首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypothesis that the antioxidant enzyme superoxide dismutase (SOD) mimetic TEMPOL improves arterial aging, young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6 mice received regular or TEMPOL-supplemented (1mM) drinking water for 3 weeks (n = 8 per group). Aortic superoxide was 65% greater in O (P < 0.05 vs. Y), which was normalized by TEMPOL. O had large elastic artery stiffening, as indicated by greater aortic pulse wave velocity (aPWV, 508 ± 22 vs. 418 ± 22 AU), which was associated with increased adventitial collagen I expression (P < 0.05 vs. Y). TEMPOL reversed the age-associated increases in aPWV (434 ± 21 AU) and collagen in vivo, and SOD reversed the increases in collagen I in adventitial fibroblasts from older rats in vitro. Isolated carotid arteries of O had impaired endothelial function as indicated by reduced acetylcholine-stimulated endothelium-dependent dilation (EDD) (75.6 ± 3.2 vs. 94.5 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (L-NAME) associated with decreased endothelial NO synthase (eNOS) expression (P < 0.05 vs. Y). TEMPOL restored EDD (94.5 ± 1.4%), NO bioavailability and eNOS in O. Nitrotyrosine and expression of NADPH oxidase were ~100-200% greater, and MnSOD was ~75% lower in O (P < 0.05 vs. Y). TEMPOL normalized nitrotyrosine and NADPH oxidase in O, without affecting MnSOD. Aortic pro-inflammatory cytokines were greater in O (P < 0.05 vs. Y) and normalized by TEMPOL. Short-term treatment of excessive superoxide with TEMPOL ameliorates large elastic artery stiffening and endothelial dysfunction with aging, and this is associated with normalization of arterial collagen I, eNOS, oxidative stress, and inflammation.  相似文献   

2.
To determine if short‐term calorie restriction reverses vascular endothelial dysfunction in old mice, old (O, n = 30) and young (Y, n = 10) male B6D2F1 mice were fed ad libitum (AL) or calorie restricted (CR, approximately 30%) for 8 weeks. Ex vivo carotid artery endothelium‐dependent dilation (EDD) was impaired in old ad libitum (OAL) vs. young ad libitum (YAL) (74 ± 5 vs. 95 ± 2% of maximum dilation, P < 0.05), whereas old calorie‐restricted (OCR) and YCR did not differ (96 ± 1 vs. 94 ± 3%). Impaired EDD in OAL was mediated by reduced nitric oxide (NO) bioavailability associated with decreased endothelial NO synthase expression (aorta) (P < 0.05), both of which were restored in OCR. Nitrotyrosine, a cellular marker of oxidant modification, was markedly elevated in OAL (P < 0.05), whereas OCR was similar to Y. Aortic superoxide production was 150% greater in OAL vs. YAL (P < 0.05), but normalized in OCR, and TEMPOL, a superoxide dismutase (SOD) mimetic that restored EDD in OAL (to 97 ± 2%), had no effect in Y or OCR. OAL had increased expression and activity of the oxidant enzyme, NADPH oxidase, and its inhibition (apocynin) improved EDD, whereas NADPH oxidase in OCR was similar to Y. Manganese SOD activity and sirtuin1 expression were reduced in OAL (P < 0.05), but restored to Y in OCR. Inflammatory cytokines were greater in OAL vs. YAL (P < 0.05), but unaffected by CR. Carotid artery endothelium‐independent dilation did not differ among groups. Short‐term CR initiated in old age reverses age‐associated vascular endothelial dysfunction by restoring NO bioavailability, reducing oxidative stress (via reduced NADPH oxidase–mediated superoxide production and stimulation of anti‐oxidant enzyme activity), and upregulation of sirtuin‐1.  相似文献   

