首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Critical-sized bone defects are critical healing conditions that, if left untreated, often lead to non-unions. To reduce the risk, critical-sized bone defects are often treated with recombinant human BMP-2. Although enhanced bone tissue formation is observed when BMP-2 is administered locally to the defect, spatial and temporal distribution of callus tissue often differs from that found during regular bone healing or in defects treated differently. How this altered tissue patterning due to BMP-2 treatment is linked to mechano-biological principles at the cellular scale remains largely unknown. In this study, the mechano-biological regulation of BMP-2-treated critical-sized bone defect healing was investigated using a multiphysics multiscale in silico approach. Finite element and agent-based modeling techniques were combined to simulate healing within a critical-sized bone defect (5 mm) in a rat femur. Computer model predictions were compared to in vivo microCT data outcome of bone tissue patterning at 2, 4, and 6 weeks postoperation. In vivo, BMP-2 treatment led to complete healing through periosteal bone bridging already after 2 weeks postoperation. Computer model simulations showed that the BMP-2 specific tissue patterning can be explained by the migration of mesenchymal stromal cells to regions with a specific concentration of BMP-2 (chemotaxis). This study shows how computational modeling can help us to further understand the mechanisms behind treatment effects on compromised healing conditions as well as to optimize future treatment strategies.

  相似文献   

2.
Adaptive finite element models have allowed researchers to test hypothetical relationships between the local mechanical environment and the healing of bone fractures. However, their predictive power has not yet been demonstrated by testing hypotheses ahead of experimental testing. In this study, an established mechano-biological scheme was used in an iterative finite element simulation of sheep tibial osteotomy healing under a hypothetical fixation regime, “inverse dynamisation”. Tissue distributions, interfragmentary movement and stiffness across the fracture site were compared between stiff and flexible fixation conditions and scenarios in which fixation stiffness was increased at a discrete time-point. The modelling work was conducted blind to the experimental study to be published subsequently. The simulations predicted the fastest and most direct healing under constant stiff fixation, and the slowest healing under flexible fixation. Although low fixation stiffness promoted more callus formation prior to bridging, this conferred little additional stiffness to the fracture in the first 5 weeks. Thus, while switching to stiffer fixation facilitated rapid subsequent bridging of the fracture, no advantage of inverse dynamisation could be demonstrated. In vivo data remains necessary to conclusively test this treatment protocol and this will, in turn, provide an evaluation of the model’s performance. The publication of both hypotheses and their computational simulation, prior to experimental testing, offers an appealing means to test the predictive power of mechano-biological models.  相似文献   

3.
Bone substitution materials are seen as an alternative to autogenous bone transplants in the reconstruction of human bone structures. The aim of the present animal study was to evaluate the clinical handling and the conditions of bone healing after the application of a phosphoserine and collagen-I-modified calcium-phosphate cement (Biozement D). The application of phosphoserine is supposed to influence the texture of the extracellular matrix. Standardised bone defects were created in the lower jaw of 10 adult minipigs. These defects were reconstructed with a pasty calcium-phosphate cement mixture. After a healing time of 4 months, the animals were sacrificed. The mandibles of all animals were resected and non-decalcified histological sections of the areas of interest were prepared. The experiment was evaluated by means of qualitative histology and histomorphometry. The hydroxyapatite cement entirely hardened intraoperatively. Modelling and handling of the cement was facile and the margin fit to the host bone was excellent. Histology showed that resorption started in the periphery and proceeded exceptionally fast. The bony substitution, especially in phosphoserine-endowed cements, was very promising. After a healing period of 4 months, phosphoserine cements showed a bone regeneration of nearly two-thirds of the defect sizes. In the applied animal experiment, the newly developed hydroxyapatite collagen-I cement is well suited for bone substitution due to its easy handling, its excellent integration and good resorption characteristics. The addition of phosphoserine is very promising in terms of influencing resorption features and bone regeneration.  相似文献   

