首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The common neurotrophin receptor, p75(NTR), has been shown to signal in the absence of Trk tyrosine kinase receptors, including induction of neural apoptosis and activation of NF-kappaB. However, the mechanisms by which p75(NTR) initiates these intracellular signal transduction pathways are unknown. Here we report interactions between p75(NTR) and the six members of TRAF (tumor necrosis factor receptor-associated factors) family proteins. The binding of different TRAF proteins to p75(NTR) was mapped to distinct regions in p75(NTR). Furthermore, TRAF4 interacted with dimeric p75(NTR), whereas TRAF2 interacted preferentially with monomeric p75(NTR). TRAF2-p75(NTR), TRAF4-p75(NTR), and TRAF6-p75(NTR) interactions modulated p75(NTR)-induced cell death and NF-kappaB activation with contrasting effects. Coexpression of TRAF2 with p75(NTR) enhanced cell death, whereas coexpression of TRAF6 was cytoprotective. Furthermore, overexpression of TRAF4 abrogated the ability of dimerization to prevent the induction of apoptosis normally mediated by monomeric p75(NTR). TRAF4 also inhibited the NF-kappaB response, whereas TRAF2 and TRAF6 enhanced p75(NTR)-induced NF-kappaB activation. These results demonstrate that TRAF family proteins interact with p75(NTR) and differentially modulate its NF-kappaB activation and cell death induction.  相似文献   

2.
The mechanism of crosstalk between signaling pathways coupled to the Trk A and p75(NTR) neurotrophin receptors in PC12 cells was examined. In response to nerve growth factor (NGF), Trk A activation inhibited p75(NTR)-dependent sphingomyelin (SM) hydrolysis. The phosphoinositide 3-kinase (PI 3-kinase) inhibitor, LY294002, reversed this inhibition suggesting that Trk A activation of PI 3-kinase is necessary to inhibit sphingolipid signaling by p75(NTR). In contrast, SM hydrolysis induced by neurotrophin-3 (NT-3), which did not activate PI-3 kinase, was uneffected by LY294002. However, transient expression of a constituitively active PI 3-kinase inhibited p75(NTR)-dependent SM hydrolysis by both NGF and NT-3. Intriguingly, NGF induced an association of activated PI 3-kinase with acid sphingomyelinase (SMase). This interaction localized to caveolae-related domains and correlated with a 50% decrease in immunoprecipitated acid SMase activity. NGF-stimulated PI 3-kinase activity was necessary for inhibition of acid SMase but was not required for ligand-induced association of the p85 subunit of PI 3-kinase with the phospholipase. Finally, this interaction was specific for NGF since EGF did not induce an association of PI 3-kinase with acid SMase. In summary, our data suggest that PI 3-kinase regulates the inhibitory crosstalk between Trk A tyrosine kinase and p75(NTR)-dependent sphingolipid signaling pathways and that this interaction localizes to caveolae-related domains.  相似文献   

3.
The various members of the Trk tyrosine kinase family and p75 neurotrophin receptor (p75(NTR)) have been identified as signaling receptors for the structurally related members of the neurotrophins (NT) family. We have previously reported that NT treatment of murine and human brain-metastatic melanoma cells affects their invasive capacities and increases the production of extracellular-matrix degradative enzymes. These cells express aberrant levels of functional p75(NTR) and TrkC, the putative high-affinity receptor for the neurotrophin NT-3. Here we demonstrate that, by using sensitive immune-complex kinase assays in human brain-metastatic (70W) melanoma cells, TrkC receptors associate with a kinase activity exhibiting a dose-dependent susceptibility to inhibition by the purine-analogs 6-thioguanine and 2-aminopurine. The activity of this purine-analog-sensitive kinase (PASK) was induced by NT-3 in a time-dependent fashion, phosphorylating exogenous myelin basic protein (MBP) but not denatured enolase. It is similar to the one reported to relate with p75(NTR) and TrkA receptors and stimulated by the prototypic NT, nerve growth factor. Thus, PASKs may represent unique signaling components common to NT receptors that could engage joint downstream signaling effectors in brain-metastatic melanoma.  相似文献   