3.
We tested the hypothesis that high fat (HF) feeding results in endothelial dysfunction in resistance arteries of epididymal white adipose tissue (eWAT) and is mediated by adipose tissue inflammation. When compared with normal chow (NC)-fed mice (n = 17), HF-fed male B6D2F1 mice were glucose intolerant and insulin resistant as assessed by glucose tolerance test (area under the curve; HF, 18,174 ± 1,889 vs. NC, 15,814 ± 666 mg·dl(-1)·min(-1); P < 0.05) and the homeostatic model assessment (HF, 64.1 ± 4.3 vs. NC, 85.7 ± 6.4; P = 0.05). HF diet-induced metabolic dysfunction was concomitant with a proinflammatory eWAT phenotype characterized by greater macrophage infiltration (HF, 3.9 ± 0.8 vs. NC, 0.8 ± 0.4%; P = 0.01) and TNF-α (HF, 22.6 ± 4.3 vs. NC, 11.4 ± 2.5 pg/dl; P < 0.05) and was associated with resistance artery dysfunction, evidenced by impaired endothelium-dependent dilation (EDD) (maximal dilation; HF, 49.2 ± 10.7 vs. NC, 92.4 ± 1.4%; P < 0.01). Inhibition of nitric oxide (NO) synthase by N(ω)-nitro-l-arginine methyl ester (l-NAME) reduced dilation in NC (28.9 ± 6.3%; P < 0.01)- and tended to reduce dilation in HF (29.8 ± 9.9%; P = 0.07)-fed mice, eliminating the differences in eWAT artery EDD between NC- and HF-fed mice, indicative of reduced NO bioavailability in eWAT resistance arteries after HF feeding. In vitro treatment of excised eWAT arteries with recombinant TNF-α (rTNF) impaired EDD (P < 0.01) in NC (59.7 ± 10.9%)- but not HF (59.0 ± 9.3%)-fed mice. l-NAME reduced EDD in rTNF-treated arteries from both NC (21.9 ± 6.4%)- and HF (29.1 ± 9.2%)-fed mice (both P < 0.01). In vitro treatment of arteries with a neutralizing antibody against TNF-α (abTNF) improved EDD in HF (88.2 ± 4.6%; P = 0.05)-fed mice but was without effect on maximal dilation in NC (89.0 ± 5.1%)-fed mice. l-NAME reduced EDD in abTNF-treated arteries from both NC (25.4 ± 7.5%)- and HF (27.1 ± 16.8%)-fed mice (both P < 0.01). These results demonstrate that inflammation in the visceral adipose tissue resulting from diet-induced obesity impairs endothelial function and NO bioavailability in the associated resistance arteries. This dysfunction may have important implications for adipose tissue blood flow and appropriate tissue function.  相似文献   

4.
We tested the hypothesis that supplementation of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, increases arterial SIRT1 activity and reverses age‐associated arterial dysfunction and oxidative stress. Old control mice (OC) had impaired carotid artery endothelium‐dependent dilation (EDD) (60 ± 5% vs. 84 ± 2%), a measure of endothelial function, and nitric oxide (NO)‐mediated EDD (37 ± 4% vs. 66 ± 6%), compared with young mice (YC). This age‐associated impairment in EDD was restored in OC by the superoxide () scavenger TEMPOL (82 ± 7%). OC also had increased aortic pulse wave velocity (aPWV, 464 ± 31 cm s?1 vs. 337 ± 3 cm s?1) and elastic modulus (EM, 6407 ± 876 kPa vs. 3119 ± 471 kPa), measures of large elastic artery stiffness, compared with YC. OC had greater aortic production (2.0 ± 0.1 vs. 1.0 ± 0.1 AU), nitrotyrosine abundance (a marker of oxidative stress), and collagen‐I, and reduced elastin and vascular SIRT1 activity, measured by the acetylation status of the p65 subunit of NFκB, compared with YC. Supplementation with NMN in old mice restored EDD (86 ± 2%) and NO‐mediated EDD (61 ± 5%), reduced aPWV (359 ± 14 cm s?1) and EM (3694 ± 315 kPa), normalized production (0.9 ± 0.1 AU), decreased nitrotyrosine, reversed collagen‐I, increased elastin, and restored vascular SIRT1 activity. Acute NMN incubation in isolated aortas increased NAD+ threefold and manganese superoxide dismutase (MnSOD) by 50%. NMN supplementation may represent a novel therapy to restore SIRT1 activity and reverse age‐related arterial dysfunction by decreasing oxidative stress.  相似文献   

