首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that supplementation of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, increases arterial SIRT1 activity and reverses age‐associated arterial dysfunction and oxidative stress. Old control mice (OC) had impaired carotid artery endothelium‐dependent dilation (EDD) (60 ± 5% vs. 84 ± 2%), a measure of endothelial function, and nitric oxide (NO)‐mediated EDD (37 ± 4% vs. 66 ± 6%), compared with young mice (YC). This age‐associated impairment in EDD was restored in OC by the superoxide () scavenger TEMPOL (82 ± 7%). OC also had increased aortic pulse wave velocity (aPWV, 464 ± 31 cm s?1 vs. 337 ± 3 cm s?1) and elastic modulus (EM, 6407 ± 876 kPa vs. 3119 ± 471 kPa), measures of large elastic artery stiffness, compared with YC. OC had greater aortic production (2.0 ± 0.1 vs. 1.0 ± 0.1 AU), nitrotyrosine abundance (a marker of oxidative stress), and collagen‐I, and reduced elastin and vascular SIRT1 activity, measured by the acetylation status of the p65 subunit of NFκB, compared with YC. Supplementation with NMN in old mice restored EDD (86 ± 2%) and NO‐mediated EDD (61 ± 5%), reduced aPWV (359 ± 14 cm s?1) and EM (3694 ± 315 kPa), normalized production (0.9 ± 0.1 AU), decreased nitrotyrosine, reversed collagen‐I, increased elastin, and restored vascular SIRT1 activity. Acute NMN incubation in isolated aortas increased NAD+ threefold and manganese superoxide dismutase (MnSOD) by 50%. NMN supplementation may represent a novel therapy to restore SIRT1 activity and reverse age‐related arterial dysfunction by decreasing oxidative stress.  相似文献   

2.
To test the hypothesis that the antioxidant enzyme superoxide dismutase (SOD) mimetic TEMPOL improves arterial aging, young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6 mice received regular or TEMPOL-supplemented (1mM) drinking water for 3 weeks (n = 8 per group). Aortic superoxide was 65% greater in O (P < 0.05 vs. Y), which was normalized by TEMPOL. O had large elastic artery stiffening, as indicated by greater aortic pulse wave velocity (aPWV, 508 ± 22 vs. 418 ± 22 AU), which was associated with increased adventitial collagen I expression (P < 0.05 vs. Y). TEMPOL reversed the age-associated increases in aPWV (434 ± 21 AU) and collagen in vivo, and SOD reversed the increases in collagen I in adventitial fibroblasts from older rats in vitro. Isolated carotid arteries of O had impaired endothelial function as indicated by reduced acetylcholine-stimulated endothelium-dependent dilation (EDD) (75.6 ± 3.2 vs. 94.5 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (L-NAME) associated with decreased endothelial NO synthase (eNOS) expression (P < 0.05 vs. Y). TEMPOL restored EDD (94.5 ± 1.4%), NO bioavailability and eNOS in O. Nitrotyrosine and expression of NADPH oxidase were ~100-200% greater, and MnSOD was ~75% lower in O (P < 0.05 vs. Y). TEMPOL normalized nitrotyrosine and NADPH oxidase in O, without affecting MnSOD. Aortic pro-inflammatory cytokines were greater in O (P < 0.05 vs. Y) and normalized by TEMPOL. Short-term treatment of excessive superoxide with TEMPOL ameliorates large elastic artery stiffening and endothelial dysfunction with aging, and this is associated with normalization of arterial collagen I, eNOS, oxidative stress, and inflammation.  相似文献   

3.
4.
Inhibition of mammalian target of rapamycin, mTOR, extends lifespan and reduces age‐related disease. It is not known what role mTOR plays in the arterial aging phenotype or if mTOR inhibition by dietary rapamycin ameliorates age‐related arterial dysfunction. To explore this, young (3.8 ± 0.6 months) and old (30.3 ± 0.2 months) male B6D2F1 mice were fed a rapamycin supplemented or control diet for 6–8 weeks. Although there were few other notable changes in animal characteristics after rapamycin treatment, we found that glucose tolerance improved in old mice, but was impaired in young mice, after rapamycin supplementation (both P < 0.05). Aging increased mTOR activation in arteries evidenced by elevated S6K phosphorylation (P < 0.01), and this was reversed after rapamycin treatment in old mice (P < 0.05). Aging was also associated with impaired endothelium‐dependent dilation (EDD) in the carotid artery (P < 0.05). Rapamycin improved EDD in old mice (P < 0.05). Superoxide production and NADPH oxidase expression were higher in arteries from old compared to young mice (P < 0.05), and rapamycin normalized these (P < 0.05) to levels not different from young mice. Scavenging superoxide improved carotid artery EDD in untreated (P < 0.05), but not rapamycin‐treated, old mice. While aging increased large artery stiffness evidenced by increased aortic pulse‐wave velocity (PWV) (P < 0.01), rapamycin treatment reduced aortic PWV (P < 0.05) and collagen content (P < 0.05) in old mice. Aortic adenosine monophosphate‐activated protein kinase (AMPK) phosphorylation and expression of the cell cycle‐related proteins PTEN and p27kip were increased with rapamycin treatment in old mice (all P < 0.05). Lastly, aging resulted in augmentation of the arterial senescence marker, p19 (P < 0.05), and this was ameliorated by rapamycin treatment (P < 0.05). These results demonstrate beneficial effects of rapamycin treatment on arterial function in old mice and suggest these improvements are associated with reduced oxidative stress, AMPK activation and increased expression of proteins involved in the control of the cell cycle.  相似文献   