4.
Neurotrophin signal transduction in the nervous system   总被引:41,自引:0,他引:41  
Neurotrophins use two types of receptors, the Trk tyrosine kinase receptors and the p75 neurotrophin receptor (p75NTR), to regulate the growth, development, survival and repair of the nervous system. These receptors can either collaborate with or inhibit each other's actions to mediate neurotrophin effects. The development and survival of neurons is thus based upon the functional interplay of the signals generated by Trk and p75NTR. In the past two years, the signaling pathways used by these receptors, including Akt and MAPK-induced signaling via Trk, and JNK, p53, and NF-kappaB signaling via p75NTR, have been identified. In addition, a number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.  相似文献   

5.
During development, neurons pass through a critical phase in which survival is dependent on neurotrophin support. In order to dissect the potential role of p75NTR, the common neurotrophin receptor, in neurotrophin dependence, we expressed wild-type and mutant p75NTR in cells that do not express endogenous p75NTR or Trk family members (NIH3T3). Expression of wild-type p75NTR created a state of neurotrophin dependence: cells could be rescued by nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3), but not by a mutant NGF that binds well to Trk A but poorly to p75NTR. Similarly, expression of p75NTR in human prostate cancer cells in culture rendered a metastatic tumor cell line (PC-3) sensitive to the availability of neurotrophins for survival. Moreover, expression of mutant p75NTR's in another neurotrophin-insensitive cell line (HEK293T) showed that a domain within the intracellular domain governs alternate responses to neurotrophins: the carboxy terminus of the intracellular domain of p75NTR including the sixth alpha helix domain is necessary for rescue by BDNF, but not NGF. These results, when considered with previous studies of the timing of p75NTR expression, support the hypothesis that p75NTR is a mediator of neurotrophin dependence during the critical phase of developmental cell death and during the progression of carcinogenesis in prostate cancer.  相似文献   

6.
The common neurotrophin receptor p75(NTR), a member of the tumor necrosis factor (TNF) receptor superfamily, plays an important role in several cellular signaling cascades, including that leading to apoptosis. FAP-1 (Fas-associated phosphatase-1), which binds to the cytoplasmic tail of Fas, was originally identified as a negative regulator of Fas-mediated apoptosis. Here we have shown by co-immunoprecipitation that FAP-1 also binds to the p75(NTR) cytoplasmic domain in vivo through the interaction between the third PDZ domain of FAP-1 and C-terminal Ser-Pro-Val residues of p75(NTR). Furthermore, cells expressing a FAP-1/green fluorescent protein showed intracellular co-localization of FAP-1 and p75(NTR) at the plasma membrane. To elucidate the functional role of this physical interaction, we examined TRAF6 (TNF receptor-associated factor 6)-mediated NF-kappaB activation and tamoxifen-induced apoptosis in 293T cells expressing p75(NTR). The results revealed that TRAF6-mediated NF-kappaB activation was suppressed by p75(NTR) and that the p75(NTR)-mediated NF-kappaB suppression was reduced by FAP-1 expression. Interestingly, a mutant of the p75(NTR) intracellular domain with a single substitution of a Met for Val in its C-terminus, which cannot interact with FAP-1, displayed enhanced pro-apoptotic activity in 293T transfected cells. Thus, similar to Fas, FAP-1 may be involved in suppressing p75(NTR)-mediated pro-apoptotic signaling through its interaction with three C-terminal amino acids (tSPV). Thus, FAP-1 may regulate p75(NTR)-mediated signal transduction by physiological interaction through its third PDZ domain.  相似文献   

7.
Target-derived neurotrophins regulate neuronal survival and growth by interacting with cell-surface tyrosine kinase receptors. The p75 neurotrophin receptor (p75 NTR) is coexpressed with Trk receptors in long-range projection neurons, in which it facilitates neurotrophin binding to Trk and enhances Trk activity. Here, we show that TrkA and TrkB receptors undergo robust ligand-dependent ubiquitination that is dependent on activation of the endogenous Trk activity of the receptors. Coexpression of p75 NTR attenuated ubiquitination of TrkA and TrkB and delayed nerve growth factor-induced TrkA receptor internalization and receptor degradation. These results indicate that p75 NTR may prolong cell-surface Trk-dependent signalling events by negatively regulating receptor ubiquitination.  相似文献   

