首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
BACKGROUND: A gene therapy delivery system based on microcapsules enclosing recombinant cells engineered to secrete a therapeutic protein was explored in this study. In order to prevent immune rejection of the delivered cells, they were enclosed in non-antigenic biocompatible alginate microcapsules prior to being implanted intraperitoneally into mice. We have shown that encapsulated C2C12 myoblasts can temporarily deliver therapeutic levels of factor IX (FIX) in mice, but the C2C12 myoblasts elicited an immune response to FIX. In this study we report the use of mouse fetal G8 myoblasts secreting hFIX in hemophilia mice. METHODS: Mouse G8 myoblasts were transduced with MFG-FIX vector. A pool of recombinant G8 myoblasts secreting approximately 1500 ng hFIX/10(6) cells/24 h in vitro were enclosed in biocompatible alginate microcapsules and implanted intraperitoneally into immunocompetent C57BL/6 and hemophilic mice. RESULTS: Circulating levels of hFIX in treated mice reached approximately 400 ng/ml for at least 120 days (end of experiment). Interestingly, mice treated with encapsulated G8 myoblasts did not develop anti-hFIX antibodies. Activated partial thromboplastin time (APTT) of plasmas obtained from treated hemophilic mice was reduced from 107 to 82 sec on day 60 post-treatment, and whole blood clotting time (WBCT) was also corrected from 7-9 min before treatment to 3-5 min following microcapsule implantation. Further, mice were protected against bleeding following major trauma. Thus, the FIX delivery in vivo was biologically active. CONCLUSIONS: Our findings suggest that the type of cells encapsulated play a key role in the generation of immune responses against the transgene. Further, a judicious selection of encapsulated cells is critical for achieving sustained gene expression. Our findings support the feasibility of encapsulated G8 myoblasts as a gene therapy approach for hemophilia B.  相似文献   

2.
Vascular Endothelial Growth Factor (VEGF) can induce normal or aberrant angiogenesis depending on the amount secreted in the microenvironment around each cell. Towards a possible clinical translation, we developed a Fluorescence Activated Cell Sorting (FACS)‐based technique to rapidly purify transduced progenitors that homogeneously express a desired specific VEGF level from heterogeneous primary populations. Here, we sought to induce safe and functional angiogenesis in ischaemic myocardium by cell‐based expression of controlled VEGF levels. Human adipose stromal cells (ASC) were transduced with retroviral vectors and FACS purified to generate two populations producing similar total VEGF doses, but with different distributions: one with cells homogeneously producing a specific VEGF level (SPEC), and one with cells heterogeneously producing widespread VEGF levels (ALL), but with an average similar to that of the SPEC population. A total of 70 nude rats underwent myocardial infarction by coronary artery ligation and 2 weeks later VEGF‐expressing or control cells, or saline were injected at the infarction border. Four weeks later, ventricular ejection fraction was significantly worsened with all treatments except for SPEC cells. Further, only SPEC cells significantly increased the density of homogeneously normal and mature microvascular networks. This was accompanied by a positive remodelling effect, with significantly reduced fibrosis in the infarcted area. We conclude that controlled homogeneous VEGF delivery by FACS‐purified transduced ASC is a promising strategy to achieve safe and functional angiogenesis in myocardial ischaemia.  相似文献   

