首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1 and NEIL2, unlike the previously characterized OGG1 and NTH1, generate DNA strand breaks with 3' phosphate termini. Here we show that in mammalian cells, removal of the 3' phosphate is dependent on polynucleotide kinase (PNK), and not APE. NEIL1 stably interacts with other BER proteins, DNA polymerase beta (pol beta) and DNA ligase IIIalpha. The complex of NEIL1, pol beta, and DNA ligase IIIalpha together with PNK suggests coordination of NEIL1-initiated repair. That NEIL1/PNK could also repair the products of other DNA glycosylases suggests a broad role for this APE-independent BER pathway in mammals.  相似文献   

2.
Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and tyrosine in vitro. Tdp1 is involved in the repair of DNA lesions created by topoisomerase I, although the in vivo substrate is not known. Here we study the kinetic and binding properties of human Tdp1 (hTdp1) to identify appropriate 3'-phosphotyrosyl DNA substrates. Genetic studies argue that Tdp1 is involved in double and single strand break repair pathways; however, x-ray crystal structures suggest that Tdp1 can only bind single strand DNA. Separate kinetic and binding experiments show that hTdp1 has a preference for single-stranded and blunt-ended duplex substrates over nicked and tailed duplex substrate conformations. Based on these results, we present a new model to explain Tdp1/DNA binding properties. These results suggest that Tdp1 only acts upon double strand breaks in vivo, and the roles of Tdp1 in yeast and mammalian cells are discussed.  相似文献   

3.
Human tyrosyl-DNA phosphodiesterase (Tdp1) hydrolyzes the phosphodiester bond between a DNA 3' end and a tyrosyl moiety. In eukaryotic cells, this type of linkage is found in stalled topoisomerase I-DNA covalent complexes, and Tdp1 has been implicated in the repair of such complexes in vivo. We confirm here that the Tdp1 catalytic cycle involves a covalent reaction intermediate in which a histidine residue is connected to a DNA 3'-phosphate through a phosphoamide linkage. Most surprisingly, this linkage can be hydrolyzed by Tdp1, and unlike a topoisomerase I-DNA complex, which requires modification to be an efficient substrate for Tdp1, the native form of Tdp1 can be removed from the DNA. The spinocerebellar ataxia with axonal neuropathy neurodegenerative disease is caused by the H493R mutant form of Tdp1, which shows reduced enzymatic activity and accumulates the Tdp1-DNA covalent intermediate. The ability of wild type Tdp1 to remove the stalled mutant protein from the DNA likely explains the recessive nature of spinocerebellar ataxia with axonal neuropathy. In addition to its activity on phosphotyrosine and phosphohistidine substrates, Tdp1 also possesses a limited DNA and RNA 3'-exonuclease activity in which a single nucleoside is removed from the 3'-hydroxyl end of the substrate. Furthermore, Tdp1 also removes a 3' abasic site and an artificial 3'-biotin adduct from the DNA. In combination with earlier data showing that Tdp1 can use 3'-phosphoglycolate as a substrate, these data suggest that Tdp1 may function to remove a variety of 3' adducts from DNA during DNA repair.  相似文献   

4.
Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA repair enzyme that catalyzes the hydrolysis of a phosphodiester bond between a tyrosine residue and a DNA 3'-phosphate. The only known example of such a linkage in eukaryotic cells occurs normally as a transient link between a type IB topoisomerase and DNA. Thus human Tdp1 is thought to be responsible for repairing lesions that occur when topoisomerase I becomes stalled on the DNA in the cell. Tdp1 has also been shown to remove glycolate from single-stranded DNA containing a 3'-phosphoglycolate, suggesting a role for Tdp1 in repair of free-radical mediated DNA double-strand breaks. We report the three-dimensional structures of human Tdp1 bound to the phosphate transition state analogs vanadate and tungstate. Each structure shows the inhibitor covalently bound to His263, confirming that this residue is the nucleophile in the first step of the catalytic reaction. Vanadate in the Tdp1-vanadate structure has a trigonal bipyramidal geometry that mimics the transition state for hydrolysis of a phosphodiester bond, while Tdp1-tungstate displays unusual octahedral coordination. The presence of low-occupancy tungstate molecules along the narrow groove of the substrate binding cleft is suggestive evidence that this groove binds ssDNA. In both cases, glycerol from the cryoprotectant solution became liganded to the vanadate or tungstate inhibitor molecules in a bidentate 1,2-diol fashion. These structural models allow predictions to be made regarding the specific binding mode of the substrate and the mechanism of catalysis.  相似文献   