8.
Disseminating malignant melanoma is a lethal disease highly resistant to radio- and chemotherapy. Therefore, the development of new treatment strategies is strongly needed. Tumor suppressor p53-mediated apoptosis is essential for the response to radio- and chemotherapy. Although p53 is not frequently mutated in melanoma, it is inactivated by integrin αv-mediated signaling, as we previously demonstrated 1, which may account, at least partially, for increased apoptosis resistance of malignant melanoma. In this study we addressed the question whether functional restoration of p53 by APR-246 (PRIMA-1Met), which can reactivate mutant p53 and induce massive apoptosis in cancer cells, is able to restore the function of inactive p53 in melanoma. Using a three-dimensional collagen gel (3D-collagen) to culture melanoma cells carrying wild-type p53, we found that APR-246 treatment resulted in activation of p53, leading to increased expression of p53 pro-apoptotic targets Apaf1 and PUMA and activation of caspase- 9 and -3. Moreover, APR-246 triggered melanoma cell apoptosis that was mediated by p53 and caspase 9. Importantly, APR-246 treatment also suppressed human melanoma xenograft tumors in vivo in a p53-dependent manner. Thus, wild-type p53 reactivation may provide a novel approach for malignant melanoma treatment, with APR-246 as a candidate drug for such a development.  相似文献   

9.
p75 neurotrophin receptor (p75NTR) belongs to the TNF-receptor superfamily and signals apoptosis in many cell settings. In human epidermis, p75NTR is mostly confined to the transit-amplifying (TA) sub-population of basal keratinocytes. Brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4), which signals through p75NTR, induces keratinocyte apoptosis, whereas β-amyloid, a ligand for p75NTR, triggers caspase-3 activation to a greater extent in p75NTR transfected cells. Moreover, p75NTR co-immunoprecipitates with NRAGE, induces the phosphorylation of c-Jun N-terminal kinase (JNK) and reduces nuclear factor kappa B (NF-κB) DNA-binding activity. p75NTR also mediates pro-NGF-induced keratinocyte apoptosis through its co-receptor sortilin. Furthermore, BDNF or β-amyloid cause cell death in TA, but not in keratinocyte stem cells (KSCs) or in p75NTR silenced TA cells. p75NTR is absent in lesional psoriatic skin and p75NTR levels are significantly lower in psoriatic than in normal TA keratinocytes. The rate of apoptosis in psoriatic TA cells is significantly lower than in normal TA cells. BDNF or β-amyloid fail to induce apoptosis in psoriatic TA cells, and p75NTR retroviral infection restores BDNF- or β-amyloid-induced apoptosis in psoriatic keratinocytes. These results demonstrate that p75NTR has a pro-apoptotic role in keratinocytes and is involved in the maintenance of epidermal homeostasis.  相似文献   

10.
The p75 neurotrophin receptor (p75(NTR)) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75(NTR) retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (DeltaDD) dominant-negative antagonist of p75(NTR) showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75(NTR)-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75(NTR) expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75(NTR) rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75(NTR) was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75(NTR)-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75(NTR) expressing prostate cancer cells.  相似文献   

11.
Ethanol exposure has deleterious effects on the central nervous system. Although several mechanisms for ethanol-induced damage have been suggested, the precise mechanism underlying ethanol-induced neuronal cell death remains unclear. Recent studies indicate that the p75 neurotrophin receptor (p75NTR) has a critical role in the regulation of neuronal survival. This study was designed to examine the role of p75NTR in ethanol-induced apoptotic signaling in neuroblastoma cells. Ethanol caused highly increased level of p75NTR expression. The use of small interfering RNA to inhibit p75NTR expression markedly attenuated ethanol-induced cell cycle arrest and apoptosis. DNA binding activity of Sp1 was increased by ethanol, whereas inhibition of Sp1 activity by mithramycin, a Sp1 inhibitor, or short hairpin RNA suppressed ethanol-induced p75NTR expression. In addition, inhibitors of casein kinase 2 (CK2) and extracellular signal-regulated kinase (ERK) augmented ethanol-induced p75NTR expression. Our results also demonstrate that inhibition of ERK and CK2 caused a further increase in the activation of the p75NTR proximal promoter induced by ethanol. This increased activation was partially suppressed by the deletion of the Sp1 binding sites. These results suggest that Sp1-mediated p75NTR expression is regulated at least in part by ERK and CK2 pathways. The present study also showed that treatment with ethanol resulted in significant increases in the expression of p21, but not the levels of p53 and p53 target genes such as Bax, Puma, and Bcl-2. Furthermore, the inhibition of p75NTR expression or Sp1 activity suppressed ethanol-induced p21 expression, cell cycle arrest, and apoptosis. These data suggest that ethanol increases p75NTR expression, and CK2 and ERK signaling inversely regulate Sp1-mediated p75NTR expression in ethanol-treated neuroblastoma cells. Thus, our study provides more insight into the mechanisms underlying ethanol actions.  相似文献   