5.
Augmented activities of both arginase and S6K1 are involved in endothelial dysfunction in aging. This study was to investigate whether or not there is a crosstalk between arginase and S6K1 in endothelial inflammation and aging in senescent human umbilical vein endothelial cells and in aging mouse models. We show increased arginase‐II (Arg‐II) expression/activity in senescent endothelial cells. Silencing Arg‐II in senescent cells suppresses eNOS‐uncoupling, several senescence markers such as senescence‐associated‐β‐galactosidase activity, p53‐S15, p21, and expression of vascular adhesion molecule‐1 (VCAM1) and intercellular adhesion molecule‐1 (ICAM1). Conversely, overexpressing Arg‐II in nonsenescent cells promotes eNOS‐uncoupling, endothelial senescence, and enhances VCAM1/ICAM1 levels and monocyte adhesion, which are inhibited by co‐expressing superoxide dismutase‐1. Moreover, overexpressing S6K1 in nonsenescent cells increases, whereas silencing S6K1 in senescent cells decreases Arg‐II gene expression/activity through regulation of Arg‐II mRNA stability. Furthermore, S6K1 overexpression exerts the same effects as Arg‐II on endothelial senescence and inflammation responses, which are prevented by silencing Arg‐II, demonstrating a role of Arg‐II as the mediator of S6K1‐induced endothelial aging. Interestingly, mice that are deficient in Arg‐II gene (Arg‐II?/?) are not only protected from age‐associated increase in Arg‐II, VCAM1/ICAM1, aging markers, and eNOS‐uncoupling in the aortas but also reveal a decrease in S6K1 activity. Similarly, silencing Arg‐II in senescent cells decreases S6K1 activity, demonstrating that Arg‐II also stimulates S6K1 in aging. Our study reveals a novel mechanism of mutual positive regulation between S6K1 and Arg‐II in endothelial inflammation and aging. Targeting S6K1 and/or Arg‐II may decelerate vascular aging and age‐associated cardiovascular disease development.  相似文献   

6.
Vascular endothelial dysfunction occurs during the human aging process, and it is considered as a crucial event in the development of many vasculopathies. We investigated the underlying mechanisms of this process, particularly those related with oxidative stress and inflammation, in the vasculature of subjects aged 18–91 years without cardiovascular disease or risk factors. In isolated mesenteric microvessels from these subjects, an age‐dependent impairment of the endothelium‐dependent relaxations to bradykinin was observed. Similar results were observed by plethysmography in the forearm blood flow in response to acetylcholine. In microvessels from subjects aged less than 60 years, most of the bradykinin‐induced relaxation was due to nitric oxide release while the rest was sensitive to cyclooxygenase (COX) blockade. In microvessels from subjects older than 60 years, this COX‐derived vasodilatation was lost but a COX‐derived vasoconstriction occurred. Evidence for age‐related vascular oxidant and inflammatory environment was observed, which could be related to the development of endothelial dysfunction. Indeed, aged microvessels showed superoxide anions (O2?) and peroxynitrite (ONOO?) formation, enhancement of NADPH oxidase and inducible NO synthase expression. Pharmacological interference of COX, thromboxane A2/prostaglandin H2 receptor, O2?, ONOO?, inducible NO synthase, and NADPH oxidase improved the age‐related endothelial dysfunction. In situ vascular nuclear factor‐κB activation was enhanced with age, which correlated with endothelial dysfunction. We conclude that the age‐dependent endothelial dysfunction in human vessels is due to the combined effect of oxidative stress and vascular wall inflammation.  相似文献   