4.
Purpose: The clinical demand for bone grafting materials necessitated the development of animal models. Critical size defect model has been criticized recently, mainly for its inaccuracy. Our objective was to develop a dependable animal model that would provide compromised bone healing, and would allow the investigation of bone substitutes. Methods: In the first group a critical size defect was created in the femur of adult male Wistar rats, and a non-critical defect in the remaining animals (Groups II, III and IV). The defect was left empty in group II, while in groups III and IV a spacer was interposed into the gap. Osteoblast activity was evaluated by NanoSPECT/CT imaging system. New bone formation and assessment of a union or non-union was observed by μCT and histology. Results: The interposition model proved to be highly reproducible and provided a bone defect with compromised bone healing. Significant bone regeneration processes were observed four weeks after removal of the spacer. Conclusion: Our results have shown that when early bone healing is inhibited by the physical interposition of a spacer, the regeneration process is compromised for a further 4 weeks and results in a bone defect during the time-course of the study.  相似文献   

5.
During secondary bone healing, different tissue types are formed within the fracture callus depending on the local mechanical and biological environment. Our aim was to understand the temporal succession of these tissue patterns for a normal bone healing progression by means of a basic mechanobiological model. The experimental data stemmed from an extensive, previously published animal experiment on sheep with a 3?mm tibial osteotomy. Using recent experimental data, the development of the hard callus was modelled as a porous material with increasing stiffness and decreasing porosity. A basic phenomenological model was employed with a small number of simulation parameters, which allowed comprehensive parameter studies. The model distinguished between the formation of new bone via endochondral and intramembranous ossification. To evaluate the outcome of the computer simulations, the tissue images of the simulations were compared with experimentally derived tissue images for a normal healing progression in sheep. Parameter studies of the threshold values for the regulation of tissue formation were performed, and the source of the biological stimulation (comprising e.g. stem cells) was varied. It was found that the formation of the hard callus could be reproduced in silico for a wide range of threshold values. However, the bridging of the fracture gap by cartilage on the periosteal side was observed only (i) for a rather specific choice of the threshold values for tissue differentiation and (ii) when assuming a strong source of biological stimulation at the periosteum.  相似文献   

6.
The effect of ifosfamide on bone healing was tested in a controlled experiment of fibular osteotomy in immature rabbits. Standardized shaft osteotomy was implemented in 10 experimental subjects (group 2) and 10 controls (group 1). Experimental animals received a 50 mg/kg ifosfamide dose by intraperitoneal injection on the fourth post-operative day, and for five days thereafter, while controls received injections of distilled water. After five weeks, all animals were submitted to pharmacological euthanasia and the resulting bone callus samples were studied with histomorphometry, using hematoxylin-eosin stain. Group 2 presented smaller bone volume (69.03% versus 84.98%), larger fibrosis volume (30.96% versus 15.02%), and larger resorption surface (22.02% versus 16.17%) than group 1 (all p< or = 0.05). We conclude that ifosfamide is able to alter the physiological bone healing process by producing a less mature callus (characterized by a smaller quantity of bone tissue), a larger quantity of fibrous tissue, and a smaller resorption surface.  相似文献   

7.
Following fractures, bones restore their original structural integrity through a complex process in which several cellular events are involved. Among other factors, this process is highly influenced by the mechanical environment of the fracture site. In this study, we present a mathematical model to simulate the effect of mechanical stimuli on most of the cellular processes that occur during fracture healing, namely proliferation, migration and differentiation. On the basis of these three processes, the model then simulates the evolution of geometry, distributions of cell types and elastic properties inside a healing fracture. The three processes were implemented in a Finite Element code as a combination of three coupled analysis stages: a biphasic, a diffusion and a thermoelastic step. We tested the mechano-biological regulatory model thus created by simulating the healing patterns of fractures with different gap sizes and different mechanical stimuli. The callus geometry, tissue differentiation patterns and fracture stiffness predicted by the model were similar to experimental observations for every analysed situation.  相似文献   