12.
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.  相似文献   

13.
Abstract. To determine whether the p75 neurotrophin receptor (p75NTR) plays a role in naturally occurring neuronal death, we examined neonatal sympathetic neurons that express both the TrkA tyrosine kinase receptor and p75NTR. When sympathetic neuron survival is maintained with low quantities of NGF or KCl, the neurotrophin brain-derived neurotrophic factor (BDNF), which does not activate Trk receptors on sympathetic neurons, causes neuronal apoptosis and increased phosphorylation of c-jun. Function-blocking antibody studies indicate that this apoptosis is due to BDNF-mediated activation of p75NTR. To determine the physiological relevance of these culture findings, we examined sympathetic neurons in BDNF−/− and p75NTR−/− mice. In BDNF−/− mice, sympathetic neuron number is increased relative to BDNF+/+ littermates, and in p75NTR−/− mice, the normal period of sympathetic neuron death does not occur, with neuronal attrition occurring later in life. This deficit in apoptosis is intrinsic to sympathetic neurons, since cultured p75NTR−/− neurons die more slowly than do their wild-type counterparts. Together, these data indicate that p75NTR can signal to mediate apoptosis, and that this mechanism is essential for naturally occurring sympathetic neuron death.  相似文献   

14.
Neurotrophin-regulated signalling pathways   总被引:15,自引:0,他引:15  
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.  相似文献   

15.
The p75 neurotrophin receptor (p75NTR), a member of tumor necrosis factor receptor superfamily, involves in neuronal apoptosis after intracerebral hemorrhage (ICH). It has been previously demonstrated that phosphorylation of p35 is a crucial factor for fighting against the proapoptotic p25/CDK5 signaling in neuronal apoptosis. Then, in ICH models of rats and primary cortical neurons, we found that the expressions of p75NTR, p-histone H1 (the kinase activity of CDK5), p25, Fas-associated phosphatase-1 (FAP-1), and phosphorylated myocyte enhancer factor 2D (p-MEF2D) were enhanced after ICH, whereas the expression of p35-Thr(138) was attenuated. Coimmunoprecipitation analysis indicated several interactions as follows: p35/p25 and CKD5, p75NTR and p35, as well as p75NTR and FAP-1. After p75NTR or FAP-1 depletion with double-stranded RNA interference in PC12 cells, the levels of p25 and p-histone H1 were attenuated, whereas p35-Thr(138) was elevated. Considering p75NTR has no effect of dephosphorylation, our results suggested that p75NTR might promote the dephosphorylation of p35-Thr(138) via interaction with FAP-1, and the p75NTR/p35 complex upregulated p25/CDK5 signaling to facilitate the neuronal apoptosis following ICH. So, in the study, we aimed to provide a theoretical and experimental basis that p75NTR could be regulated to reduce neuronal apoptosis following ICH for potential clinical treatment.  相似文献   

16.
The cytoplasmic juxtamembrane region of the p75 neurotrophin receptor (p75(NTR)) has been found to be necessary and sufficient to initiate neural cell death. The region was named "Chopper" to distinguish it from CD95-like death domains. A 29-amino acid peptide corresponding to the Chopper region induced caspase- and calpain-mediated death in a variety of neural and non-neural cell types and was not inhibited by signaling through Trk (unlike killing by full-length p75(NTR)). Chopper triggered cell death only when bound to the plasma membrane by a lipid anchor, whereas non-anchored Chopper acted in a dominant-negative manner, blocking p75(NTR)-mediated death both in vitro and in vivo. Removal of the ectodomain of p75(NTR) increased the potency of Chopper activity, suggesting that it regulates the association of Chopper with downstream signaling proteins.  相似文献   

17.