3.
BACKGROUND: Hemophilia B is a bleeding disorder caused by defective factor IX (FIX), currently treated by regular infusions of plasma-derived or recombinant FIX. We propose a gene therapy strategy based on the implantation of cells secreting FIX enclosed in alginate microcapsules as a highly desirable alternative treatment. We have reported sustained delivery of human factor IX (hFIX) in immunocompetent mice implanted with encapsulated primary mouse myoblasts engineered to secrete hFIX. As a step towards the treatment of human patients, in this study we report the implantation of encapsulated human primary myoblasts secreting hFIX in hemophilia B mice. METHODS: Human primary myoblasts were transfected with plasmids pKL4M-hFIX, pLNM-betaIXL, pMFG-hFIX, and transduced with retrovirus MFG-hFIX. Two human primary myoblast clones secreting approximately 1 microg hFIX/10(6) cells/day were enclosed in biocompatible alginate microcapsules and implanted intraperitoneally into SCID and hemophilic mice. RESULTS: Circulating hFIX (peak of approximately 120 ng/ml) was detected in hemophilia B mice on day 1 after implantation. Human FIX delivery was transient, however, becoming undetectable on day 14. Concurrently, anti-hFIX antibodies were detected. At the same time, activated partial thromboplastin time (APTT) was reduced from 94 s before treatment to 78-80 s. Tail bleeding time decreased from 15 min to 1.5-7 min after treatment, some mice being normalised. These findings indicate that the delivered hFIX is biologically active. Similarly treated NOD/SCID mice had circulating hFIX levels of 170 ng/ml on day 1 that remained detectable for 1 month, albeit at low levels. Cell viability of microcapsules retrieved on day 60 was below 5%. CONCLUSIONS: Our findings indicate that encapsulated human primary myoblasts secrete functional hFIX. Furthermore, implantation of encapsulated human primary myoblasts can partially correct the phenotype of hemophilia B mice, supporting the feasibility of this gene therapy approach for hemophilia B. However, the long-term viability of the encapsulated human myoblasts must first be improved.  相似文献   

4.
Mouse myoblast C2C12 cell was used as target cell for gene transfer study of human clotting factor IX (hFIX) cDNA. In addition to the previously constructed retroviral vectors XLIX, LNCIX and GINaCIX, GlNaMCIX with hFIX driven by muscle creatine kinase (MCK) enhancer and human cytomegalovirus (CMV) was constructed, based on the retroviral vector GINa. These four retroviral vectors were used to transduce mouse my-oblasts C2C12. With ELISA assays, it has been found that the expression levels of human clotting factor IX detected in those transduced C2C12 cells are GlNaMCIX>GlNaCIX> LNCIX>XLIX. Mixed colonal cells transduced with GlNaMCIX expressed hFIX protein at the level of 640 ng/106 cell every 24 h. The modified C2C12 cells transduced with GlNaMCIX were implanted into skeletal muscle of the hindlegs of C3H mice; a stable expression of hFIX was detected and lasted for 35 d, with a maximum level of 206 ng/mL plasma. The regulation of hFIX cDNA expression in myoblasts was discussed and it was strongly sug  相似文献   

5.
We described the ex vivo production of mature and functional human smooth muscle cells (SMCs) derived from skeletal myoblasts. Initially, myoblasts expressed all myogenic cell-related markers such as Myf5, MyoD and Myogenin and differentiate into myotubes. After culture in a medium containing vascular endothelial growth factor (VEGF), these cells were shown to have adopted a differentiated SMC identity as demonstrated by alphaSMA, SM22alpha, calponin and smooth muscle-myosin heavy chain expression. Moreover, the cells cultured in the presence of VEGF did not express MyoD anymore and were unable to fuse in multinucleated myotubes. We demonstrated that myoblasts-derived SMCs (MDSMCs) interacted with endothelial cells to form, in vitro, a capillary-like network in three-dimensional collagen culture and, in vivo, a functional vascular structure in a Matrigel implant in nonobese diabetic-severe combined immunodeficient mice. Based on the easily available tissue source and their differentiation into functional SMCs, these data argue that skeletal myoblasts might represent an important tool for SMCs-based cell therapy.  相似文献   

6.
Adenovirus-mediated gene delivery via the intramuscular route efficiently promotes an immune response against the transgene product. In this study, a recombinant adenovirus vector encoding beta-galactosidase (Ad beta Gal) was used to transduce dendritic cells (DC), which are antigen-presenting cells, as well as myoblasts and endothelial cells (EC), neither of which present antigens. C57BL/6 mice received a single intramuscular injection of Ad beta Gal-transduced DC, EC, or myoblasts and were then monitored for anti-beta-galactosidase (anti-beta-Gal) antibody production, induction of gamma interferon-secreting CD8(+) T cells, and protection against melanoma tumor cells expressing beta-Gal. While all transduced cell types were able to elicit an antibody response against the transgene product, the specific isotypes were distinct, with exclusive production of immunoglobulin G2a (IgG2a) antibodies following injection of transduced DC and EC versus equivalent IgG1 and IgG2a responses in mice inoculated with transduced myoblasts. Transduced DC induced a strong ex vivo CD8(+) T-cell response at a level of 50% of the specific response obtained with the Ad beta Gal control. In contrast, this response was 6- to 10-fold-lower in animals injected with transduced myoblasts and EC. Accordingly, only animals injected with transduced DC were protected against a beta-Gal tumor challenge. Thus, in order to induce a strong and protective immune response to an adenovirus-encoded transgene product, it is necessary to transduce cells of dendritic lineage. Importantly, it will be advantageous to block the transduction of DC for adenovirus-based gene therapy strategies.  相似文献   