8.
Expression of bone morphogenetic proteins during membranous bone healing   总被引:16,自引:0,他引:16  
For the reconstructive plastic surgeon, knowledge of the molecular biology underlying membranous fracture healing is becoming increasingly vital. Understanding the complex patterns of gene expression manifested during the course of membranous fracture repair will be crucial to designing therapies that augment poor fracture healing or that expedite normal osseous repair by strategic manipulation of the normal course of gene expression. In the current study, we present a rat model of membranous bone repair. This model has great utility because of its technical simplicity, reproducibility, and relatively low cost. Furthermore, it is a powerful tool for analysis of the molecular regulation of membranous bone repair by immunolocalization and/or in situ hybridization techniques. In this study, an osteotomy was made within the caudal half of the hemimandible, thus producing a stable bone defect without the need for external or internal fixation. The healing process was then catalogued histologically in 28 Sprague-Dawley rats that were serially killed at 1, 2, 3, 4, 5, 6, and 8 weeks after operation. Furthermore, using this novel model, we analyzed, within the context of membranous bone healing, the temporal and spatial expression patterns of several members of the bone morphogenetic protein (BMP) family, known to be critical regulators of cells of osteoblast lineage. Our data suggest that BMP-2/-4 and BMP-7, also known as osteogenic protein-1 (OP-1), are expressed by osteoblasts, osteoclasts, and other more primitive mesenchymal cells within the fracture callus during the early stages of membranous fracture healing. These proteins continue to be expressed during the process of bone remodeling, albeit less prominently. The return of BMP-2/-4 and OP-1 immunostaining to baseline intensity coincides with the histological appearance of mature lamellar bone. Taken together, these data underscore the potentially important regulatory role played by the bone morphogenetic proteins in the process of membranous bone repair.  相似文献   

9.
A quantitative biomechanical model describes the tissue transformation during healing of a transverse osteotomy of a sheep metatarsal. The model predicts bridging of the bone ends through cartilage, followed by the growth of a callus cuff, and finally, the resorption of callus after ossification of the interfragmentary gap. We suggest bone density or the modulus of elasticity do not sufficiently characterize healing tissue for predictive purposes. In addition to the stimulus reflected by strain energy density we introduce a new osteogenic factor based upon stress gradients and which predicts areas of a high osteogenic capacity. Our model distinguishes three basic types of tissue, namely bone, cartilage and fibrous tissue. A fuzzy controller is proposed to model the tissue reaction. A set of fuzzy rules derived from medical knowledge has been implemented to describe tissue transformation such as intramembraneous or chondral ossification, atrophy or destruction. Fuzzy logic is able to model tissue transformation processes within the numerical simulation of remodeling processes. This approach improves the simulation tools and affords the potential to optimize planning of animal experiments and conduct parametric studies.  相似文献   

10.
Molecular signaling in bone fracture healing and distraction osteogenesis   总被引:11,自引:0,他引:11  
The process of fracture healing has been described in detail in many histological studies. Recent work has focused on the mechanisms by which growth and differentiation factors regulate the fracture healing process. Rapid progress in skeletal cellular and molecular biology has led to the identification of many signaling molecules associated with the formation of skeletal tissues, including members of the transforming growth factor-beta (TGF-beta) superfamily and the insulin-like growth factor (IGF) family. Increasing evidence indicates that they are critical regulators of cellular proliferation, differentiation, extracellular matrix biosynthesis and mineralization. Limb lengthening procedure (distraction osteogenesis) is a relevant model to investigate the in vivo correlation between mechanical stimulation and biological responses as the callus is stretched by a proper rate and rhythm of mechanical strain. This model also provides additional insights into the molecular and cellular events during bone fracture repair. TGF-beta 1 was significantly increased in both the distracted callus and the fracture callus. The increased level of TGF-beta 1, together with a low concentration of calcium and an enhanced level of collagen synthesis, was maintained in the distracted callus as long as mechanical strain was applied. Less mineralization is also associated with a low level of osteocalcin production. These observations provide further insights into the molecular basis for the cellular events during distraction osteogenesis.  相似文献   