5.
Aging impairs arterial function through oxidative stress and diminished nitric oxide (NO) bioavailability. Life‐long caloric restriction (CR) reduces oxidative stress, but its impact on arterial aging is incompletely understood. We tested the hypothesis that life‐long CR attenuates key features of arterial aging. Blood pressure, pulse wave velocity (PWV, arterial stiffness), carotid artery wall thickness and endothelium‐dependent dilation (EDD; endothelial function) were assessed in young (Y: 5–7 month), old ad libitum (Old AL: 30–31 month) and life‐long 40% CR old (30–31 month) B6D2F1 mice. Blood pressure was elevated with aging (P < 0.05) and was blunted by CR (P < 0.05 vs. Old AL). PWV was 27% greater in old vs. young AL‐fed mice (P < 0.05), and CR prevented this increase (P < 0.05 vs. Old AL). Carotid wall thickness was greater with age (P < 0.05), and CR reduced this by 30%. CR effects were associated with amelioration of age‐related changes in aortic collagen and elastin. Nitrotyrosine, a marker of cellular oxidative stress, and superoxide production were greater in old AL vs. young (P < 0.05) and CR attenuated these increase. Carotid artery EDD was impaired with age (P < 0.05); CR prevented this by enhancing NO and reducing superoxide‐dependent suppression of EDD (Both P < 0.05 vs. Old AL). This was associated with a blunted age‐related increase in NADPH oxidase activity and p67 expression, with increases in superoxide dismutase (SOD), total SOD, and catalase activities (All P < 0.05 Old CR vs. Old AL). Lastly, CR normalized age‐related changes in the critical nutrient‐sensing pathways SIRT‐1 and mTOR (P < 0.05 vs. Old AL). Our findings demonstrate that CR is an effective strategy for attenuation of arterial aging.  相似文献   

6.
The augmentation index and central blood pressure increase with normal aging. Recently, cyclooxygenase (COX) inhibitors, commonly used for the treatment of pain, have been associated with transient increases in the risk of cardiovascular events. We examined the effects of the COX inhibitor indomethacin (Indo) on central arterial hemodynamics and wave reflection characteristics in young and old healthy adults. High-fidelity radial arterial pressure waveforms were measured noninvasively by applanation tonometry before (control) and after Indo treatment in young (25 ± 5 yr, 7 men and 6 women) and old (64 ± 6 yr, 5 men and 6 women) subjects. Aortic systolic (control: 115 ± 3 mmHg vs. Indo: 125 ± 5 mmHg, P < 0.05) and diastolic (control: 74 ± 2 mmHg vs. Indo: 79 ± 3 mmHg, P < 0.05) pressures were elevated after Indo treatment in older subjects, whereas only diastolic pressure was elevated in young subjects (control: 71 ± 2 mmHg vs. Indo: 76 ± 1 mmHg, P < 0.05). Mean arterial pressure increased in both young and old adults after Indo treatment (P < 0.05). The aortic augmentation index and augmented pressure were elevated after Indo treatment in older subjects (control: 30 ± 5% vs. Indo 36 ± 6% and control 12 ± 1 mmHg vs. Indo: 18 ± 2 mmHg, respectively, P < 0.05), whereas pulse pressure amplification decreased (change: 8 ± 3%, P < 0.05). In addition, older subjects had a 61 ± 11% increase in wasted left ventricular energy after Indo treatment (P < 0.05). In contrast, young subjects showed no significant changes in any of the variables of interest. Taken together, these results demonstrate that COX inhibition with Indo unfavorably increases central wave reflection and augments aortic pressure in old but not young subjects. Our results suggest that aging individuals have a limited ability to compensate for the acute hemodynamic changes caused by systemic COX inhibition.  相似文献   

7.
8.
9.
Vascular disease occurs commonly during aging. Carotid artery and cerebrovascular disease are major causes of stroke and contributors to dementia. Recent evidence suggests that peroxisome proliferator-activated receptor-γ (PPARγ) may play a protective role in the vasculature, but the potential importance of PPARγ in vascular aging is unknown. To examine the hypothesis that PPARγ normally protects against vascular aging, we studied heterozygous knockin mice expressing a human dominant-negative mutation in PPARγ (P465L, designated L/+). Endothelial dysfunction, a major contributor to vascular disease, was studied using carotid arteries from adult (8 ± 1 mo) and old (24 ± 1 mo) L/+ mice and wild-type littermates. In arteries from wild-type mice, responses to the endothelium-dependent agonist ACh were similar in adult and old wild-type mice but were reduced by ~50% in old L/+ mice (n = 7-10, P < 0.05). Impaired responses in arteries from old L/+ mice were restored to normal by a scavenger of superoxide. Relaxation of arteries to nitroprusside (an NO donor) was similar in all groups. Contraction of arteries to U46619 was not affected by age or genotype, while maximal responses to endothelin-1 were reduced with age in both wild-type and L/+ mice. Vascular expression (mRNA) of the catalytic component of NADPH oxidase (Nox2) was not altered in wild-type mice but was increased significantly in old L/+ mice. These findings provide the first evidence that interference with PPARγ function accelerates vascular aging, suggesting a novel role for PPARγ in protecting against age-induced oxidative stress and endothelial dysfunction.  相似文献   