5.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) repairs topoisomerase I cleavage complexes (Top1cc) by hydrolyzing their 3'-phosphotyrosyl DNA bonds and repairs bleomycin-induced DNA damage by hydrolyzing 3'-phosphoglycolates. Yeast Tdp1 has also been implicated in the repair of topoisomerase II-DNA cleavage complexes (Top2cc). To determine whether vertebrate Tdp1 is involved in the repair of various DNA end-blocking lesions, we generated Tdp1 knock-out cells in chicken DT40 cells (Tdp1-/-) and Tdp1-complemented DT40 cells with human TDP1. We found that Tdp1-/- cells were not only hypersensitive to camptothecin and bleomycin but also to etoposide, methyl methanesulfonate (MMS), H(2)O(2), and ionizing radiation. We also show they were deficient in mitochondrial Tdp1 activity. In biochemical assays, recombinant human TDP1 was found to process 5'-phosphotyrosyl DNA ends when they mimic the 5'-overhangs of Top2cc. Tdp1 also processes 3'-deoxyribose phosphates generated from hydrolysis of abasic sites, which is consistent with the hypersensitivity of Tdp1-/- cells to MMS and H(2)O(2). Because recent studies established that CtIP together with BRCA1 also repairs topoisomerase-mediated DNA damage, we generated dual Tdp1-CtIP-deficient DT40 cells. Our results show that Tdp1 and CtIP act in parallel pathways for the repair of Top1cc and MMS-induced lesions but are epistatic for Top2cc. Together, our findings reveal a broad involvement of Tdp1 in DNA repair and clarify the role of human TDP1 in the repair of Top2-induced DNA damage.  相似文献   

6.
The mechanism of hydrolysis of the apurinic/apyrimidinic (AP) site and its synthetic analogs by using tyrosyl-DNA phosphodiesterase 1 (Tdp1) was analyzed. Tdp1 catalyzes the cleavage of AP site and the synthetic analog of the AP site, 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran (THF), in DNA by hydrolysis of the phosphodiester bond between the substituent and 5′ adjacent phosphate. The product of Tdp1 cleavage in the case of the AP site is unstable and is hydrolyzed with the formation of 3′- and 5′-margin phosphates. The following repair demands the ordered action of polynucleotide kinase phosphorylase, with XRCC1, DNA polymerase β, and DNA ligase. In the case of THF, Tdp1 generates break with the 5′-THF and the 3′-phosphate termini. Tdp1 is also able to effectively cleave non-nucleotide insertions in DNA, decanediol and diethyleneglycol moieties by the same mechanism as in the case of THF cleavage. The efficiency of Tdp1 catalyzed hydrolysis of AP-site analog correlates with the DNA helix distortion induced by the substituent. The following repair of 5′-THF and other AP-site analogs can be processed by the long-patch base excision repair pathway.  相似文献   

7.
Tyrosyl-DNA phosphodiesterase I (Tdp1) is involved in the repair of DNA lesions created by topoisomerase I in vivo. Tdp1 is a member of the phospholipase D (PLD) superfamily of enzymes and hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and free tyrosine in vitro. Here, we use synthetic 3'-(4-nitro)phenyl, 3'-(4-methyl)phenyl, and 3'-tyrosine phosphate oligonucleotides to study human Tdp1. Kinetic analysis of human Tdp1 (hTdp1) shows that the enzyme has nanomolar affinity for all three substrates and the overall in vitro reaction is diffusion-limited. Analysis of active-site mutants using these modified substrates demonstrates that hTdp1 uses an acid/base catalytic mechanism. The results show that histidine 493 serves as the general acid during the initial transesterification, in agreement with hypotheses based on previous crystal structure models. The results also argue that lysine 495 and asparagine 516 participate in the general acid reaction, and the analysis of crystal structures suggests that these residues may function in a proton relay. Together with previous crystal structure data, the new functional data provide a mechanistic understanding of the conserved histidine, lysine and asparagine residues found among all PLD family members.  相似文献   