7.
RATIONAL AND OBJECTIVES: Activation of fully differentiated vascular cells using angiogenic genes can lead to phenotypic changes resulting in formation of new blood vessels. We tested whether Ang-1 gene transfer to endothelial cells (EC) activates these cells. METHODS AND RESULTS: EC and SMC were transduced using retroviral or adenoviral vectors to produce Ang-1 or vascular endothelial growth factor (VEGF). EC Tie-2 receptor was phosphorilated by autologous secretion of Ang-1. Transduced EC and SMC sprouting capacity was tested using collagen embedded spheroids assay and capacity to produce arteriogenesis was tested in a hind limb model of ischemia. EC expressing Ang-1 in the presence of SMC expressing VEGF exhibited high levels of sprouting of the two cell types. Flow and numbers of arteries were increased after transduced cells implantation in vivo. CONCLUSIONS: Autologous secretion of Ang-1 by transduced EC resulted in Tie-2 activation and in the presence of SMC expressing VEGF resulted in coordinated sprouting in vitro and increase in flow and number of arteries in vivo.  相似文献   

8.
Much of the knowledge about the cell biology of lipoprotein lipase (LPL) in vitro has been gained from adipose tissue model systems. However, the importance of skeletal muscle lipoprotein lipase (SMLPL) to both lipoprotein and muscle metabolism remains unclear. Although the production of LPL in cultured myocytes has been documented, the amount of enzyme activity produced is small. To develop a more suitable tissue culture model for SMLPL, mouse C(2)C(12) myoblasts were stably transduced with a retroviral vector encoding the full-length human LPL (hLPL) cDNA. Control cells were transduced with a vector encoding beta-galactosidase. LPL expression was assayed as a function of cell growth by measuring LPL activity on days 3, 7, 9, 11, and 14 after subculture. The hLPL-transduced myoblasts increasingly overexpressed both heparin-releasable (HR) and intracellular (IN) LPL activity compared to nontransduced myoblasts (P < 0.001 at Day 11) and myoblasts transduced with the control vector (P < 0.001 at Day 11). This increase occurred while LPL mRNA levels remained stable between days 3 and 14. As expected, IN LPL activity was also increased in the transduced cells. High levels of LPL activity were also obtained after differentiating the C(2)C(12) cells into myotubes by serum deprivation. Additionally, throughout the time course, C(2)/LPL cells had greater amounts of intracellular triglyceride than both the C(2)C(12) and the C(2)/beta-GEO cells (P = 0.005 and P < 0.001, respectively) with the largest differences seen on day 14 of the time course (P = 0.001, C(2)/LPL vs C(2)C(12) (r) or C(2)/beta-GEO cells). Thus, C(2)C(12) myoblasts stably transduced with hLPL markedly overexpressed both HR and IN LPL activity compared to control cells which, in turn, was associated with increases in intracellular triglyceride content. Because LPL regulation in tissues is mostly posttranslational, this new in vitro model will permit the in-depth study of the posttranslational regulation of SMLPL and provide new insights into the fate of lipoprotein-derived fatty acids in muscle.  相似文献   

9.
We developed a muscle-specific gene delivery system based on two-step gene transfer. The first step involved adenovirus-mediated transfer of the ecotropic retrovirus receptor (EcoRec) gene driven by the muscle-specific desmin promoter. Both human primary myoblasts and fibroblasts were efficiently transduced with this adenovirus vector. However, expression of EcoRec was detected only in myoblasts. In the second step, EcoRec-expressing myoblasts could be stably transduced with the ecotropic retroviral vector with the beta-galactosidase gene. Approximately 15% of myoblasts were transduced by this two-step strategy. When the transduced myoblasts were differentiated into myotubes, extensive cell-cell fusion occurred, and the apparent number of beta-galactosidase-positive cells increased to 28%. These results indicate that our two-step gene delivery system could be used for targeted and stable gene transfer into muscle cells.  相似文献   