10.
We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups. Rats were anesthetized and instrumented for study 24 h after the last training session. Arterial pressure and femoral artery blood flow were measured, and femoral vascular conductance (FVC) was calculated. Lumbar sympathetic chain stimulation was delivered continuously at 2 Hz and in patterns at 20 and 40 Hz. EDD was assessed by the vascular response to intra-arterial bolus injections of ACh. The response (% change FVC) to sympathetic stimulation increased (P < 0.05) in a training intensity-dependent manner at 2 Hz (S: -20.2 ± 9.8%, M: -34.0 ± 6.7%, and H: -44.9 ± 2.0%), 20 Hz (S: -22.0 ± 10.6%, M: -31.2 ± 8.4%, and H: -42.8 ± 5.9%), and 40 Hz (S: H -24.5 ± 8.5%, M: -35.1 ± 8.9%, H: -44.9 ± 6.5%). The magnitude of EDD also increased in a training intensity-dependent manner (P < 0.05). These data demonstrate that short-term exercise training augments the magnitude of vasoconstriction in response to sympathetic stimulation and EDD in resting skeletal muscle in a training intensity-dependent manner.  相似文献   

11.
12.
Inhibition of mammalian target of rapamycin, mTOR, extends lifespan and reduces age‐related disease. It is not known what role mTOR plays in the arterial aging phenotype or if mTOR inhibition by dietary rapamycin ameliorates age‐related arterial dysfunction. To explore this, young (3.8 ± 0.6 months) and old (30.3 ± 0.2 months) male B6D2F1 mice were fed a rapamycin supplemented or control diet for 6–8 weeks. Although there were few other notable changes in animal characteristics after rapamycin treatment, we found that glucose tolerance improved in old mice, but was impaired in young mice, after rapamycin supplementation (both P < 0.05). Aging increased mTOR activation in arteries evidenced by elevated S6K phosphorylation (P < 0.01), and this was reversed after rapamycin treatment in old mice (P < 0.05). Aging was also associated with impaired endothelium‐dependent dilation (EDD) in the carotid artery (P < 0.05). Rapamycin improved EDD in old mice (P < 0.05). Superoxide production and NADPH oxidase expression were higher in arteries from old compared to young mice (P < 0.05), and rapamycin normalized these (P < 0.05) to levels not different from young mice. Scavenging superoxide improved carotid artery EDD in untreated (P < 0.05), but not rapamycin‐treated, old mice. While aging increased large artery stiffness evidenced by increased aortic pulse‐wave velocity (PWV) (P < 0.01), rapamycin treatment reduced aortic PWV (P < 0.05) and collagen content (P < 0.05) in old mice. Aortic adenosine monophosphate‐activated protein kinase (AMPK) phosphorylation and expression of the cell cycle‐related proteins PTEN and p27kip were increased with rapamycin treatment in old mice (all P < 0.05). Lastly, aging resulted in augmentation of the arterial senescence marker, p19 (P < 0.05), and this was ameliorated by rapamycin treatment (P < 0.05). These results demonstrate beneficial effects of rapamycin treatment on arterial function in old mice and suggest these improvements are associated with reduced oxidative stress, AMPK activation and increased expression of proteins involved in the control of the cell cycle.  相似文献   

13.
Reactive oxygen species (ROS) are implicated in the mechanism of biological aging and exercise-induced oxidative damage. The present study examined the effect of an acute bout of exercise on intracellular ROS production, lipid and protein peroxidation, and GSH status in the skeletal muscle of young adult (8 mo, n = 24) and old (24 mo, n = 24) female Fischer 344 rats. Young rats ran on a treadmill at 25 m/min and 5% grade until exhaustion (55.4 +/- 2.7 min), whereas old rats ran at 15 m/min and 5% grade until exhaustion (58.0 +/- 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of ROS and other intracellular oxidants production in the homogenate of deep vastus lateralis, was 77% (P < 0.01) higher in rested old vs. young rats. Exercise increased DCFH oxidation by 38% (P < 0.09) and 50% (P < 0.01) in the young and old rats, respectively. DCFH oxidation in isolated deep vastus lateralis mitochondria with site 1 substrates was elevated by 57% (P < 0.01) in old vs. young rats but was unaltered with exercise. Significantly higher DCFH oxidation rate was also found in aged-muscle mitochondria (P < 0.01), but not in homogenates, when ADP, NADPH, and Fe(3+) were included in the assay medium without substrates. Lipid peroxidation in muscle measured by malondialdehyde content showed no age effect, but was increased by 20% (P < 0.05) with exercise in both young and old rats. Muscle protein carbonyl formation was unaffected by either age or exercise. Mitochondrial GSH/ GSSG ratio was significantly higher in aged vs. young rats (P < 0.05), whereas exercise increased GSSG content and decreased GSH/GSSG in both age groups (P < 0.05). These data provided direct evidence that oxidant production in skeletal muscle is increased in old age and during prolonged exercise, with both mitochondrial respiratory chain and NADPH oxidase as potential sources. The alterations of muscle lipid peroxidation and mitochondrial GSH status were consistent with these conclusions.  相似文献   

