/h per g), with the exception of pentanoate, which reacted at one-third of this rate. The [beta-hydroxybutyrate]/[acetoacetate] ratio in the perfusion medium was increased by long-chain fatty acids. 3. Glucose was formed from all odd-numbered fatty acids tested. 4. The rate of ketone-body formation in the livers of rats kept on a high-fat diet was up to 50% higher than in the livers of rats starved for 48h. In the livers of fat-fed rats almost all the O(2) consumed was accounted for by the formation of ketone bodies. 5. The ketone-body concentration in the blood of fat-fed rats rose to 4-5mm and the [beta-hydroxybutyrate]/[acetoacetate] ratio rose to 11.5. 6. When the activity of the microsomal mixed-function oxidase system, which can bring about omega-oxidation of fatty acids, was induced by treatment of the rat with phenobarbitone, there was no change in the ketone-body production from fatty acids, nor was there a production of glucose from even-numbered fatty acids. The latter would be expected if omega-oxidation occurred. Thus omega-oxidation did not play a significant role in the metabolism of fatty acids. 7. Arachidonate was almost quantitatively converted into ketone bodies and yielded no glucose, demonstrating that gluconeogenesis from poly-unsaturated fatty acids with an even number of carbon atoms does not occur. 8. The rates of ketogenesis from unsaturated fatty acids (sorbate, undecylenate, crotonate, vinylacetate) were similar to those from the corresponding saturated fatty acids. 9. Addition of oleate together with shorter-chain fatty acids gave only a slightly higher rate of ketone-body formation than oleate alone. 10. Glucose, lactate, fructose, glycerol and other known antiketogenic substances strongly inhibited endogenous ketogenesis but had no effects on the rate of ketone-body formation in the presence of 2mm-oleate. Thus the concentrations of free fatty acids and of other oxidizable substances in the liver are key factors determining the rate of ketogenesis.  相似文献   

11.
Carbohydrate metabolism of the perfused rat liver   总被引:1,自引:16,他引:1  
1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13.3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This ;inhibition' was abolished by oleate or glucagon.  相似文献   

12.
1. Loading the isolated perfused liver from well-fed rats with xylitol (20mm) caused a depletion of adenine nucleotides and Pi and an accumulation of α-glycerophosphate. The ATP content fell to 66% of the control value after 10min and to 32% after 80min. The ADP and AMP contents also fell. After 80min 63% of the total adenine nucleotides and 59% of the Pi had been lost. 2. The α-glycerophosphate content rose from 0.13 to 4.74μmol/g at 10min and reached 8.02μmol/g at 40min. 3. Xylitol was rapidly metabolized, the main products being glucose, lactate and pyruvate. 4. The [lactate]/[pyruvate] ratio in the presence of xylitol rose to 30–40. 5. On perfusion of livers from starved animals the main product of xylitol metabolism was glucose and the mean ratio xylitol removed/glucose formed was 1.29 (corrected for endogenous glucose and lactate production). This is close to the predicted value of 1.2. 6. Evidence is presented indicating that the loss of adenine nucleotides caused by xylitol is not due to the increased ATP consumption but to the accumulation of α-glycerophosphate and depletion of Pi. 7. The loss of adenine nucleotides accounts for the hyperuricaemia which can occur after xylitol infusion in man. 8. The relevance of the findings to the clinical use of xylitol as an energy source is discussed.  相似文献   

13.
1. Glutaminase and glutamine synthetase are simultaneously active in the intact liver, resulting in an energy consuming cycling of glutamine at a rate up to 0.2 mumol per g per min. 2. An increase in portal glutamine concentration was followed by an increased flux through glutaminase, but flux through glutamine synthetase remained unchanged. Glutaminase flux was also increased by ammonium ions or glucagon; these effects were additive. 3. Glutamine synthetase flux was increased by ammonium ions, but this activation was partly overcome by increasing portal glutamine concentrations. Glutamine synthetase flux was slightly increased by glucagon at portal glutamine concentrations of about 0.2-0.3 mM, but was strongly inhibited above 0.6 mMs. 4. During experimental metabolic acidosis there was an increased net release of glutamine by the liver, being due to opposing changes of flux through glutaminase and glutamine synthetase. Conversely, an increased glutamine uptake by the liver during metabolic alkalosis was observed due to an inhibition of glutamine synthetase and an activation of glutaminase. However, the two enzyme activities respond differently depending on whether glucagon or ammonium ions are present.  相似文献   