10.
The aim of this work was to introduce a tetracycline-responsive (Tet-off) gene expression system into myoblasts in order to regulate a reporter gene not only in vitro but also particularly in muscles implanted with these engineered myoblasts. Mouse myoblasts from a long-term culture (i28 cells) were transfected initially to generate and characterize two stable master clones expressing tetracycline-responsive transactivator protein tTA. Like parental i28 myoblasts, these clones differentiated well in vitro. The second step introduced the firefly (Photinus pyralis) luciferase gene into one of the stable tTA clones producing double transfectants expressing luciferase in the absence of tetracycline. Addition of tetracycline (1 microg ml(-1)) resulted in at least 100-fold decreases in luciferase activity within 8 h in both growing and differentiating myoblast cultures. Enzyme activity was rapidly restored after tetracycline was removed (8 h). After successful implantation of these myoblasts into damaged mouse muscles, luciferase expression in the matured progeny cells could be regulated by oral application of doxycycline for at least 1 month. The tetracycline-responsive master clones are potentially powerful tools for studying the function of various genes in postnatal myogenesis.  相似文献   

11.
Hypoxia-inducible factor (HIF) plays an important role in regulating gene expression in response to ischemia. Although activation of HIF-1 in muscle tissue was found during ischemia in vivo, the meaning and mechanisms in isolated cells are still incompletely understood. We studied activation of HIF-1 in skeletal muscle cells cultured in either their undifferentiated myoblast state or differentiated into myotubes. HIF-1 was activated in myoblasts and myotubes by hypoxia and simulated ischemia. Induction of adrenomedullin mRNA and, to a lesser extent, VEGF mRNA correlated well with the induction of HIF-1alpha protein in both cell types. Enzymes of glycolysis-like lactate dehydrogenase and pyruvate kinase showed upregulation of their mRNA only under hypoxic conditions but not during simulated ischemia. Phosphofructokinase mRNA showed no significant upregulation at all. Although HIF-1 was activated in myotubes during simulated ischemia, myotubes died preceded by a loss of ATP. Myoblasts survived simulated ischemia with no decrease in ATP or ATP turnover. Furthermore, pharmacological inhibition of HIF-1 hydroxylases by dimethyloxalylglycine (DMOG) increased HIF-1alpha accumulation and significantly upregulated the expression of adrenomedullin, VEGF, lactate dehydrogenase, and pyruvate kinase in myoblasts and myotubes. However, DMOG provided no protection from cell death. Our data indicate that HIF-1, although activated in myotubes during simulated ischemia, cannot protect against the loss of ATP and cell viability. In contrast, myoblasts survive ischemia and thus may play an important role during regeneration and HIF-1-induced revascularization.  相似文献   

12.
In the post-infarcted heart, grafting of precursor cells may partially restore heart function but the improvement is modest and the mechanisms involved remain to be elucidated. Here, we explored this issue by transplanting C2C12 myoblasts, genetically engineered to express enhanced green fluorescent protein (eGFP) or eGFP and the cardiotropic hormone relaxin (RLX) through coronary venous route to swine with experimental chronic myocardial infarction. The rationale was to deliver constant, biologically effective levels of RLX at the site of cell engraftment. One month after engraftment, histological analysis showed that C2C12 myoblasts selectively settled in the ischaemic scar and were located around blood vessels showing an activated endothelium (ICAM-1-,VCAM-positive). C2C12 myoblasts did not trans-differentiate towards a cardiac phenotype, but did induce extracellular matrix remodelling by the secretion of matrix metalloproteases (MMP) and increase microvessel density through the expression of vascular endothelial growth factor (VEGF). Relaxin-producing C2C12 myoblasts displayed greater efficacy to engraft the post-ischaemic scar and to induce extracellular matrix re-modelling and angiogenesis as compared with the control cells. By echocardiography, C2C12-engrafted swine showed improved heart contractility compared with the ungrafted controls, especially those producing RLX. We suggest that the beneficial effects of myoblast grafting on cardiac function are primarily dependent on the paracrine effects of transplanted cells on extracellular matrix remodelling and vascularization. The combined treatment with myoblast transplantation and local RLX production may be helpful in preventing deleterious cardiac remodelling and may hold therapeutic possibility for post-infarcted patients.  相似文献   