14.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

15.
16.
Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by mutations in the dystrophin gene. Little is known about how blood flow control is affected in arteriolar networks supplying dystrophic muscle. We tested the hypothesis that mdx mice, a murine model for DMD, exhibit defects in arteriolar vasomotor control. The cremaster muscle was prepared for intravital microscopy in pentobarbital sodium-anesthetized mdx and C57BL/10 control mice (n ≥ 5 per group). Spontaneous vasomotor tone increased similarly with arteriolar branch order in both mdx and C57BL/10 mice [pooled values: first order (1A), 6%; second order (2A), 56%; and third order (3A), 61%] with no difference in maximal diameters between groups measured during equilibration with topical 10 μM sodium nitroprusside (pooled values: 1A, 70 ± 3 μm; 2A, 31 ± 3 μm; and 3A, 19 ± 3 μm). Concentration-response curves to acetylcholine (ACh) and norepinephrine added to the superfusion solution did not differ between mdx and C57BL/10 mice, nor did constriction to elevated (21%) oxygen. In response to local stimulation from a micropipette, conducted vasodilation to ACh and conducted vasoconstriction to KCl were also not different between groups; however, constriction decayed with distance (P < 0.05) whereas dilation did not. Remarkably, arteriolar constriction to perivascular nerve stimulation (PNS) at 2, 4, and 8 Hz was reduced by ~25-30% in mdx mice compared with C57BL/10 mice (P < 0.05). With intact arteriolar reactivity to agonists, attenuated constriction to perivascular nerve stimulation indicates impaired neurovascular transmission in arterioles controlling blood flow in mdx mice.  相似文献   

17.
Light chain amyloidosis (AL) involves overproduction of amyloidogenic light chain proteins (LC) leading to heart failure, yet the mechanisms underlying tissue toxicity remain unknown. We hypothesized that LC induces endothelial dysfunction in non-AL human microvasculature and apoptotic injury in human coronary artery endothelial cells (HCAECs). Adipose arterioles (n = 34, 50 ± 3 yr) and atrial coronary arterioles (n = 19, 68 ± 2 yr) from non-AL subjects were cannulated. Adipose arteriole dilator responses to acetylcholine/papaverine were measured at baseline and 1 h exposure to LC (20 μg/ml) from biopsy-proven AL subjects (57 ± 11 yr) without and with antioxidant cotreatment. Coronary arteriole dilation to bradykinin/papaverine was measured post-LC exposure. HCAECs were exposed to 1 or 24 h of LC. LC reduced dilation to acetylcholine (10(-4) M: 41.6 ± 7 vs. 85.8 ± 2.2% control, P < 0.001) and papaverine (81.4 ± 4.6 vs. 94.8 ± 1.3% control, P < 0.01) in adipose arterioles and to bradykinin (10(-6) M: 68.6 ± 6.2 vs. 90.9 ± 1.6% control, P < 0.001) but not papaverine in coronary arterioles. There was an increase in superoxide and peroxynitrite in arterioles treated with LC. Adipose arteriole dilation was restored by cotreatment with polyethylene glycol-superoxide dismutase and tetrahydrobiopterin but only partially restored by mitoquinone (mitochondria-targeted antioxidant) and gp91ds-tat (NADPH oxidase inhibitor). HCAECs exposed to LC showed reduced NO and increased superoxide, peroxynitrite, annexin-V, and propidium iodide compared with control. Brief exposure to physiological amounts of LC induced endothelial dysfunction in human adipose and coronary arterioles and increased apoptotic injury in coronary artery endothelial cells likely as a result of oxidative stress, reduced NO bioavailability, and peroxynitrite production. Microvascular dysfunction and injury is a novel mechanism underlying AL pathobiology and is a potential target for therapy.  相似文献   