14.
15.
16.
The hepatic and biliary metabolites of PGE1 have been isolated and identified after infusions of PGE1 into isolated rat liver preparations. The results demonstrate that in general PGE1 undergoes metabolism similar to that of PGE2 in the rat and reveals the possibility of a selective PG metabolite transport system across the biliary canalicular membrane.  相似文献   

17.
18.
1. In isolated perfused rat liver, the time-course of volume-regulatory K+ efflux following exposure to hypoosmolar perfusate resembled the leukotriene-C4-induced K+ efflux in normotonic perfusion. Omission of Ca2+ from the perfusion fluid had no effect on volume-regulatory K+ efflux, but abolished completely the leukotriene-C4-induced K+ efflux. 2. Volume-regulatory K+ fluxes following hypoosmolar exposure (225 mOsmol l-1) and subsequent reexposure to normotonic media (305 mOsmol l-1) were not significantly affected by the cyclooxygenase inhibitors indomethacin (5 mumol l-1) or ibuprofen (50 mumol l-1), the leukotriene D4/C4-receptor antagonist 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]etha none (YL 171883, 50 microM), the lipoxygenase inhibitor nordihydroguaiaretic acid (20 microM), the phospholipase-A2 inhibitor bromophenacyl bromide (50 microM) or the thromboxane-receptor antagonist 4-[2-(benzenesulfonamido)ethyl]-phenoxyacetic acid (BM 13.177, 20 microM). Also the effects of hypoosmotic cell swelling on lactate, pyruvate and glucose balance across the liver remained largely unaffected in presence of these inhibitors. Neither exposure of perfused rat liver to hypoosmolar (225 mOsmol l-1) nor to hyperosmolar (385 mOsmol l-1) perfusion media affected hepatic prostaglandin-D2 release. 3. When livers were 3H-labeled in vivo by an intraperitoneal injection of myo-[2-3H]inositol about 16 h prior to the perfusion experiment, cell swelling due to lowering the perfusate osmolarity from 305 mOsmol l-1 to 225 mOsmol l-1 led to about a threefold stimulation of [3H]inositol release. The maximum of hypotonicity-induced [3H]inositol release preceded maximal volume-regulatory K+ efflux by about 30 s, but came after the maximum of water shift into the cells. Hypotonicity-induced [3H]inositol release was largely prevented in presence of Li+ (10 mM), but simultaneously inositol monophosphate accumulated inside the liver within 10 min and a small, but significant increase of inositol trisphosphate 1 min after onset of hypoosmolar exposure was detectable. No stimulation of [3H]inositol release was observed during cell shrinkage by switching the perfusate osmolarity from 225 mOsmol l-1 to 305 mOsmol l-1 or from 305 mOsmol l-1 to 385 mOsmol l-1. No stimulation of [3H]inositol release was observed upon swelling of preshrunken livers by lowering the osmolarity from 385 mOsmol l-1 to 305 mOsmol l-1, although the volume-regulatory K+ efflux under these conditions was almost identical to that observed after lowering the osmolarity from 305 mOsmol l-1 to 225 mOsmol l-1. 4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
1. Isolated livers from fed male rats were perfused for 2 h with T4 (L-thyroxine), T3 (L-3,3',5-tri-iodothyronine) or rT3 (L-3,3',5'-tri-iodothyronine) at different pH values (7.1--7.6) in a fully synthetic medium, whereby normal metabolic functions were maintained without addition of rat blood constituents or albumin. 2. T3 output into the medium and net T3 production reached a maximum at a pH of the medium of 7.2 and significantly decreased with alteration of the pH when livers were perfused with T4 as a substrate. 3. However, the net T4 and T3 uptake by the liver, as well as the hepatic T4 and T3 content after perfusion, were not dependent on the pH of the perfusion when livers were offered T4 or T3 as substrates respectively. 4. Determination of intracellular pH by the analysis of the distribution of the weak acid dimethyloxazolidinedione allows the conclusion that the pH optimum of iodothyronine 5'-deiodinase in the intact perfused liver corresponds to the maximum determined in vitro for the membrane-bound enzyme localized in the endoplasmic reticulum. 5. The rapid 5'-deiodination of rT3 to 3,3'-T2 (L-3,3'-di-iodothyronine), the fast disappearance of 3,3'-T2, and the fact that no net rT3 production from T4 could be detected, supports the hypothesis that in rat liver iodothyronine 5'-deiodinase activity seems to predominate over iodothyronine 5-deiodinase activity. 6. Thus the rat liver can be considered in normal physiological situations as an organ forming T3 from T4 and deiodinating rT3 originating from extrahepatic tissues, whereby the cellular iodothyronine 5'-deiodination rate is controlled by the intracellular pH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号