8.
The abortive activity of topoisomerases can result in clastogenic and/or lethal DNA damage in which the topoisomerase is covalently linked to the 3'- or 5'-terminus of a DNA strand break. This type of DNA damage is implicated in chromosome translocations and neurological disease and underlies the clinical efficacy of an important class of anticancer topoisomerase 'poisons'. Tyrosyl DNA phosphodiesterase-1 protects cells from abortive topoisomerase I (Top1) activity by hydrolyzing the 3'-phosphotyrosyl bond that links Top1 to a DNA strand break and is currently the only known human enzyme that displays this activity in cells. Recently, we identified a second tyrosyl DNA phosphodiesterase (TDP2; aka TTRAP/EAPII) that possesses weak 3'-tyrosyl DNA phosphodiesterase (3'-TDP) activity, in vitro. Herein, we have examined whether TDP2 contributes to the repair of Top1-mediated DNA breaks by deleting Tdp1 and Tdp2 separately and together in murine and avian cells. We show that while deletion of Tdp1 in wild-type DT40 cells and mouse embryonic fibroblasts decreases DNA strand break repair rates and cellular survival in response to Top1-induced DNA damage, deletion of Tdp2 does not. However, deletion of both Tdp1 and Tdp2 reduces rates of DNA strand break repair and cell survival below that observed in Tdp1(-)(/)(-) cells, suggesting that Tdp2 contributes to cellular 3'-TDP activity in the absence of Tdp1. Consistent with this idea, over-expression of human TDP2 in Tdp1(-)(/)(-)/Tdp2(-)(/)(-)(/)(-) DT40 cells increases DNA strand break repair rates and cell survival above that observed in Tdp1(-)(/)(-) DT40 cells, suggesting that Tdp2 over-expression can partially complement the defect imposed by loss of Tdp1. Finally, mice lacking both Tdp1 and Tdp2 exhibit greater sensitivity to Top1 poisons than do mice lacking Tdp1 alone, further suggesting that Tdp2 contributes to the repair of Top1-mediated DNA damage in the absence of Tdp1. In contrast, we failed to detect a contribution for Tdp1 to repair Top2-mediated damage. Together, our data suggest that Tdp1 and Tdp2 fulfil overlapping roles following Top1-induced DNA damage, but not following Top2-induced DNA damage, in vivo.  相似文献   

9.
10.
11.
12.
Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1^-/- mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (pol β) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS- treated XRCC1^-/-, and to a lesser extent in pol β^-/- cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and polβ^-/- cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1^-/- cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC 1 to sites of DNA damage.  相似文献   

13.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) processes DNA 3′-end-blocking modifications, possesses DNA and RNA 3′-nucleosidase activity and is also able to hydrolyze an internal apurinic/apyrimidinic (AP) site and its synthetic analogs. The mechanism of Tdp1 interaction with DNA was analyzed using pre-steady state stopped-flow kinetics with tryptophan, 2-aminopurine and Förster resonance energy transfer fluorescence detection. Phosphorothioate or tetramethyl phosphoryl guanidine groups at the 3′-end of DNA have been used to prevent 3′-nucleosidase digestion by Tdp1. DNA binding and catalytic properties of Tdp1 and its mutants H493R (Tdp1 mutant SCAN1) and H263A have been compared. The data indicate that the initial step of Tdp1 interaction with DNA includes binding of Tdp1 to the DNA ends followed by the 3′-nucleosidase reaction. In the case of DNA containing AP site, three steps of fluorescence variation were detected that characterize (i) initial binding the enzyme to the termini of DNA, (ii) the conformational transitions of Tdp1 and (iii) search for and recognition of the AP-site in DNA, which leads to the formation of the catalytically active complex and to the AP-site cleavage reaction. Analysis of Tdp1 interaction with single- and double-stranded DNA substrates shows that the rates of the 3′-nucleosidase and AP-site cleavage reactions have similar values in the case of single-stranded DNA, whereas in double-stranded DNA, the cleavage of the AP-site proceeds two times faster than 3′-nucleosidase digestion. Therefore, the data show that the AP-site cleavage reaction is an essential function of Tdp1 which may comprise an independent of AP endonuclease 1 AP-site repair pathway.  相似文献   