11.
Computational models are employed as tools to investigate possible mechano-regulation pathways for tissue differentiation and bone healing. However, current models do not account for the uncertainty in input parameters, and often include assumptions about parameter values that are not yet established. The aim was to clarify the importance of the assumed tissue material properties in a computational model of tissue differentiation during bone healing. An established mechano-biological model was employed together with a statistical approach. The model included an adaptive 2D finite element model of a fractured long bone. Four outcome criteria were quantified: (1) ability to predict sequential healing events, (2) amount of bone formation at specific time points, (3) total time until healing, and (4) mechanical stability at specific time points. Statistical analysis based on fractional factorial designs first involved a screening experiment to identify the most significant tissue material properties. These seven properties were studied further with response surface methodology in a three-level Box–Behnken design. Generally, the sequential events were not significantly influenced by any properties, whereas rate-dependent outcome criteria and mechanical stability were significantly influenced by Young's modulus and permeability. Poisson's ratio and porosity had minor effects. The amount of bone formation at early, mid and late phases of healing, the time until complete healing and the mechanical stability were all mostly dependent on three material properties; permeability of granulation tissue, Young's modulus of cartilage and permeability of immature bone. The consistency between effects of the most influential parameters was high. To increase accuracy and predictive capacity of computational models of bone healing, the most influential tissue mechanical properties should be accurately quantified.  相似文献   

12.
Bone healing commences with an inflammatory reaction which initiates the regenerative healing process leading in the end to reconstitution of bone. An unbalanced immune reaction during this early bone healing phase is hypothesized to disturb the healing cascade in a way that delays bone healing and jeopardizes the successful healing outcome. The immune cell composition and expression pattern of angiogenic factors were investigated in a sheep bone osteotomy model and compared to a mechanically-induced impaired/delayed bone healing group. In the impaired/delayed healing group, significantly higher T cell percentages were present in the bone hematoma and the bone marrow adjacent to the osteotomy gap when compared to the normal healing group. This was mirrored in the higher cytotoxic T cell percentage detected under delayed bone healing conditions indicating longer pro-inflammatory processes. The highly activated periosteum adjourning the osteotomy gap showed lower expression of hematopoietic stem cell markers and angiogenic factors such as heme oxygenase and vascular endothelial growth factor. This indicates a deferred revascularization of the injured area due to ongoing pro-inflammatory processes in the delayed healing group. Results from this study suggest that there are unfavorable immune cells and factors participating in the initial healing phase. In conclusion, identifying beneficial aspects may lead to promising therapeutical approaches that might benefit further by eliminating the unfavorable factors.  相似文献   

13.
doi: 10.1111/j.1741‐2358.2011.00526.x
Biological evaluation of the bone healing process after application of two potentially osteogenic proteins: an animal experimental model Objective: The aim of this work was to analyse qualitatively and quantitatively the newly formed bone after insertion of rhBMP‐2 and protein extracted from Hevea brasiliensis (P‐1), associated or not with a carrier in critical bone defects created in Wistar rat calvarial bone, using histological and histomorphometrical analyses. Materials and methods: Eighty‐four male Wistar rats were used, divided into two groups, according to the period of time until the sacrifice (2 and 6 weeks). Each one of these groups was subdivided into six groups with seven animals each, according to the treatments: (1) 5 μg of pure rhBMP‐2, (2) 5 μg of rhBMP‐2/monoolein gel, (3) pure monoolein gel, (4) 5 μg of pure P‐1, (5) 5 μg of P‐1/monoolein gel and (6) critical bone defect controls. The animals were euthanised and the calvarial bone tissue removed for histological and histomorphometrical analyses. Result and conclusion: The results showed an improvement in the bone healing process using the rhBMP‐2 protein, associated or not with a material carrier in relation to the other groups, and this process demonstrated to be time dependent.  相似文献   

14.
Bone fractures heal through a complex process involving several cellular events. This healing process can serve to study factors that control tissue growth and differentiation from mesenchymal stem cells. The mechanical environment at the fracture site is one of the factors influencing the healing process and controls size and differentiation patterns in the newly formed tissue. Mathematical models can be useful to unravel the complex relation between mechanical environment and tissue formation. In this study, we present a mathematical model that predicts tissue growth and differentiation patterns from local mechanical signals. Our aim was to investigate whether mechanical stimuli, through their influence on stem cell proliferation and chondrocyte hypertrophy, predict characteristic features of callus size and geometry. We found that the model predicted several geometric features of fracture calluses. For instance, callus size was predicted to increase with increasing movement. Also, increases in size were predicted to occur through increase in callus diameter but not callus length. These features agree with experimental observations. In addition, spatial and temporal tissue differentiation patterns were in qualitative agreement with well-known experimental results. We therefore conclude that local mechanical signals can probably explain the shape and size of fracture calluses.  相似文献   