18.
Myostatin deficiency causes dramatically increased skeletal muscle mass and reduced fat mass. Previously, myostatin-deficient mice were reported to have unexpectedly low total energy expenditure (EE) after normalizing to body mass, and thus, a metabolic cause for low fat mass was discounted. To clarify how myostatin deficiency affects the control of body fat mass and energy balance, we compared rates of oxygen consumption, body composition, and food intake in young myostatin-deficient mice relative to wild-type (WT) and heterozygous (HET) controls. We report that after adjusting for total body mass using regression analysis, young myostatin-deficient mice display significantly increased EE relative to both WT (+0.81 ± 0.28 kcal/day, P = 0.004) and HET controls (+0.92 ± 0.31 kcal/day, P = 0.005). Since food intake was not different between groups, increased EE likely accounts for the reduced body fat mass (KO: 8.8 ± 1.1% vs. WT: 14.5 ± 1.3%, P = 0.003) and circulating leptin levels (KO: 0.7 ± 0.2 ng/ml vs. WT: 1.9 ± 0.3 ng/ml, P = 0.008). Interestingly, the observed increase in adjusted EE in myostatin-deficient mice occurred despite dramatically reduced ambulatory activity levels (-50% vs. WT, P < 0.05). The absence of hyperphagia together with increased EE in myostatin-deficient mice suggests that increased leptin sensitivity may contribute to their lean phenotype. Indeed, leptin-induced anorexia (KO: -17 ± 1.2% vs. WT: -5 ± 0.3%) and weight loss (KO: -2.2 ± 0.2 g vs. WT: -1.6 ± 0.1, P < 0.05) were increased in myostatin-deficient mice compared with WT controls. We conclude that increased EE, together with increased leptin sensitivity, contributes to low fat mass in mice lacking myostatin.  相似文献   

19.
We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen (AGT)-deficient mice or pharmacologic antagonism of ANG II AT(1) receptor (AT(1)R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT(1)R-null mice. Papillas were dissected from Hoxb7(GFP+) or AGT(+/+), (+/-), (-/-) mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10(-5) M), or the specific AT(1)R antagonist candesartan (10(-6) M) for 24 h. Percent reduction in papillary length was attenuated in AGT(+/+) and in AGT(+/-) compared with AGT(-/-) (-18.4 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, -22.8 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7(GFP+) (-1.5 ± 0.3 vs. -10.0 ± 1.4%, P < 0.05) or AGT(+/+), (+/-), and (-/-) papillas (-12.8 ± 0.7 vs. -18.4 ± 1.3%, P < 0.05, -16.8 ± 1.1 vs. -23 ± 1.2%, P < 0.05; -26.2 ± 1.6 vs. -32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7(GFP+) papillas in the presence of the AT(1)R antagonist candesartan was higher compared with control (-24.3 ± 2.1 vs. -10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT(1)R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT(1)R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, β-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell proliferation, and survival.  相似文献   

20.
ANG II stimulates the production of reactive oxygen species and activates proinflammatory cytokines leading to endothelial dysfunction. We hypothesized that the anti-inflammatory cytokine IL-10 counteracts the impairment in endothelium-dependent ACh relaxation caused by ANG II. Aortic rings of C57BL/6 mice were incubated in DMEM in the presence of vehicle (deionized H(2)O), ANG II (100 nmol/l), recombinant mouse IL-10 (300 ng/ml), or both ANG II and IL-10 for 22 h at 37 degrees C. After incubation, rings were mounted in a wire myograph to assess endothelium-dependent vasorelaxation to cumulative concentrations of ACh. Overnight exposure of aortic rings to ANG II resulted in blunted ACh-induced vasorelaxation compared with that shown in untreated rings (maximal response = 44 +/- 3% vs. 64 +/- 3%, respectively; P<0.05). IL-10 treatment significantly restored this impairment in relaxation (63 +/- 2%). In addition, the NADPH oxidase inhibitor apocynin restored the impairment in relaxation (maximal response = 76 +/- 3%). Western blotting showed increased gp91(phox) expression (a subunit of NADPH oxidase) in response to ANG II. Vessels treated with a combination of ANG II and IL-10 showed decreased expression of gp91(phox). Immunohistochemical analysis showed increased gp91(phox) expression in ANG II-treated vessels compared with those treated with combined ANG II and IL-10. We found that the anti-inflammatory cytokine IL-10 prevents impairment in endothelium-dependent vasorelaxation in response to long-term incubation with ANG II via decreasing NADPH oxidase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号