14.
Base excision repair (BER) protects cells from nucleobase DNA damage. In eukaryotic BER, DNA glycosylases generate abasic sites, which are then converted to deoxyribo-5'-phosphate (dRP) and excised by a dRP lyase (dRPase) activity of DNA polymerase beta (Polbeta). Here, we demonstrate that NEIL1 and NEIL2, mammalian homologs of bacterial endonuclease VIII, excise dRP by beta-elimination with the efficiency similar to Polbeta. DNA duplexes imitating BER intermediates after insertion of a single nucleotide were better substrates. NEIL1 and NEIL2 supplied dRPase activity in BER reconstituted with dRPase-null Polbeta. Our results suggest a role for NEILs as backup dRPases in mammalian cells.  相似文献   

15.
DNA topoisomerase I (Top1) is converted into a cellular poison by camptothecin (CPT) and various endogenous and exogenous DNA lesions. In this study, we used X-ray repair complementation group 1 (XRCC1)-deficient and XRCC1-complemented EM9 cells to investigate the mechanism by which XRCC1 affects the cellular responses to Top1 cleavage complexes induced by CPT. XRCC1 complementation enhanced survival to CPT-induced DNA lesions produced independently of DNA replication. CPT-induced comparable levels of Top1 cleavage complexes (single-strand break (SSB) and DNA-protein cross-links (DPC)) in both XRCC1-deficient and XRCC1-complemented cells. However, XRCC1-complemented cells repaired Top1-induced DNA breaks faster than XRCC1-deficient cells, and exhibited enhanced tyrosyl DNA phosphodiesterase (Tdp1) and polynucleotide kinase phosphatase (PNKP) activities. XRCC1 immunoprecipitates contained Tdp1 polypeptide, and both Tdp1 and PNKP activities, indicating a functional connection between the XRCC1 single-strand break repair pathway and the repair of Top1 covalent complexes by Tdp1 and PNKP.  相似文献   

16.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that acts upon protein–DNA covalent complexes. Tdp1 hydrolyzes 3′-phosphotyrosyl bonds to generate 3′-phosphate DNA and free tyrosine in vitro. Mutations in Tdp1 have been linked to patients with spinocerebellar ataxia, and over-expression of Tdp1 results in resistance to known anti-cancer compounds. Tdp1 has been shown to be involved in double-strand break repair in yeast, and Tdp1 has also been implicated in single-strand break repair in mammalian cells. Despite the biological importance of this enzyme and the possibility that Tdp1 may be a molecular target for new anti-cancer drugs, there are very few assays available for screening inhibitor libraries or for characterizing Tdp1 function, especially under pre-steady-state conditions. Here, we report the design and synthesis of a fluorescence-based assay using oligonucleotide and nucleotide substrates containing 3′-(4-methylumbelliferone)-phosphate. These substrates are efficiently cleaved by Tdp1, generating the fluorescent 4-methylumbelliferone reporter molecule. The kinetic characteristics determined for Tdp1 using this assay are in agreement with the previously published values, and this fluorescence-based assay is validated using the standard gel-based methods. This sensitive assay is ideal for kinetic analysis of Tdp1 function and for high-throughput screening of Tdp1 inhibitory molecules.  相似文献   

17.
Defective Tyrosyl-DNA phosphodiesterase 1 (TDP1) can cause spinocerebellar ataxia with axonal neuropathy (SCAN1), a neurodegenerative syndrome associated with marked cerebellar atrophy and peripheral neuropathy. Although SCAN1 lymphoblastoid cells show pronounced defects in the repair of chromosomal single-strand breaks (SSBs), it is unknown if this DNA repair activity is important for neurons or for preventing neurodegeneration. Therefore, we generated Tdp1-/- mice to assess the role of Tdp1 in the nervous system. Using both in vitro and in vivo assays, we found that cerebellar neurons or primary astrocytes derived from Tdp1-/- mice display an inability to rapidly repair DNA SSBs associated with Top1-DNA complexes or oxidative damage. Moreover, loss of Tdp1 resulted in age-dependent and progressive cerebellar atrophy. Tdp1-/- mice treated with topotecan, a drug that increases levels of Top1-DNA complexes, also demonstrated significant loss of intestinal and hematopoietic progenitor cells. These data indicate that TDP1 is required for neural homeostasis, and reveal a widespread requisite for TDP1 function in response to acutely elevated levels of Top1-associated DNA strand breaks.  相似文献   