15.
Numerous experimental fracture healing studies are performed on rats, in which different experimental, mechanical parameters are applied, thereby prohibiting direct comparison between each other. Numerical fracture healing simulation models are able to predict courses of fracture healing and offer support for pre-planning animal experiments and for post-hoc comparison between outcomes of different in vivo studies. The aims of this study are to adapt a pre-existing fracture healing simulation algorithm for sheep and humans to the rat, to corroborate it using the data of numerous different rat experiments, and to provide healing predictions for future rat experiments. First, material properties of different tissue types involved were adjusted by comparing experimentally measured callus stiffness to respective simulated values obtained in three finite element (FE) models. This yielded values for Young’s moduli of cortical bone, woven bone, cartilage, and connective tissue of 15,750 MPa, 1,000 MPa, 5 MPa, and 1 MPa, respectively. Next, thresholds in the underlying mechanoregulatory tissue differentiation rules were calibrated by modifying model parameters so that predicted fracture callus stiffness matched experimental data from a study that used rigid and flexible fixators. This resulted in strain thresholds at higher magnitudes than in models for sheep and humans. The resulting numerical model was then used to simulate numerous fracture healing scenarios from literature, showing a considerable mismatch in only 6 of 21 cases. Based on this corroborated model, a fit curve function was derived which predicts the increase of callus stiffness dependent on bodyweight, fixation stiffness, and fracture gap size. By mathematically predicting the time course of the healing process prior to the animal studies, the data presented in this work provides support for planning new fracture healing experiments in rats. Furthermore, it allows one to transfer and compare new in vivo findings to previously performed studies with differing mechanical parameters.  相似文献   

16.
This study aimed to mechanically produce a standardized ovine model for a critically delayed bone union. A tibial osteotomy was stabilized with either a rigid (group I) or mechanically critical (group II) external fixator in sheep. Interfragmentary movements and ground reaction forces were monitored throughout the healing period of 9 weeks. After sacrifice at 6 weeks, 9 weeks and 6 months, radiographs were taken and the tibiae were examined mechanically. Interfragmentary movements were considerably larger in group II throughout the healing period. Unlike group I, the operated limb in group II did not return to full weight bearing during the treatment period. Radiographic and mechanical observations showed significantly inferior bone healing in group II at 6 and 9 weeks compared to group I. After 6 months, five sheep treated with the critical fixator showed radiological bridging of the osteotomy, but the biomechanical strength of the repair was still inferior to group I at 9 weeks. The remaining three animals had even developed a hypertrophic non-union. In this study, mechanical instability was employed to induce a critically delayed healing model in sheep. In some cases, this approach even led to the development of a hypertrophic non-union. The mechanical induction of critical bone healing using an external fixation device is a reasonable attempt to investigate the patho-physiological healing cascade without suffering from any biological intervention. Therefore, the presented ovine model provides the basis for a comparative evaluation of mechanisms controlling delayed and standard bone healing.  相似文献   

17.
A new quantitative tissue differentiation theory which relates the local tissue formation in a fracture gap to the local stress and strain is presented. Our hypothesis proposes that the amounts of strain and hydrostatic pressure along existing calcified surfaces in the fracture callus determine the differentiation of the callus tissue. The study compares the local strains and stresses in the callus as calculated from a finite element model with histological findings from an animal fracture model. The hypothesis predicts intramembranous bone formation for strains smaller approximately +/- 5% and hydrostatic pressures smaller than +/- 0.15 MPa. Endochondral ossification is associated with compressive pressures larger than about -0.15 MPa and strains smaller than +/- 15%. All other conditions seemed to lead to connective tissue or fibrous cartilage. The hypothesis enables a better understanding of the complex tissue differentiation seen in histological images and the mechanical conditions for healing delayed healing or nonunions.  相似文献   