Background

Neurotrophins and their Trk and p75NTR receptors play an important role in the nervous system. To date, neurotrophins, Trk and p75NTR have only been found concomitantly in deuterostomes. In protostomes, homologues to either neurotrophin, Trk or p75NTR are reported but their phylogenetic relationship to deuterostome neurotrophin signaling components is unclear. Drosophila has neurotrophin homologues called Spätzles (Spz), some of which were recently renamed neurotrophins, but direct proof that these are deuterostome neurotrophin orthologues is lacking. Trks belong to the receptor tyrosine kinase (RTK) family and among RTKs, Trks and RORs are closest related. Flies lack Trks but have ROR and ROR-related proteins called NRKs playing a neurotrophic role. Mollusks have so far the most similar proteins to Trks (Lymnaea Trk and Aplysia Trkl) but the exact phylogenetic relationship of mollusk Trks to each other and to vertebrate Trks is unknown. p75NTR belongs to the tumor necrosis factor receptor (TNFR) superfamily. The divergence of the TNFR families in vertebrates has been suggested to parallel the emergence of the adaptive immune system. Only one TNFR representative, the Drosophila Wengen, has been found in protostomes. To clarify the evolution of neurotrophin signaling components in bilateria, this work analyzes the genome of the crustacean Daphnia pulex as well as new genetic data from protostomes.

Results

The Daphnia genome encodes a neurotrophin, p75NTR and Trk orthologue together with Trkl, ROR, and NRK-RTKs. Drosophila Spz1, 2, 3, 5, 6 orthologues as well as two new groups of Spz proteins (Spz7 and 8) are also found in the Daphnia genome. Searching genbank and the genomes of Capitella, Helobdella and Lottia reveals neurotrophin signaling components in other protostomes.

Conclusion

It appears that a neurotrophin, Trk and p75NTR existed at the protostome/deuterostome split. In protostomes, a "neurotrophin superfamily" includes Spzs and neurotrophins which respectively form two paralogous families. Trks and Trkl proteins also form closely related paralogous families within the protostomian RTKs, whereby Trkls are absent in deuterostomes. The finding of p75NTR in several protostomes suggests that death domain TNFR superfamily proteins appeared early in evolution.  相似文献   

18.
p75NTR: A study in contrasts   总被引:5,自引:0,他引:5  
The p75 neurotrophin receptor (p75NTR) and trkA, trkB and trkC mediate the physiological effects of the neurotrophins. The trk receptors are responsible for the stereotypical survival and growth properties of the neurotrophins but defining the physiological function of the p75NTR has proven difficult. The p75NTR binds each of the neurotrophins with low nanomolar affinity whereas the three trk receptors show strong binding preferences for individual neurotrophins; in some cell types, p75NTR is the only neurotrophin receptor whereas in others it is co-expressed with the trks. The analysis of p75NTR function has been complicated by the fact that the predominant physiological role of p75NTR changes dramatically depending on cell context. Available data suggests that in cells where p75NTR is co-expressed with trk receptors, p75NTR functionally collaborates with the trks to either enhance responses to preferred trk ligands, to reduce neurotrophin-mediated trk receptor activation resulting from non-preferred ligands or to facilitate apoptosis resulting from neurotrophin withdrawal. In cells lacking trk expression, p75NTR can act autonomously to activate ligand-dependent signaling cascades that may in some circumstances result in apoptosis but probably not through pathways utilized by its apoptotic brethren in the TNF receptor superfamily. Potential mechanisms for each of these functions of p75NTR are considered and the physiological implications of this unique signaling system are discussed.  相似文献   

19.
20.
Expression of neurotrophin receptors in normal and malignant B lymphocytes   总被引:3,自引:0,他引:3  
In order to define a cellular model suitable for studying, in vitro, the molecular properties and functions of neurotrophin receptors in human lymphocytes, TrkA, TrkB, TrkC and p75(NTR) expression was investigated in a panel of EBV immortalized lymphoblastoid (LCL) and Burkitt lymphoma-derived cell lines (BLs) compared to primary B lymphocytes by RT-PCR and flow cytometric analysis. Our data show that trkA and trkB are transcribed in most B cell lines of normal and malignant origin. For several of them, we also gained first evidence of trkC expression in B cells. All cell lines and primary B cells lack p75(NTR) expression. These data suggest that neurotrophin receptors expression in the B cell lines correlates to some extent with the phenotypic maturation stage and endogenous viral activity levels. Our data suggest that TrkA and TrkB, once activated, provide a partial rescue from apoptosis, whereas TrkC stimulates the progression through the cell cycle without affecting cell survival. Finally, the identification of a number of cell lines showing single expression of one of the Trk receptors has disclosed the availability of a cellular tool for further studies on their function, and mechanisms of signal transduction in the B cell moiety in the absence of p75(NTR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号