18.
Kashkina E  Qi T  Weinfeld M  Young D 《DNA Repair》2012,11(8):676-683
We previously reported that Schizosaccharomyces pombe pnk1 cells are more sensitive than wild-type cells to γ-radiation and camptothecin, indicating that Pnk1 is required for DNA repair. Here, we report that pnk1pku70 and pnk1rhp51 double mutants are more sensitive to γ-radiation than single mutants, from which we infer that Pnk1's primary role is independent of either homologous recombination or non-homologous end joining mechanisms. We also report that pnk1 cells are more sensitive than wild-type cells to oxidizing and alkylating agents, suggesting that Pnk1 is involved in base excision repair. Mutational analysis of Pnk1 revealed that the DNA 3'-phosphatase activity is necessary for repair of DNA damage, whereas the 5'-kinase activity is dispensable. A role for Pnk1 in base excision repair is supported by genetic analyses which revealed that pnk1apn2 is synthetically lethal, suggesting that Pnk1 and Apn2 may function in parallel pathways essential for the repair of endogenous DNA damage. Furthermore, the nth1pnk1apn2 and tdp1pnk1apn2 triple mutants are viable, implying that single-strand breaks with 3'-blocked termini produced by Nth1 and Tdp1 contribute to synthetic lethality. We also examined the sensitivity to methyl methanesulfonate of all single and double mutant combinations of nth1, apn2, tdp1 and pnk1. Together, our results support a model where Tdp1 and Pnk1 act in concert in an Apn2-independent base excision repair pathway to repair 3'-blocked termini produced by Nth1; and they also provide evidence that Pnk1 has additional roles in base excision repair.  相似文献   

19.
Although poly(ADP-ribose) polymerase-1 (PARP-1) has no enzymatic activity involved in DNA damage processing by the base excision repair (BER) pathway, PARP-1 deficient cells are genetically unstable and sensitive to DNA-damaging agents. To explain this paradox, we investigated the impact of PARP-1 on BER in mammalian cells. We reduced cellular PARP-1 protein levels using siRNA, then introduced DNA damage by hydrogen peroxide treatment and examined the repair response. We find that PARP-1 is not involved in recruitment of the major BER proteins to sites of DNA damage. However, we find that PARP-1 protects excessive DNA single strand breaks (SSBs) from converting into DNA double strand breaks (DSBs) thus preserving them for subsequent repair by BER enzymes. This suggests that PARP-1 plays an important role in BER by extending the ability of BER enzymes to process DNA single strand breaks arising directly after mutagen stress or during processing of DNA lesions following extensive DNA damage.  相似文献   

20.
Non-homologous end-joining (NHEJ) is a critical error-prone pathway of double strand break repair. We recently showed that tyrosyl DNA phosphodiesterase 1 (Tdp1) regulates the accuracy of NHEJ repair junction formation in yeast. We assessed the role of other enzymes in the accuracy of junction formation using a plasmid repair assay. We found that exonuclease 1 (Exo1) is important in assuring accurate junction formation during NHEJ. Like tdp1Δ mutants, exo1Δ yeast cells repairing plasmids with 5'-extensions can produce repair junctions with templated insertions. We also found that exo1Δ mutants have a reduced median size of deletions when joining DNA with blunt ends. Surprisingly, exo1Δ pol4Δ mutants repair blunt ends with a very low frequency of deletions. This result suggests that there are multiple pathways that process blunt ends prior to end-joining. We propose that Exo1 acts at a late stage in end-processing during NHEJ. Exo1 can reverse nucleotide additions occurring due to polymerization, and may also be important for processing ends to expose microhomologies needed for NHEJ. We propose that accurate joining is controlled at two steps, a first step that blocks modification of DNA ends, which requires Tdp1, and a second step that occurs after synapsis that requires Exo1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号