18.
Beyond its role in the regulation of red blood cell proliferation, the glycoprotein erythropoietin (EPO) has been shown to promote cell regeneration and angiogenesis in a variety of different tissues. In addition, EPO has been indicated to share significant functional and structural homologies with the vascular endothelial growth factor (VEGF), a cytokine essential in the process of fracture healing. However, there is complete lack of information on the action of EPO in bone repair and fracture healing. Therefore, we investigated the effect of EPO treatment on bone healing in a murine closed femur fracture model using radiological, histomorphometric, immunohistochemical, biomechanical and protein biochemical analysis. Thirty-six SKH1-hr mice were treated with daily i.p. injections of 5000 U/kg EPO from day 1 before fracture until day 4 after fracture. Controls received equivalent amounts of the vehicle. After 2 weeks of fracture healing, we could demonstrate expression of the EPO-receptor (EPOR) in terminally differentiating chondrocytes within the callus. At this time point EPO-treated animals showed a higher torsional stiffness (biomechanical analysis: 39.6+/-19.4% of the contralateral unfractured femur) and an increased callus density (X-ray analysis (callus density/spongiosa density): 110.5+/-7.1%) when compared to vehicle-treated controls (14.3+/-8.2% and 105.9+/-6.6%; p<0.05). Accordingly, the histomorphometric examination revealed an increased fraction of mineralized bone and osteoid (33.0+/-3.0% versus 28.5+/-3.6%; p<0.05). Of interest, this early effect of the initial 6-day EPO treatment had vanished at 5 weeks after fracture. We conclude that EPO-EPOR signaling is involved in the process of early endochondral ossification, enhancing the transition of soft callus to hard callus.  相似文献   

19.
Trabecular bone fractures heal through intramembraneous ossification. This process differs from diaphyseal fracture healing in that the trabecular marrow provides a rich vascular supply to the healing bone, there is very little callus formation, woven bone forms directly without a cartilage intermediary, and the woven bone is remodelled to form trabecular bone. Previous studies have used numerical methods to simulate diaphyseal fracture healing or bone remodelling, however not trabecular fracture healing, which involves both tissue differentiation and trabecular formation. The objective of this study was to determine if intramembraneous bone formation and remodelling during trabecular bone fracture healing could be simulated using the same mechanobiological principles as those proposed for diaphyseal fracture healing. Using finite element analysis and the fuzzy logic for diaphyseal healing, the model simulated formation of woven bone in the fracture gap and subsequent remodelling of the bone to form trabecular bone. We also demonstrated that the trabecular structure is dependent on the applied loading conditions. A single model that can simulate bone healing and remodelling may prove to be a useful tool in predicting musculoskeletal tissue differentiation in different vascular and mechanical environments.  相似文献   

20.
Osteogenic growth peptide enhances the rate of fracture healing in rabbits   总被引:12,自引:0,他引:12  
The discovery of growth factors, such as osteogenic growth peptide (OGP), that stimulate bone formation led to experiments to discover whether they can accelerate fracture healing. To determine whether OGP enhances the rate of healing in rabbits, fractures were made in the tibiae of New Zealand White rabbits and immobilized with either a plastic plate (unstable mechanical conditions), or a dynamic compression plate (stable mechanical conditions). OGP was administered to experimental animals by intravenous injection from day 4 until the day before sacrifice; control animals were not injected. After treatment with OGP, callus development under unstable mechanical conditions was accelerated. At 7 days, the cartilage in the centre of the callus was covered by bone and endochondral ossification had started; these events occur at 10 days in control fractures. Subsequently, endochondral ossification is completed earlier which allows the invasion of the fracture gap by cells, so that cortical union is complete by 21 to 28 days. In control fractures, bone is only beginning to form in the gaps at 28 days. There was no increase in the size of the callus in any of the experimental fractures compared to the untreated controls. Treatment with OGP has no observable effect on the rate of healing of fractures under stable mechanical conditions. These observations suggest that under unstable mechanical conditions only, the rate of callus formation and subsequent cortical healing is enhanced by treatment with OGP, but that the size of the callus is determined by mechanical and other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号