13.
《The Journal of cell biology》1994,125(6):1275-1287
The transplantation of cultured myoblasts into mature skeletal muscle is the basis for a new therapeutic approach to muscle and non-muscle diseases: myoblast-mediated gene therapy. The success of myoblast transplantation for correction of intrinsic muscle defects depends on the fusion of implanted cells with host myofibers. Previous studies in mice have been problematic because they have involved transplantation of established myogenic cell lines or primary muscle cultures. Both of these cell populations have disadvantages: myogenic cell lines are tumorigenic, and primary cultures contain a substantial percentage of non-myogenic cells which will not fuse to host fibers. Furthermore, for both cell populations, immune suppression of the host has been necessary for long-term retention of transplanted cells. To overcome these difficulties, we developed novel culture conditions that permit the purification of mouse myoblasts from primary cultures. Both enriched and clonal populations of primary myoblasts were characterized in assays of cell proliferation and differentiation. Primary myoblasts were dependent on added bFGF for growth and retained the ability to differentiate even after 30 population doublings. The fate of the pure myoblast populations after transplantation was monitored by labeling the cells with the marker enzyme beta-galactosidase (beta-gal) using retroviral mediated gene transfer. Within five days of transplantation into muscle of mature mice, primary myoblasts had fused with host muscle cells to form hybrid myofibers. To examine the immunobiology of primary myoblasts, we compared transplanted cells in syngeneic and allogeneic hosts. Even without immune suppression, the hybrid fibers persisted with continued beta-gal expression up to six months after myoblast transplantation in syngeneic hosts. In allogeneic hosts, the implanted cells were completely eliminated within three weeks. To assess tumorigenicity, primary myoblasts and myoblasts from the C2 myogenic cell line were transplanted into immunodeficient mice. Only C2 myoblasts formed tumors. The ease of isolation, growth, and transfection of primary mouse myoblasts under the conditions described here expand the opportunities to study muscle cell growth and differentiation using myoblasts from normal as well as mutant strains of mice. The properties of these cells after transplantation--the stability of resulting hybrid myofibers without immune suppression, the persistence of transgene expression, and the lack of tumorigenicity-- suggest that studies of cell-mediated gene therapy using primary myoblasts can now be broadly applied to mouse models of human muscle and non-muscle diseases.  相似文献   

14.
Retroviral vectors were used to transfer genes efficiently into rat and dog myoblasts in primary cultures under conditions which permitted the transduced myoblasts to differentiate into myotubes expressing the transferred genes. The transduced myotubes expressed normal markers of differentiation and were morphologically indistinguishable from uninfected myotubes. Retroviral vector-mediated gene transfer was also used to correct a genetic enzyme deficiency in mutant canine muscle cells.  相似文献   

15.
This study addresses the possible involvement of an agonist-induced postischemic hyperactivity in the delayed neuronal death of the CA1 hippocampus in the rat. In two sets of experiments, dialytrodes were implanted into the CA1 either acutely or chronically (24 h of recovery). During 20 min of cerebral ischemia (four-vessel occlusion model) and 8 h of reflow, we followed extracellular amino acids and multiple-unit activity. Multiple-unit activity ceased within 20 sec of ischemia and remained zero during the ischemic insult and for the following 1 h of reflow. During ischemia, extracellular aspartate, glutamate, taurine, and gamma-aminobutyric acid increased in both acute and chronic experiments (seven- to 26-fold). Multiple-unit activity recovered to preischemic levels following 4-6 h of reflow. In the group with dialytrodes implanted acutely, the continuous increase in multiple-unit activity reached 110% of basal at 8 h of reflow. In the group with dialytrodes implanted chronically, multiple-unit activity recovered faster and reached 140% of control at 8 h, paralleled by an increase in extracellular aspartate (5.5-fold) and glutamate (twofold). In conclusion, the postischemic increase of excitatory amino acids and the recovery of the neuronal activity may stress the CA1 pyramidal cells, which could be detrimental in combination with, e.g., postsynaptic impairments.  相似文献   