7.
Systemic inhibition of the mammalian target of rapamycin (mTOR) delays aging and many age-related conditions including arterial and metabolic dysfunction. However, the mechanisms and tissues involved in these beneficial effects remain largely unknown. Here, we demonstrate that activation of S6K, a downstream target of mTOR, is increased in arteries with advancing age, and that this occurs preferentially in the endothelium compared with the vascular smooth muscle. Induced endothelial cell-specific deletion of mTOR reduced protein expression by 60–70%. Although this did not significantly alter arterial and metabolic function in young mice, endothelial mTOR reduction reversed arterial stiffening and improved endothelium-dependent dilation (EDD) in old mice, indicating an improvement in age-related arterial dysfunction. Improvement in arterial function in old mice was concomitant with reductions in arterial cellular senescence, inflammation, and oxidative stress. The reduction in endothelial mTOR also improved glucose tolerance in old mice, and this was associated with attenuated hepatic gluconeogenesis and improved lipid tolerance, but was independent of alterations in peripheral insulin sensitivity, pancreatic beta cell function, or fasted plasma lipids in old mice. Lastly, we found that endothelial mTOR reduction suppressed gene expression of senescence and inflammatory markers in endothelial-rich (i.e., lung) and metabolically active organs (i.e., liver and adipose tissue), which may have contributed to the improvement in metabolic function in old mice. This is the first evidence demonstrating that reducing endothelial mTOR in old age improves arterial and metabolic function. These findings have implications for future drug development.  相似文献   

8.
9.
Complications associated with insulin-dependent diabetes mellitus (type-1diabetes) primarily represent vascular dysfunction that has its origin in the endothelium. While many of the vascular changes are more accountable in the late stages of type-1diabetes, changes that occur in the early or initial functional stages of this disease may precipitate these later complications. The early stages of type-1diabetes are characterized by a diminished production of both insulin and C-peptide with a significant hyperglycemia. During the last decade numerous speculations and theories have been developed to try to explain the mechanisms responsible for the selective changes in vascular reactivity and/or tone and the vascular permeability changes that characterize the development of type-1diabetes. Much of this research has suggested that hyperglycemia and/or the lack of insulin may mediate the observed functional changes in both endothelial cells and vascular smooth muscle. Recent studies suggest several possible mechanisms that might be involved in the observed decreases in vascular nitric oxide (NO) availability with the development of type-1 diabetes. In addition more recent studies have indicated a direct role for both endogenous insulin and C-peptide in the amelioration of the observed endothelial dysfunction. These results suggest a synergistic action between insulin and C-peptide that facilitates increase NO availability and may suggest new clinical treatment modalities for type-1 diabetes mellitus.  相似文献   

10.
Increased iron indices have been associated with the development of diabetes and its complications. In the present study, we have investigated the glucose-induced alteration of iron transporters, divalent metal transporter-1 (DMT-1), iron regulated transporter protein-1 (IREG-1), and transferrin receptor (TfR), in endothelial cell iron accumulation and oxidative stress. Cells were exposed to high glucose levels and subjected to gene expression, protein expression, iron measurement and assessment of oxidative stress. Our results show, for the first time, expression of DMT-1 and IREG-1 in vascular endothelial cells. Our data further indicates upregulation of DMT-1 and IREG-1 mRNA and protein in response to high levels of glucose. TfR, however, exhibited a modest decrease in response to high levels of glucose. Increased expression of DMT-1 and IREG-1 was associated with iron accumulation and oxidative stress. Furthermore, our results show differential expression of iron transporters with treatment of high glucose-exposed cells with two different iron chelators. In conclusion, our study suggests that glucose-induced alteration of iron transporters may arbitrate iron accumulation and oxidative stress in endothelial cells.  相似文献   

11.
Increased iron indices have been associated with the development of diabetes and its complications. In the present study, we have investigated the glucose-induced alteration of iron transporters, divalent metal transporter-1 (DMT-1), iron regulated transporter protein-1 (IREG-1), and transferrin receptor (TfR), in endothelial cell iron accumulation and oxidative stress. Cells were exposed to high glucose levels and subjected to gene expression, protein expression, iron measurement and assessment of oxidative stress. Our results show, for the first time, expression of DMT-1 and IREG-1 in vascular endothelial cells. Our data further indicates upregulation of DMT-1 and IREG-1 mRNA and protein in response to high levels of glucose. TfR, however, exhibited a modest decrease in response to high levels of glucose. Increased expression of DMT-1 and IREG-1 was associated with iron accumulation and oxidative stress. Furthermore, our results show differential expression of iron transporters with treatment of high glucose-exposed cells with two different iron chelators. In conclusion, our study suggests that glucose-induced alteration of iron transporters may arbitrate iron accumulation and oxidative stress in endothelial cells.  相似文献   

12.
《Free radical research》2013,47(6):537-547
Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicylic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules.  相似文献   

13.
Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicylic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules.  相似文献   

14.
The objective of the present study is to identify the possible regulatory role of trehalose (Tre) against cadmium chloride (CdCl2)-induced endothelial cell dysfunction. To screen the dose-dependent effect of both Tre and CdCl2, a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed. Interestingly, MTT assay results have shown that co-incubation of Tre (1 mM) with CdCl2 significantly decreased the CdCl2 (5 µM) cytotoxicity. Nitric oxide (NO) measurement using Griess assay and 4-amino-5-methylamino-2ʹ,7ʹ-difluorofluorescein fluorescence probe results have shown that CdCl2 decreases NO production in endothelial cells. Western blotting analysis results showed that CdCl2 decreases endothelial nitric oxide synthase (eNOS) and phospho endothelial nitric oxide synthase (peNOS) expression. The present study results have also observed that CdCl2 treatment increases reactive oxygen species (ROS) production. However, combination treatment (Tre + CdCl2) could restore the NO production in CdCl2-treated cells. In addition, combination treatment could also restore eNOS and peNOS expression in endothelial cells. Moreover, Tre treatment was found to decrease CdCl2-induced ROS production. Collectively, the present study results demonstrate that Tre possesses a significant protective action against CdCl2-mediated endothelial dysfunction by increasing NO production, eNOS and peNOS expression, and by decreasing oxidative stress.  相似文献   

15.
16.
17.
Muscle aging is associated with changes in myeloid cell phenotype that may influence age‐related changes in muscle structure. We tested whether preventing age‐related reductions in muscle neuronal nitric oxide synthase (nNOS) would obviate age‐related changes in myeloid cells in muscle. Our findings show that muscle aging is associated with elevations of anti‐inflammatory M2a macrophages that can increase muscle fibrosis. Expression of a muscle‐specific nNOS transgene in mice prevented age‐related increases in M2a macrophages. Transgene expression also reduced expression of collagens and decreased muscle fibrosis. The nNOS transgene prevented age‐related increases in arginase‐1 but did not influence TGFβ expression, indicating that the transgene may prevent age‐related muscle fibrosis by inhibiting the arginase‐dependent profibrotic pathway. Although aged satellite cells or fibro‐adipogenic precursor (FAPs) cells also promote fibrosis, transgene expression had no effect on the expression of key signaling molecules that regulate fibrogenic activity of those cells. Finally, we tested whether increases in M2a macrophages and the associated increase in fibrosis were attributable to aging of myeloid lineage cells. Young bone marrow cells (BMCs) were transplanted into young or old mice, and muscles were collected 8 months later. Muscles of young mice receiving young BMCs showed no effect on M2a macrophage number or collagen accumulation compared to age‐matched, nontransplanted controls. However, muscles of old mice receiving young BMCs showed fewer M2a macrophages and less accumulation of collagen. Thus, the age‐related increase in M2a macrophages in aging muscle and the associated muscle fibrosis are determined in part by the age of bone marrow cells.  相似文献   

18.
19.
Summary To understand the generation and maintenance of Na and K gradients in cultured vascular endothelial cells, net Na and K movements were studied. Ouabain-sensitive (OS) net Na gain and K loss were estimated as the difference between the cation content in the presence of ouabain and that in the control. Ouabain-and furosemide-resistant (OFR) fluxes were determined in the presence of the two inhibitors. When the normal medium bicarbonate and phosphate buffers were replaced by N-2-hydroxyethylpiperazine-N'-2-ethane sulfonic acid both the OS ans OFR fluxes decreased more than 50%. Ouabain-sensitive and ouabain-and furosemide-resistant fluxes decreased with increasing cellular age (passage number) an effect not observed when the cation movements were studied in the absence of bicarbonate and phosphate. These results suggest that cultured vascular endothelial cells possess bicarbonate-and phosphate-dependent Na and K pathways which account for a significant portion of their passive movements. Furthermore, the behavior of cation permeabilities with passage number suggests that these modulations may be related to the cellular aging process.  相似文献   

20.
The mechanisms leading to the age-related loss of endothelial nitric oxide (NO) and NO-dependent vasodilation remain largely unknown. Freshly isolated endothelium from young (6 months) and old (36 months) F344xBrN rats were analyzed for endothelial nitric oxide synthase (eNOS) protein, its subcellular distribution, and association with regulatory proteins. Results show that both vessel ring vasoreactivity and A23187-induced eNOS activity in isolated endothelial cells significantly (p < or = 0.05) declined with age. Levels of cGMP, a reliable marker for NO bioactivity also declined significantly (p < or = 0.01). However, no change in overall eNOS protein was evident. Subcellular fractionation studies revealed an age-related loss in active, plasma membrane-bound eNOS relative to eNOS in the Golgi/cytosol of the endothelium. Plasma membrane-associated eNOS in aged endothelium was also less complexed with the activating proteins Hsp90 and Akt and more associated with to caveolin-1, which inhibits eNOS activity. These results suggest that age-dependent loss of NO may be partly caused by differences in eNOS subcellular distribution and its association with inhibitory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号