16.
Bone morphogenetic proteins (BMPs) are well-established agents for inducing orthotopic and ectopic bone formation. However, their clinical usefulness as regenerative agents may be limited by a short in vivo half-life and low specific activity. BMP gene therapy is an alternative route for exploiting the bone-inductive activity of this class of molecules. To test the feasibility of this approach, we examined the osteogenic activity of AdCMV-BMP7, an adenovirus containing BMP7 cDNA under control of the CMV promoter that was constructed using Cre/lox recombination (Hardy et al. [1997] J. Virol. 71:1842-1849). Adenovirus vectors were shown to readily infect a wide variety of cell types in vitro including osteoblasts, fibroblasts, and myoblasts. COS7 cells transduced with AdCMV-BMP7 produced high levels of BMP-7 (approximately 0.5 microg/10(6) cells). Furthermore, transduction of C2C12 murine myoblast cells with AdCMVBMP-7 suppressed the muscle phenotype and induced in vitro osteoblast differentiation. To test its in vivo biological activity, AdCMV-BMP7 was mixed with a bovine bone-derived collagen carrier (10(8) plaque-forming units virus/site) and was implanted into mouse muscle and dermal pouches. In both cases, an ossicle containing cortical and trabecular bone and a clearly defined marrow cavity formed at the site of virus implantation within 4 weeks. These data demonstrate that AdCMV-BMP7 transduced cells produce biologically active BMP-7 both in vitro and in vivo and show that gene therapy by direct viral transduction using a virus/matrix implant may be a viable route for stimulating bone regeneration.  相似文献   

17.
18.
Regulation of tropomyosin gene expression during myogenesis.   总被引:2,自引:0,他引:2       下载免费PDF全文
In skeletal muscle, tropomyosin has a critical role in transduction of calcium-induced contraction. Presently, little is known about the regulation of tropomyosin gene expression during myogenesis. In the present study, qualitative and quantitative changes in the nucleic acid populations of differentiating chicken embryo muscle cells in culture have been examined. Total nucleic acid content per nucleus increased about fivefold in fully developed myotubes as compared to mononucleated myoblasts. The contribution of deoxyribonucleic acid to the total nucleic acid population decreased from 24% in myoblasts to 5% of total nucleic acid in myotubes. Concomitant with the decrement in deoxyribonucleic acid contribution to total nucleic acid was an increase in polyadenylated ribonucleic acid (RNA) content per cell which reached levels in myotubes that were 17-fold higher than those of myoblasts. Specific changes in the RNA population during myogenesis were further investigated by quantitation of the synthetic capacity (messenger RNA levels) per cell for alpha- and beta-tropomyosin. Cell-free translation and immunoprecipitation demonstrated an approximately 40-fold increase in messenger RNA levels per nucleus for alpha- and beta-tropomyosin after fusion in the terminally differentiated myotubes. Indirect immunofluorescence with affinity-purified tropomyosin antibodies demonstrated the presence of tropomyosin-containing filaments in cells throughout myogenesis. Thus, the tropomyosin genes are constitutively expressed during muscle differentiation through the production of tropomyosin messenger RNA and translation into tropomyosin protein.  相似文献   

19.

Background

Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro.

Methods

To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry.

Results

More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes.

Conclusion

The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.  相似文献   

20.
Foetal cells secrete more growth factors, generate less immune response, grow and proliferate better than adult cells. These characteristics make them desirable for recombinant modification and use in microencapsulated cellular gene therapeutics. We have established a system in vitro to obtain a pure population of primary human foetal myoblasts under several rounds of selection with non-collagen coated plates and identified by desmin staining. These primary myoblasts presented good proliferation ability and better differentiation characteristics in monolayer and after microencapsulation compared to murine myoblast C2C12 cells based on creatine phosphokinase (CPK), major histocompatibility complex (MHC) and multi-nucleated myotubule determination. The lifespan of primary myoblasts was 70 population doublings before entering into senescent state, with a population time of 18-24 hrs. Hence, we have developed a protocol for isolating human foetal primary myoblasts with excellent differentiation potential and robust growth and longevity. They should be useful for cell-based therapy in human clinical applications with microencapsulation technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号